Development of Gas-Liquid Slug Flow Measurement Using Continuous-Wave Doppler Ultrasound and Bandpass Power Spectral Density
Abstract
:1. Introduction
2. The Ultrasonic Measurement Principles
Continuous-Wave Doppler Ultrasound (CWDU)
3. The Experimental Process and Method
3.1. Overview of the Experimental Facility
3.2. Experimental Procedure
4. Signal Analysis and Observations
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
Source frequency | |
Doppler frequency shift | |
Frequency received | |
Frequency transmitted | |
Length of Taylor bubbles | |
Length of slug body | |
Gas bubble velocity | |
The velocity of liquid in slug | |
Signal transmitted | |
Signals received | |
Reference signal | |
Doppler signal | |
Acoustic impedance | |
Phase term based on the shift in phase produced within the receiver and scatterer distance from the transducer |
References
- Wu, B.; Firouzi, M.; Mitchell, T.; Rufford, T.E.; Leonardi, C.; Towler, B. A critical review of flow maps for gas-liquid flows in vertical pipes and annuli. Chem. Eng. J. 2017, 326, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Morgado, A.O.; Miranda, J.M.; Araújo, J.D.P.; Campos, J.B.L.M. Review on vertical gas–liquid slug flow. Int. J. Multiph. Flow 2016, 85, 348–368. [Google Scholar] [CrossRef]
- Falcone, G.; Hewitt, G.F.; Alimonti, C.; Harrison, B. Multiphase flow metering: Current trends and future developments. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September–2 October 2002; pp. 77–84. [Google Scholar] [CrossRef]
- Thorn, R.; Johanson, G.A.; Hammer, E.A. Recent developments in three-phase flow measurement. Meas. Sci. Technol. 1997, 8, 691–701. [Google Scholar] [CrossRef]
- Ahmed, W.H. Experimental investigation of air–oil slug flow using capacitance probes, hot-film anemometer, and image processing. Int. J. Multiph. Flow 2011, 37, 876–887. [Google Scholar] [CrossRef]
- Villarreal, J.; Laverde, D.; Fuentes, C. Carbon-steel corrosion in multiphase slug flow and CO2. Corros. Sci. 2006, 48, 2363–2379. [Google Scholar] [CrossRef]
- Alssayh, M.; Addali, A.; Mba, D. Slug velocity measurement using acoustic emission technology. J. Process Mech. Eng. 2016, 230, 76–83. [Google Scholar] [CrossRef]
- Sharma, S.; Lewis, S.; Kojasoy, G. Local studies in horizontal gas–liquid slug flow. Nucl. Eng. Des. 1998, 184, 305–318. [Google Scholar] [CrossRef]
- Nieckele, A.O.; Carneiro, J.N.E.; Chucuya, R.C.; Azevedo, J.H.P. Initiation and Statistical Evolution of Horizontal Slug Flow with a Two-Fluid Model. J. Fluids Eng. 2013, 135, 121302. [Google Scholar] [CrossRef]
- Pusppanathan, J.; Rahim, R.A.; Phang, F.A.; Mohamad, E.J.; Ayob, N.M.N.; Rahiman, M.H.F.; Seong, C.K. Single-Plane Dual-Modality Tomography for Multiphase Flow Imaging by Integrating Electrical Capacitance and Ultrasonic Sensors. IEEE Sens. J. 2017, 17, 6368–6377. [Google Scholar] [CrossRef]
- Mohamad, E.J.; Rahim, R.A.; Rahiman, M.H.F.; Ameran, H.L.M.; Muji, S.Z.M.; Marwah, O.M.F. Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor. Flow Meas. Instrum. 2016, 47, 62–70. [Google Scholar] [CrossRef]
- Rahim, R.A.; Yunos, Y.M.; Rahiman, M.H.F.; Muji, S.Z.M.; Thiam, C.K.; Rahim, H.A. Optical tomography: Velocity profile measurement using orthogonal and rectilinear arrangements. Flow Meas. Instrum. 2012, 23, 49–55. [Google Scholar] [CrossRef]
- Xue, T.; Chen, Y.; Ge, P. Multibubbles segmentation and characteristic measurement in gas-liquid two-phase flow. Adv. Mech. Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.; Qu, L.; Cao, Z.; Zhang, T. Three-dimensional feature parameters measurement of bubbles in gas-liquid two-phase flow based on virtual stereo vision. Flow Meas. Instrum. 2012, 27, 29–36. [Google Scholar] [CrossRef]
- King, M.J.S.; Hale, C.P.; Lawrence, C.J.; Hewitt, G.F. Characteristics of flowrate transients in slug flow. Chem. Technol. 1998, 24, 825–854. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Kusy, M.; Jaszczur, M.; Petryka, L. Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods. Flow Meas. Instrum. 2018, 60, 17–23. [Google Scholar] [CrossRef]
- Stavland, S.H.; Satre, C.; Hjertaker, B.T.; Tjugum, S.A.; Hallanger, A.; Maad, R. Gas fraction measurements using single and dual beam gamma-densitometry for two phase gas-liquid pipe flow. In Proceedings of the I2MTC 2019—2019 IEEE International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, 20–23 May 2019. [Google Scholar] [CrossRef]
- van Hout, R.; Barnea, D.; Shemer, L. Translational velocities of elongated bubbles in continuous slug flow. Int. J. Multiph. Flow 2002, 28, 1333–1350. [Google Scholar] [CrossRef] [Green Version]
- Dos Reis, E.; Leonardo, L.G. Characterization of slug flows in horizontal piping by signal analysis from a capacitive probe. Flow Meas. Instrum. 2010, 21, 347–355. [Google Scholar] [CrossRef]
- Andreussi, P.; Di Donfrancesco, A.; Messia, M. An Impedance method for the measurement of liquid holdup in two-phase flow. Int. J. Multiph. Flow 1988, 14, 777–785. [Google Scholar] [CrossRef]
- Fang, L.; Zeng, Q.; Wang, F.; Faraj, Y.; Zhao, Y.; Lang, Y.; Wei, Z. Identification of two-phase flow regime using ultrasonic phased array. Flow Meas. Instrum. 2020, 72, 101726. [Google Scholar] [CrossRef]
- Dos Reis, E.; Goldstein, L. A non-intrusive probe for bubble profile and velocity measurement in horizontal slug flows. Flow Meas. Instrum. 2005, 16, 229–239. [Google Scholar] [CrossRef]
- Masiukiewicz, M.; Anweiler, S. Two-phase flow structure assessment based on dynamic image analysis. Flow Meas. Instrum. 2019, 65, 195–202. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Pilario, K.E.S.; Lao, L.; Cao, Y.; Shafiee, M. Identification of gas-liquid flow regimes using a non-intrusive Doppler ultrasonic sensor and virtual flow regime maps. Flow Meas. Instrum. 2019, 68, 101568. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Kuang, B.; Whidborne, J.F.; Rana, Z. Non-Intrusive classification of gas-liquid flow regimes in an s-shaped pipeline riser using a Doppler ultrasonic sensor and deep neural networks. Chem. Eng. J. 2020, 403, 126401. [Google Scholar] [CrossRef]
- Kuang, B.; Godfrey, S.; Rana, Z. Pseudo-image-feature-based identification benchmark for multi-phase flow regimes. Chem. Eng. J. Adv. 2021, 5, 100060. [Google Scholar] [CrossRef]
- Takeda, Y. Ultrasonic Doppler method for velocity profile measurement in fluid dynamics and fluid engineering. Exp. Fluids 1999, 26, 177–178. [Google Scholar] [CrossRef]
- Aaslid, R.; Markwalder, T.M.; Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef]
- Atkinson, P.; Wells, P.N. Pulse-Doppler ultrasound and its clinical application. Yale J. Biol. Med. 1977, 50, 367–373. [Google Scholar]
- Okamura, S.; Uchida, S.; Katsumata, T.; Iida, K. Measurement of solids holdup in a three-phase fluidized bed by an ultrasonic technique. Chem. Eng. Sci. 1989, 44, 196–198. [Google Scholar] [CrossRef]
- Weinstein, E. Measurement of the differential doppler shift. IEEE Trans. Acoust. 1982, 30, 112–117. [Google Scholar] [CrossRef]
- Chivers, R.C.; Hill, C.R. A spectral approach to ultrasonic scattering from human tissue: Methods, objectives and backscattering measurements. Phys. Med. Biol. 1975, 20, 799–815. [Google Scholar] [CrossRef]
- Cobbold, R. Doppler ultrasound: Physics, instrumentation, and clinical applications. J. Biomed. Eng. 1989, 11, 528. [Google Scholar] [CrossRef]
- Kremkau, F.W. Physical principles of ultrasound. Semin. Roentgenol. 1975, 10, 259–263. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Whidborne, J.; Lao, L.; Cao, Y. Venturi multiphase flow measurement based active slug control. In Proceedings of the ICAC 2019—2019 25th International Conference on Automation and Computing, Chinese Automation and Computing Society in the UK—CACSUK, Lancaster, UK, 5–7 September 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.R. Two-phase non-equilibrium models: The challenge of improving phase change heat transfer prediction. J. Braz. Soc. Mech. Sci. Eng. 2005, 27, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Shang, Z.; Yang, R.; Cao, X.; Yang, Y. An investigation of two-phase flow instability using wavelet signal extraction technique. Nucl. Eng. Des. 2004, 232, 157–163. [Google Scholar] [CrossRef]
- Matsumoto, S.; Suzuki, M. Statistical analysis of fluctuations of froth pressure on perforated plates without downcomers. Int. J. Multiph. Flow 1984, 10, 217–228. [Google Scholar] [CrossRef]
Ql (L/s) | Duty Cycle (a:b) | ||
---|---|---|---|
0.5 | 2:30 | 2:10 | 2:2 |
2.0 | 2:30 | 2:10 | 2:2 |
4.0 | 2:30 | 2:10 | 2:2 |
Mean | Bandpass Filter (100 Hz Band) Centre Frequency (Hz), Filter Velocity (m/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Test Point | Ql (L/s) | Duty Cycle | No filter | 250 Hz, 0.7 m/s | 500 Hz, 1.4 m/s | 750 Hz, 2.1 m/s | 1000 Hz, 2.8 m/s | 1250 Hz, 3.5 m/s | 1500 Hz, 4.2 m/s |
1 | 0.5 | 2:30 | 3.8 × 10−4 | 1.1 × 10−3 | 2.7 × 10−4 | 1.2 × 10−4 | 7.4 × 10−5 | 4.4 × 10−5 | 2.7 × 10−5 |
2 | 0.5 | 2:10 | 6.5 × 10−4 | 2.3 × 10−3 | 9.6 × 10−4 | 5.0 × 10−4 | 2.7 × 10−4 | 1.6 × 10−4 | 1.0 × 10−4 |
3 | 0.5 | 2:2 | 7.8 × 10−4 | 3.1 × 10−3 | 1.2 × 10−3 | 4.6 × 10−4 | 2.2 × 10−4 | 1.2 × 10−4 | 7.0 × 10−5 |
4 | 2 | 2:30 | 9.5 × 10−4 | 5.1 × 10−3 | 1.4 × 10−3 | 2.7 × 10−4 | 1.2 × 10−4 | 6.6 × 10−5 | 3.7 × 10−5 |
5 | 2 | 2:10 | 1.5 × 10−3 | 6.8 × 10−3 | 1.8 × 10−3 | 6.1 × 10−4 | 3.5 × 10−4 | 2.3 × 10−4 | 1.7 × 10−4 |
6 | 2 | 2:2 | 1.9 × 10−4 | 7.4 × 10−3 | 3.3 × 10−3 | 1.5 × 10−3 | 7.7 × 10−4 | 4.3 × 10−4 | 2.4 × 10−4 |
7 | 4 | 2:30 | 9.9 × 10−4 | 2.8 × 10−3 | 2.4 × 10−3 | 1.2 × 10−3 | 4.6 × 10−4 | 1.9 × 10−4 | 9.0 × 10−5 |
8 | 4 | 2:10 | 1.7 × 10−3 | 4.9 × 10−3 | 3.6 × 10−3 | 2.0 × 10−3 | 9.4 × 10−4 | 4.5 × 10−4 | 2.5 × 10−4 |
9 | 4 | 2:2 | 2.2 × 10−3 | 5.9 × 10−3 | 4.1 × 10−3 | 2.4 × 10−3 | 1.4 × 10−3 | 9.2 × 10−4 | 5.8 × 10−4 |
Kurtosis | Bandpass Filter (100 Hz Band) Centre Frequency (Hz), Filter Velocity (m/s) | ||||||||
Test point | Ql (L/s) | Duty Cycle | No filter | 250 Hz, 0.7 m/s | 500 Hz, 1.4 m/s | 750 Hz, 2.1 m/s | 1000 Hz, 2.8 m/s | 1250 Hz, 3.5 m/s | 1500 Hz, 4.2 m/s |
1 | 0.5 | 2:30 | 8.8 | 17.4 | 35.7 | 65.8 | 70.9 | 91.8 | 87.5 |
2 | 0.5 | 2:10 | 4.0 | 7.8 | 10.2 | 16.8 | 19.1 | 27.0 | 29.5 |
3 | 0.5 | 2:2 | 3.4 | 5.3 | 9.6 | 15.8 | 25.5 | 24.9 | 36.6 |
4 | 2 | 2:30 | 2.7 | 3.4 | 7.5 | 32.6 | 59.8 | 50.3 | 59.9 |
5 | 2 | 2:10 | 2.3 | 3.0 | 7.7 | 12.2 | 14.6 | 16.2 | 19.5 |
6 | 2 | 2:2 | 1.5 | 2.2 | 3.2 | 4.1 | 5.9 | 8.4 | 17.1 |
7 | 4 | 2:30 | 3.3 | 8.6 | 5.1 | 7.3 | 11.7 | 32.1 | 36.9 |
8 | 4 | 2:10 | 1.5 | 3.9 | 2.7 | 3.2 | 4.3 | 8.5 | 8.6 |
9 | 4 | 2:2 | 1.5 | 3.3 | 2.5 | 2.7 | 3.2 | 4.1 | 4.8 |
Mean | Bandpass Filter (100 Hz Band) Centre Frequency (Hz), Filter Velocity (m/s) | |||||
---|---|---|---|---|---|---|
Test Point | Ql (L/s) | Duty Cycle | 1000 Hz, 2.8 m/s | Total Slugs from CWDU | Total Slugs from Gamma | Difference |
1 | 0.5 | 2:30 | 7.4 ×10−5 | 3 | 2 | 1 |
2 | 0.5 | 2:10 | 2.7 × 10−4 | 7 | 7 | 0 |
3 | 0.5 | 2:2 | 2.2 × 10−4 | 14 | 14 | 0 |
4 | 2 | 2:30 | 1.2 × 10−4 | 3 | 3 | 0 |
5 | 2 | 2:10 | 3.5 × 10−4 | 6 | 6 | 0 |
6 | 2 | 2:2 | 7.7 × 10−4 | 17 | 17 | 0 |
7 | 4 | 2:30 | 4.6 × 10−4 | 3 | 3 | 0 |
8 | 4 | 2:10 | 9.4 × 10−4 | 7 | 7 | 0 |
9 | 4 | 2:2 | 1.4 × 10−4 | 19 | 19 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nnabuife, S.G.; Sharma, P.; Iyore Aburime, E.; Lokidor, P.L.; Bello, A. Development of Gas-Liquid Slug Flow Measurement Using Continuous-Wave Doppler Ultrasound and Bandpass Power Spectral Density. ChemEngineering 2021, 5, 2. https://doi.org/10.3390/chemengineering5010002
Nnabuife SG, Sharma P, Iyore Aburime E, Lokidor PL, Bello A. Development of Gas-Liquid Slug Flow Measurement Using Continuous-Wave Doppler Ultrasound and Bandpass Power Spectral Density. ChemEngineering. 2021; 5(1):2. https://doi.org/10.3390/chemengineering5010002
Chicago/Turabian StyleNnabuife, Somtochukwu Godfrey, Prafull Sharma, Ebuwa Iyore Aburime, Pauline Long’or Lokidor, and Abdulrauf Bello. 2021. "Development of Gas-Liquid Slug Flow Measurement Using Continuous-Wave Doppler Ultrasound and Bandpass Power Spectral Density" ChemEngineering 5, no. 1: 2. https://doi.org/10.3390/chemengineering5010002
APA StyleNnabuife, S. G., Sharma, P., Iyore Aburime, E., Lokidor, P. L., & Bello, A. (2021). Development of Gas-Liquid Slug Flow Measurement Using Continuous-Wave Doppler Ultrasound and Bandpass Power Spectral Density. ChemEngineering, 5(1), 2. https://doi.org/10.3390/chemengineering5010002