Effect of Postharvest LED Application on Phenolic and Antioxidant Components of Blueberry Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Blueberry Leaf Sample
2.2. Application of LED and Measurement of Colour Indices
2.3. Extraction and Analysis of Different Compounds and Antioxidant Activity
2.4. Statistical Design and Analyses
3. Results and Discussion
3.1. Overall Effect of the Application of LED on Different Phytochemicals Concentration
3.2. Overall Effect of the Application of LED on Antioxidant Activity
3.3. Statistical Analysis
3.4. Effect of LED Application on Total Colour Change
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, S.M.; Shang, Y.F.; Um, B.H. Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (Vaccinium corymbosum L.). Phytochem. Anal. 2010, 21, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.M.; Muhammad, A.; Ferrier, J.; Saleem, A.; Cuerrier, A.; Arnason, J.T.; Colson, K.L. Quantification of chlorogenic acid and hyperoside directly from crude blueberry (Vaccinium angustifolium) leaf extract by NMR spectroscopy analysis: Single-laboratory validation. J. AOAC Int. 2012, 95, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind. Crops Prod. 2014, 58, 36–45. [Google Scholar] [CrossRef]
- Harris, C.S.; Burt, A.J.; Saleem, A.; Le, P.M.; Martineau, L.C.; Haddad, P.S.; Bennett, S.A.L.; Arnason, J.T. A single HPLC PAD APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem. Anal. 2007, 18, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Ehlenfeldt, M.K.; Prior, R.L. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J. Agric. Food Chem. 2001, 49, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Ribnicky, D.M.; Kuhn, P.; Poulev, A.; Logendra, S.; Yousef, G.G.; Raskin, I.; Lila, M.A. Hypoglycemic activity of a novel anthocyanin-rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 2009, 16, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Yasmin, T.; Bagchi, D.; Stohs, S.J. Inhibition of Helicobacter pylori in vitro by various berry extracts, with enhanced susceptibility to clarithromycin. Mol. Cell. Biochem. 2004, 265, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Zevallos, L. The Use of Controlled Postharvest Abiotic Stresses as a Tool for Enhancing the Nutraceutical Content and Adding-Value of Fresh Fruits and Vegetables. J. Food Sci. 2003, 68, 1560–1565. [Google Scholar] [CrossRef]
- Chen, T.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichholz, I.; Huyskens-Keil, S.; Keller, A.; Ulrich, D.; Kroh, L.W.; Rohn, S. UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem. 2011, 126, 60–64. [Google Scholar] [CrossRef]
- Murugesan, R.; Orsat, V.; Lefsrud, M. Effect of pulsed ultraviolet light on the total phenol content of elderberry (Sambucus nigra) fruit. Food Nutr. Sci. 2012, 3, 774. [Google Scholar]
- Heo, J.; Kang, D.; Bang, H.; Hong, S.; Chun, C.; Kang, K. Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean J. Hortic. Sci. Technol. 2012, 30, 6–12. [Google Scholar] [CrossRef]
- Lee, N.; Lee, M.-J.; Kim, Y.-K.; Park, J.-C.; Park, H.-K.; Choi, J.-S.; Hyun, J.-N.; Kim, K.-J.; Park, K.-H.; Ko, J.-K.; et al. Effect of light emitting diode radiation on antioxidant activity of barley leaf. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 685–690. [Google Scholar] [CrossRef]
- Avercheva, O.; Berkovich, Y.A.; Erokhin, A.; Zhigalova, T.; Pogosyan, S.; Smolyanina, S. Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source. Russ. J. Plant Physiol. 2009, 56, 14–21. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V.; Gariepy, Y. Effect of different drying methods on the microwave extraction of phenolic components and antioxidant activity of highbush blueberry leaves. Dry. Technol. 2014, 32, 1888–1904. [Google Scholar] [CrossRef]
- Sankat, C.K.; Basanta, A.; Maharaj, V. Light mediated red colour degradation of the pomerac (Syzygium malaccense) in refrigerated storage. Postharvest Biol. Technol. 2000, 18, 253–257. [Google Scholar] [CrossRef]
- Britz, S.; Gaska, I.; Shturm, I.; Bilenko, Y.; Shatalov, M.; Gaska, R. Deep Ultraviolet (DUV) Light-Emitting Diodes (LEDs) to Maintain Freshness and Phytochemical Composition During Postharvest Storage. In Proceedings of the CLEO: 2013 San Jose Convention Center, San Jose, CA, USA, 9–14 June 2013. [Google Scholar]
- Samuolienė, G.; Sirtautas, R.; Brazaitytė, A.; Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012, 134, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Larbat, R.; Olsen, K.M.; Slimestad, R.; Løvdal, T.; Bénard, C.; Verheul, M.; Bourgaud, F.; Robin, C.; Lillo, C. Influence of repeated short-term nitrogen limitations on leaf phenolics metabolism in tomato. Phytochemistry 2012, 77, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhang, J.; Liang, H.; Liu, Y. Plant anthocyanin synthesis and gene regulation. Agric. Sci. Technol. Hunan 2012, 13, 507–540. [Google Scholar]
- Zhou, Y.; Singh, B.R. Effect of light on anthocyanin levels in submerged, harvested cranberry fruit. BioMed Res. Int. 2004, 5, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Martz, F.; Jaakola, L.; Julkunen-Tiitto, R.; Stark, S. Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in northern Europe following foliar development and along environmental gradients. J. Chem. Ecol. 2010, 36, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. Variation of phenolic profile and antioxidant activity of North American highbush blueberry leaves with variation of time of harvest and cultivar. Ind. Crops Prod. 2014, 62, 147–155. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Tan, J.; Wang, B. Influence of Harvest Season on Antioxidant Activity and Constituents of Rabbiteye Blueberry (Vaccinium ashei) Leaves. J. Agric. Food Chem. 2013, 61, 11477–11483. [Google Scholar] [CrossRef] [PubMed]
- Feild, T.S.; Lee, D.W.; Holbrook, N.M. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 2001, 127, 566. [Google Scholar] [CrossRef] [PubMed]
- Hoch, W.A.; Zeldin, E.L.; McCown, B.H. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 2001, 21, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.-C.; Hou, C.-Y.; Jiang, C.-M.; Wang, Y.-T.; Wang, C.-Y.; Chen, H.-H.; Chang, H.-M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Percival, G.C.; Baird, L. Influence of Storage upon Light-Induced Chlorogenic Acid Accumulation in Potato Tubers (Solanum tuberosum L.). J. Agric. Food Chem. 2000, 48, 2476–2482. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.-H.; Mitra, D.; Kootstra, A.; Lister, C.; Lancaster, J. Postharvest stimulation of skin color in Royal Gala apple. J. Am. Soc. Hortic. Sci. 1995, 120, 95–100. [Google Scholar]
- Reay, P.F.; Lancaster, J.E. Accumulation of anthocyanins and quercetin glycosides in ‘Gala’ and ‘Royal Gala’ apple fruit skin with UV-B–Visible irradiation: Modifying effects of fruit maturity, fruit side, and temperature. Sci. Hortic. 2001, 90, 57–68. [Google Scholar] [CrossRef]
Light | Level | Time (h) | Total Phenolics (mg GAE/g Dry Matter) | Total Monomeric Anthocyanins (mg M 3-G Equiv./g Dry Matter) | % Scavenging (DPPH) | FRAP (mg AA Equiv./g Dry Matter) |
---|---|---|---|---|---|---|
Untreated Batch | 160.962 ± 1.446 a | 1.108 ± 0.271 a,b | 88.476 ± 0.755 a,b | 231.600 ± 18.474 b | ||
Blue | 2 | 12 | 161.709 ± 8.286 a | 1.076 ± 0.259 a,b | 87.797 ± 0.367 b,c | 245.563 ± 18.474 a,b |
Blue | 2 | 24 | 159.285 ± 7.637 a,b | 1.501 ± 0.989 a | 87.924 ± 0.334 a,b,c | 247.970 ± 5.325 a,b |
Blue | 2 | 48 | 147.871 ± 7.269 b,c | 0.701 ± 0.054 b | 88.375 ± 0.290 a,b | 248.433 ± 13.520 a,b |
Red | 2 | 12 | 154.982 ± 3.374 a,b | 0.732 ± 0.142 b | 88.693 ± 0.295 a | 261.619 ± 19.194 a |
Red | 2 | 24 | 150.861 ± 2.003 a,b,c | 0.761 ± 0.115 b | 88.275 ± 0.492 a,b | 226.322 ± 8.662 b |
Red | 2 | 48 | 138.901 ± 11.521c | 0.793 ± 0.216 a,b | 87.288 ± 0.623 c | 228.989 ± 4.860 b |
Terms | Total Phenolic Content (mg GAE/g Dry Matter) | Total Monomeric Anthocyanins (mg M 3-G Equiv/g Dry Matter) | % Scavenging (DPPH) | FRAP (mg AAE/g Dry Matter) | ||||
---|---|---|---|---|---|---|---|---|
R2 = 0.60539, RMSE = 6.908147 | R2 = 0.235918, RMSE = 0.450349 | R2 = 0.635456, RMSE = 0.388165 | R2 = 0.318337, RMSE = 15.10236 | |||||
Parameter estimate | Prob > F | Parameter estimate | Prob > F | Parameter estimate | Prob > F | Parameter estimate | Prob > F | |
Intercept | 151.41652 | <0.0001 * | 0.9152788 | <0.0001 * | 88.035981 | <0.0001 * | 242.45946 | <0.0001 * |
Light [Blue] | 4.0768398 | 0.0264 * | 0.150036 | 0.1830 | 0.0290972 | 0.7572 | 5.0049603 | 0.1852 |
Time (h) | −7.66342 | 0.0016 * | −0.108726 | 0.4087 | −0.205911 | 0.0823 | −6.209325 | 0.1690 |
Light [Blue] * Time (h) | 0.5097403 | 0.7984 | −0.138083 | 0.2977 | 0.5020415 | 0.0004 * | 7.4890873 | 0.1021 |
Model | 0.0038 * | 0.2731 | 0.0022 * | 0.1360 | ||||
Lack of fit | 0.8953 | 0.2515 | 0.9628 | 0.0678 |
Level | Total Phenolic Content | Total Monomeric Anthocyanin Content | % Scavenging (DPPH) | FRAP (mg AAE/g Dry Matter) | ||||
---|---|---|---|---|---|---|---|---|
Connecting Letters | Least Sq. Mean | Connecting Letters | Least Sq. Mean | Connecting Letters | Least Sq. Mean | Connecting Letters | Least Sq. Mean | |
Light | ||||||||
Blue | A | 156.28822 | A | 1.0927381 | A | 88.032175 | A | 247.32222 |
Red | B | 148.24781 | A | 0.7619810 | A | 88.085545 | A | 238.97654 |
Time (h) | ||||||||
12 | A | 158.34545 | A | 0.9042000 | A | 88.245357 | A | 253.59074 |
24 | A | 155.07273 | A | 1.1312286 | A | 88.099420 | A | 237.14630 |
48 | B | 143.38586 | A | 0.7466500 | A | 87.831803 | A | 238.71111 |
Light * Time (h) | ||||||||
Blue * 12 h | A | 161.70909 | A | 1.0764286 | A B | 87.797328 | A | 245.56296 |
Blue * 24 h | A | 159.28485 | A | 1.5011286 | A B | 87.923796 | A | 247.97037 |
Blue * 48 h | A B | 147.87071 | A | 0.7006571 | A B | 88.375399 | A | 248.43333 |
Red * 12 h | A B | 154.98182 | A | 0.7319714 | A | 88.693385 | A | 261.61852 |
Red * 24 h | A B | 150.86061 | A | 0.7613286 | A B | 88.275043 | A | 226.32222 |
Red * 48 h | B | 138.90101 | A | 0.7926429 | B | 87.288206 | A | 228.98889 |
Light | Time (h) | L | a | b | L’ | a’ | b’ | δE | |
---|---|---|---|---|---|---|---|---|---|
Blue | 12 | 39.48 | −14.18 | 21.28 | 40.18 | −14.67 | 21.74 | 0.97 | |
Blue | 24 | 38.67 | −14.74 | 20.23 | 42.11 | −13.90 | 23.26 | 4.66 | |
Blue | 48 | 37.67 | −14.27 | 19.05 | 43.10 | −11.63 | 22.97 | 7.20 | |
Red | 12 | 38.95 | −15.45 | 20.79 | 39.67 | −14.53 | 21.39 | 1.31 | |
Red | 24 | 38.33 | −14.71 | 19.97 | 41.31 | −13.22 | 22.58 | 4.23 | |
Red | 48 | 38.80 | −14.47 | 20.12 | 43.89 | −12.43 | 23.72 | 6.57 | |
R2 = 0.923981, RMSE = 1.129238 | |||||||||
Term | Estimate | Prob > F | |||||||
Intercept | 4.460739 | 0.0107 * | |||||||
Light [Blue] | 0.144676 | 0.7852 | |||||||
Time (h) (12,48) | 2.720988 | 0.0391 * | |||||||
Light [Blue] * Time (h) | 0.219407 | 0.7305 | |||||||
Model | 0.1118 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Routray, W.; Orsat, V.; Lefsrud, M. Effect of Postharvest LED Application on Phenolic and Antioxidant Components of Blueberry Leaves. ChemEngineering 2018, 2, 56. https://doi.org/10.3390/chemengineering2040056
Routray W, Orsat V, Lefsrud M. Effect of Postharvest LED Application on Phenolic and Antioxidant Components of Blueberry Leaves. ChemEngineering. 2018; 2(4):56. https://doi.org/10.3390/chemengineering2040056
Chicago/Turabian StyleRoutray, Winny, Valerie Orsat, and Mark Lefsrud. 2018. "Effect of Postharvest LED Application on Phenolic and Antioxidant Components of Blueberry Leaves" ChemEngineering 2, no. 4: 56. https://doi.org/10.3390/chemengineering2040056
APA StyleRoutray, W., Orsat, V., & Lefsrud, M. (2018). Effect of Postharvest LED Application on Phenolic and Antioxidant Components of Blueberry Leaves. ChemEngineering, 2(4), 56. https://doi.org/10.3390/chemengineering2040056