Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Reaction
3. Results and Discussion
3.1. Formation of LaAlO3_XY (X = Li, Na, K, Y = mol %) Catalysts
3.2. Catalyst Performance of LaAlO3_XY (X = Li, Na, K, Y = mol %) Catalysts in the OCM
3.3. Catalyst Performance of LaAlO3_X5 (X = Li, Na, K) Catalysts in the OCM
3.4. Physical Properties and Chemical Composition of LaAlO3_X5 (X = Li, Na, K) Catalysts
3.5. Investigation of the Active Site of LaAlO3_X5 (X = Li, Na, K) and LaAlO3 Catalysts on the OCM
3.5.1. The Active Site of LaAlO3_X5 (X = Li, Na, K) and LaAlO3 Catalysts for C2 Selectivity and COx Selectivity
3.5.2. The Active Site of LaAlO3_X5 (X = Li, Na, K) and LaAlO3 for COx Selectivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 10, 3480–3524. [Google Scholar] [CrossRef] [PubMed]
- Farrell, B.L.; Igenegbai, V.O.; Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 2016, 6, 4340–4346. [Google Scholar] [CrossRef] [Green Version]
- Galadima, A.; Muraza, O. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. J. Ind. Eng. Chem. 2016, 37, 1–13. [Google Scholar] [CrossRef]
- Lunsford, J.H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century. Catal. Today 2000, 63, 165–174. [Google Scholar] [CrossRef]
- Tang, P.; Zhu, Q.; Wu, Z.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591. [Google Scholar] [CrossRef]
- Lee, J.; Yasin, M.; Park, S.; Chang, I.S.; Ha, K.S.; Lee, E.Y.; Lee, J.; Kim, C. Gas-liquid mass transfer coefficient of methane in bubble column reactor. Korean J. Chem. Eng. 2015, 32, 1060–1063. [Google Scholar] [CrossRef]
- Sudheer, P.D.V.N.; David, Y.; Chae, C.G.; Kim, Y.J.; Baylon, M.G.; Baritugo, K.A.; Kim, T.W.; Kim, M.S.; Na, J.G.; Park, S.J. Advances in the biological treatment of coal for synthetic natural gas and chemicals. Korean J. Chem. Eng. 2016, 33, 2788–2801. [Google Scholar] [CrossRef]
- Wood, D.A.; Nwaoha, C.; Towler, B.F. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 2012, 9, 196–208. [Google Scholar] [CrossRef]
- Nwaoha, C.; Wood, D.A. A review of the utilization and monetization of Nigeria’s natural gas resources: Current realities. J. Nat. Gas Sci. Eng. 2014, 18, 412–432. [Google Scholar] [CrossRef]
- Araujo, G.C.D.; Lima, S.; Rangel, M.D.C.; Parola, V.L.; Pena, M.A.; Fierro, J.L.G. Characterization of precursors and reactivity of LaNi1-xCoxO3 for the partial oxidation of methane. Catal. Today 2005, 107–108, 906–912. [Google Scholar] [CrossRef]
- Valderrama, G.; Boldwasser, M.R.; Navarro, C.U.D.; Tatibouët, J.M.; Barrault, J.; Batiot-Dupeyrat, C.; Matìnez, F. Dry reforming of methane over Ni perovskite type oxides. Catal. Today 2005, 107–180, 785–791. [Google Scholar] [CrossRef]
- Perenìguez, R.; González-DelaCruz, V.M.; Holgado, J.P.; Caballero, A. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Appl. Catal. B 2010, 93, 346–353. [Google Scholar] [CrossRef]
- Enger, B.C.; Lodeng, R.; Holmen, A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal. A 2008, 346, 1–27. [Google Scholar] [CrossRef]
- Nipan, G.D.; Artukh, V.A.; Yusupov, V.S.; Loktev, A.S.; Spesivtsev, N.A.; Dedov, A.G.; Moiseev, I.I. Effect of pressure on the phase composition of Li(Na)/W/Mn/SiO2 composites and their catalytic activity for oxidative coupling of methane. Inorg. Mater. 2014, 50, 912–916. [Google Scholar] [CrossRef]
- Colmenares, M.G.; Simon, U.; Yildiz, M.; Arndt, S.; Schomaecker, R.; Thormas, A.; Rosowski, F.; Gurlo, A.; Goerke, O. Oxidative coupling of methane on the Na2WO4-MnxOy catalyst: COK-12 as an inexpensive alternative to SBA-15. Catal. Commun. 2016, 85, 75–78. [Google Scholar] [CrossRef]
- Wang, H.; Schmack, R.; Paul, B.; Albrecht, M.; Sokolov, S.; Rummler, S.; Kondratenko, E.V.; Kraehnert, R. Porous silicon carbide as a support for Mn/Na/W/SiC catalyst in the oxidative coupling of methane. Appl. Catal. A 2017, 537, 33–39. [Google Scholar] [CrossRef]
- Jeon, W.; Lee, J.Y.; Lee, M.; Choi, J.W.; Ha, J.M.; Suh, D.J.; Kim, I.W. Oxidative coupling of methane to C2 hydrocarbons on theMg-Ti mixed oxide-supported catalysts at the lower reaction temperature: Role of surface oxygen atoms. Appl. Catal. A 2013, 464–465, 68–77. [Google Scholar] [CrossRef]
- Kwon, D.; Yang, I.; Sim, Y.; Ha, J.M.; Jung, J.C. A K2NiF4-type La2Li0.5Al0.5O4 catalyst for the oxidative coupling of methane (OCM). Catal. Commu. 2019, 128, 105702. [Google Scholar] [CrossRef]
- Sim, Y.; Kwon, D.; An, S.; Ha, J.M.; Oh, T.S.; Jung, J.C. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane. Mol. Catal. 2020, 489, 110925. [Google Scholar] [CrossRef]
- Nipan, G.D. Melt-assisted phase transformations of A/W/Mn/SiO2 (A=Li, Na, K, Rb, Cs) composite catalysts. Inorg. Mater. 2017, 53, 553–559. [Google Scholar] [CrossRef]
- Dedov, A.G.; Loktev, A.S.; Moiseev, I.I.; Aboukais, A.; Lamonier, J.F.; Filimonov, I.N. Oxidative coupling of methane catalyzed unexpected synergistic effect of the oxide mixtures. Appl. Cataly. A 2003, 245, 209–220. [Google Scholar] [CrossRef]
- Driscoll, D.J.; Martir, W.; Wang, J.X.; Lunsford, J.H. Formation of gas-phase methyl radicals over magnesium oxide. J. Am. Chem. Soc. 1985, 107, 58–63. [Google Scholar] [CrossRef]
- Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M. A Critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. Catal. Rev. 2011, 53, 424–514. [Google Scholar] [CrossRef]
- Ghose, R.; Hwang, H.T.; Varma, A. Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies. Appl. Catal. A 2014, 472, 39–46. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Yang, D.; Gao, R.; Wang, Z.; Yang, J. Scale up and stability test for oxidative coupling of methane over Na2WO4-Mn/SiO2 catalyst in a 200 mL fixed-bed reactor. J. Nat. Gas Chem. 2008, 17, 59–63. [Google Scholar] [CrossRef]
- Gholipour, Z.; Malekzadeh, A.; Hatami, R.; Mortazavi, Y.; Khodadadi, A. Oxidative coupling of methane over (Na2WO4+Mn or Ce)/SiO2 catalysts: In situ measurement of electrical conductivity. J. Nat. Gas Chem. 2010, 19, 35–42. [Google Scholar] [CrossRef]
- Rollilns, B.; Grosjean, N.; Poulston, S. The impact of the presence of various relevant gases during aging of MnNa2WO4/SiO2 catalyst on its performance for the oxidative coupling of methane. Appl. Catal. A 2020, 598, 117606. [Google Scholar] [CrossRef]
- Kidamorn, O.; Tiyatha, W.; Chukeaw, T.; Niamnuy, C.; Chareonpanich, M.; Sohn, H.; Seubsai, A. Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4-TiO2-MnOx/SiO2 catalysts with alkali or alkali earth oxide additives. ACS Omega 2020, 5, 13612–13620. [Google Scholar] [CrossRef]
- Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomacker, R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal. A 2012, 425–426, 53–61. [Google Scholar] [CrossRef]
- Nibbelke, R.H.; Scheerova, J.; Decroon, M.H.J.M.; Maring, G.B. The oxidative coupling of methane over MgO-based catalysts: A steady-state isotope transient kinetic analysis. J. Catal. 1995, 156, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; You, R.; Liu, Y.; Yang, J.; Zhu, Y.; Wen, W.; Pan, Y.; Qi, F.; Huang, W. Gas-phase reaction network of Li/MgO-catalyzed oxidative coupling of methane and oxidative dehydrogenation of ethane. ACS Catal. 2019, 9, 2514–2520. [Google Scholar] [CrossRef]
- Qian, K.; You, R.; Guan, Y.; Wen, W.; Tian, Y.; Pan, Y.; Huang, W. Single-site catalysis of Li-MgO catalysts for oxidative coupling of methane reaction. ACS Catal. 2020, 10, 15142–15148. [Google Scholar] [CrossRef]
- Tang, L.G.; Yamaguchi, D.; Wong, L.; Burke, N.; Chiang, K. The promoting effect of ceria on Li/MgO catalysts for the oxidative coupling of methane. Catal. Today 2011, 178, 172–180. [Google Scholar] [CrossRef]
- Gu, S.; Oh, H.S.; Choi, J.W.; Suh, D.J.; Jae, J.; Choi, J.; Ha, J.M. Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: Reducibility of metal additives to manipulate the catalytic activity. Appl. Catal. A 2018, 562, 114–119. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Rane, V.H.; Pandit, M.Y. Comparison of alkali metal promoted MgO catalysts for their surface acidity/basicity and catalytic activity/selectivity in the oxidative coupling of methane. J. Chem. Tech. Biotechnol. 1997, 68, 177–186. [Google Scholar] [CrossRef]
- Elkins, T.W.; Roberts, S.J.; Hagelin-Weaver, H.E. Effects of alkali and alkaline-earth metal dopants on magnesium oxide supported rare-earth oxide catalysts in the oxidative coupling of methane. Appl. Catal. A 2016, 528, 175–190. [Google Scholar] [CrossRef]
- Miro, E.; Santamaria, J.; Wolf, E.E. Oxidative coupling of methane on alkali metal-promoted nickel titanate: I. Catalyst characterization and transient studies. J. Catal. 1990, 124, 451–464. [Google Scholar] [CrossRef]
- Rane, V.H.; Chaudhari, S.T.; Choudhary, V.R. Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane. J. Nat. Gas Chem. 2008, 17, 313–320. [Google Scholar] [CrossRef]
- Ito, T.; Wang, J.; Lin, C.H.; Lunsford, J.H. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 1985, 107, 5062–5068. [Google Scholar] [CrossRef]
- Kim, I.; Lee, G.; Na, H.B.; Ha, J.M.; Jung, J.C. Selective oxygen species for the oxidative coupling of methane. Mol. Catal. 2017, 435, 13–23. [Google Scholar] [CrossRef]
- Sim, Y.; Kwon, D.; Ha, J.M.; Jung, J.C. Preparation of LaAlO3 perovskite catalysts by simple solid-state method for oxidative coupling of methane. Catal. Today 2020, 352, 134–139. [Google Scholar] [CrossRef]
- Berger, T.; Schuh, J.; Sterrer, M.; Diwald, O.; KnÖzinger, E. Lithium ion induced surface reactivity changes on MgO nanoparticles. J. Catal. 2007, 247, 61–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Wang, X.; Sun, J.; Si, R.; Zhou, H. Collective and individual impacts of the cascade doping of alkali cations in perovskite single crystals. J. Mater. Chem. C 2020, 43, 15350–15360. [Google Scholar] [CrossRef]
- Kiani, D.; Sourav, S.; Baltrusaitis, J.; Wachs, I.E. Oxidative coupling of methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na. ACS Catal. 2019, 9, 5912–5928. [Google Scholar] [CrossRef]
- Zhang, H.B.; Lin, G.D.; Wan, H.L.; Liu, Y.D.; Weng, W.Z.; Cai, J.X.; Shen, Y.F.; Tsai, K.R. Active-oxygen species on non-reducible rare-earth-oxide-based catalysts in oxidative coupling of methane. Catal. Lett. 2001, 73, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Lunsford, J.H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. Engl. 1995, 34, 970–980. [Google Scholar] [CrossRef]
- Wang, H.; Cong, Y.; Yang, W. Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3- tubular membrane reactors. Catal. Today 2005, 104, 160–167. [Google Scholar] [CrossRef]
- He, Y.; Yang, B.; Cheng, G. On the oxidative coupling of methane with carbon dioxide over CeO2/ZnO nanocatalysts. Catal. Today 2004, 98, 595–600. [Google Scholar] [CrossRef]
- Lee, M.R.; Park, M.J.; Jeon, W.; Choi, J.W.; Suh, Y.W.; Suh, D.J. A kinetic model for the oxidative coupling of methane over Na2WO4/Mn/SiO2. Fuel Process. Technol. 2012, 96, 175–182. [Google Scholar] [CrossRef]
- Yoon, S.; Lim, S.; Choi, J.W.; Suh, D.J.; Song, K.H.; Ha, J.M. Study on the unsteady state oxidative coupling of methane: Effects of oxygen species from O2, surface lattice oxygen, and CO2 on the C2 selectivity. RSC Adv. 2020, 10, 35889. [Google Scholar] [CrossRef]
- Gambo, Y.; Jalil, A.A.; Triwahyono, S.; Abdulrasheed, A.A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. J. Ind. Eng. Chem. 2018, 59, 218–229. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) a |
---|---|
LaAlO3_Li5 | 1.4 |
LaAlO3_Na5 | 2.9 |
LaAlO3_K5 | 3.1 |
LaAlO3 | 3.5 |
Catalyst | La | Al | Li | Na | K |
---|---|---|---|---|---|
mol % | |||||
LaAlO3_Li5 | 53.3 | 46.7 | - | - | - |
LaAlO3_Na5 | 52.6 | 46.3 | - | 1.1 | - |
LaAlO3_K5 | 52.8 | 46.5 | - | - | 0.7 |
Catalyst | Relative Amount (%) | Olat(e)/Olat(n) | ||
---|---|---|---|---|
Oads (533.0 eV) | Olat(e) (531.0 eV) | Olat(n) (528.8 eV) | ||
LaAlO3_Li5 | 3.6 | 38.6 | 57.9 | 0.67 |
LaAlO3_Na5 | 3.7 | 38.5 | 57.8 | 0.67 |
LaAlO3_K5 | 3.5 | 37.7 | 58.8 | 0.64 |
LaAlO3 | 3.7 | 34.6 | 61.7 | 0.56 |
Catalyst | ||||
---|---|---|---|---|
LaAlO3_Li5 | LaAlO3_Na5 | LaAlO3_K5 | LaAlO3 | |
Peak (°C) | 565.1 | 585.9 | 609.4 | 548.5 |
Peak area (a.u.) a | 1563.3 | 1842.2 | 2817.9 | 1466.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Cho, J.; Kwon, D.; Jung, J.C. Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane. ChemEngineering 2021, 5, 14. https://doi.org/10.3390/chemengineering5010014
An S, Cho J, Kwon D, Jung JC. Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane. ChemEngineering. 2021; 5(1):14. https://doi.org/10.3390/chemengineering5010014
Chicago/Turabian StyleAn, Suna, JeongHyun Cho, Dahye Kwon, and Ji Chul Jung. 2021. "Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane" ChemEngineering 5, no. 1: 14. https://doi.org/10.3390/chemengineering5010014
APA StyleAn, S., Cho, J., Kwon, D., & Jung, J. C. (2021). Alkali-Added Catalysts Based on LaAlO3 Perovskite for the Oxidative Coupling of Methane. ChemEngineering, 5(1), 14. https://doi.org/10.3390/chemengineering5010014