Effect of Artificial Freeze/Thaw and Thermal Shock Ageing, Combined or Not with Salt Crystallisation on the Colour of Zamora Building Stones (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zamora Building Stone
2.2. Experimental and Statistical Methods
3. Results and Discussion
4. Conclusions
- (a)
- Z1: ∆E* (T2 > T1 ≈ T3), ∆L* (T2 > T3 > T1), ∆a* and ∆b* (T2 > T1 ≈ T3)
- (b)
- Z2: ∆E* (T2 > T1 ≈ T3) and ∆b* (T2 > T1 ≈ T3)
- (c)
- Z3B: ∆L* (T2 ≈ T1 > T3), ∆a* (T2 > T1 > T3) and ∆b* (T2 > T1 ≈ T3)
- (d)
- Z3R: ∆E* (T2 > T1 ≈ T3), ∆L* (there are only differences in T3), ∆a* (T2 ≈ T3 > T1) and ∆b* (T2 > T1 ≈ T3).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Talegón, J.; Iñigo, A.C.; Alonso-Gavilán, G.; Vicente-Tavera, S. Villamayor Stone (Golden Stone) as a Global Heritage Stone Resource from Salamanca (NW of Spain). Geol. Soc. Lond. 2015, 407, 109–120. [Google Scholar] [CrossRef] [Green Version]
- García-Talegon, J.; Vicente, M.A.; Vicente-Tavera, S.; Molina-Ballesteros, E. Assessment of chromatic changes due to artificial ageing and/or conservation treatments of sandstones. Color Res. Appl. 1998, 23, 46–51. [Google Scholar] [CrossRef]
- Occhipinti, R.; Stroscio, A.; Belfiore, C.M.; Barone, G.; Mazzoleni, P. Chemical and colorimetric analysis for the characterization of degradation forms and surface colour modification of building stone materials. Constr. Build. Mater. 2021, 302, 124356. [Google Scholar] [CrossRef]
- Rives, V.; Talegon, J.G. Decay and Conservation of Building Stones on Cultural Heritage Monuments. Mater. Sci. Forum 2006, 514–516, 1689–1694. [Google Scholar] [CrossRef]
- Iñigo, A.C.; Rives, V.; Vicente, M.A. Reproducción en cámara climática de las formas de alteración más frecuentes detectadas en materiales graníticos, en clima de tendencia continental. Mater. Construcc. 2000, 50, 57–60. [Google Scholar] [CrossRef]
- Iñigo, A.C.; Vicente-Tavera, S. Different degrees of stone decay on the inner and outer walls of a Cloister. Build Environ. 2001, 36, 911–917. [Google Scholar] [CrossRef]
- Iñigo, A.C.; Vicente-Tavera, S. Surface-inside (10 cm) thermal gradients in granitic rocks: Effect of environmental conditions. Build. Environ. 2002, 37, 101–108. [Google Scholar] [CrossRef]
- Iñigo, A.; García-Talegón, J.; Vicente-Palacios, V.; Vicente-Tavera, S. Canonical Biplot as a tool to detect microclimates in the inner and outer parts of El Salvador Church in Seville, Spain. Measurement 2019, 136, 745–760. [Google Scholar] [CrossRef]
- García-Talegón, J.; Vicente, M.A.; Molina, E. Decay of granite monuments due to salt crystallization in a non-polluted urban environment. Mater. Construcc. 1999, 49, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Fort, R.; López-de Azcona, M.C.; Mingarro, F. Assessment of protective treatments based on their chromatic evolution: Limestone and granite in the Royal Palace of Madrid, Spain. In 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Galán, E., Zezza, F., Eds.; Swets & Zeitlinger B.V.: Lisse, The Netherlands, 2002; pp. 437–441. [Google Scholar]
- Carmona-Quiroga, P.; Martinez-Ramirez, S.; de Rojas, M.S.; Blanco-Varela, M.T. Surface water repellent-mediated change in lime mortar colour and gloss. Constr. Build. Mater. 2010, 24, 2188–2193. [Google Scholar] [CrossRef]
- García, O.; Rz-Maribona, I.; Gardei, A.; Riedl, M.; Vanhellemont, Y.; Santarelli, M.L.; Strupi-Suput, J. Comparative study of the variation of the hydric properties and aspect of natural stone and brick after the application of 4 types of anti-graffiti. Mater. Construcc. 2010, 60, 68–82. [Google Scholar]
- Rivas, T.; Iglesias, J.; Taboada, J.; Vilán, J.A. Sulphide oxidation in ornamental slates: Protective treatment with siloxanes. Mater. Construcc. 2011, 61, 115–130. [Google Scholar] [CrossRef] [Green Version]
- La Russa, M.F.; Barone, G.; Belfiore, C.M.; Mazzoleni, P.; Pezzino, A. Application of protective products to “Noto” calcarenite (south-eastern Sicily): A case study for the conservation of stone materials. Environ. Earth Sci. 2011, 62, 1263–1272. [Google Scholar] [CrossRef]
- Pelin, V.; Sandu, I.; Gurlui, S.; Brânzilă, M.; Vasilache, V.; Borş, E.; Sandu, I.G. Preliminary investigation of various old geomaterials treated with hydrophobic pellicle. Color Res. Appl. 2016, 41, 317–320. [Google Scholar] [CrossRef]
- Iñigo, A.C.; García-Talegón, J.; Vicente-Palacios, V.; Vicente-Tavera, S. Measuring the Effectiveness and Durability of Silicified Sandstones and Conglomerates from Zamora, Spain Subject to Silico-organic Treatments and/or Freezing/Thawing Processes. Rock Mech. Rock Eng. 2021, 54, 2697–2705. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. Color changes in architectural limestones from pollution and cleaning. Color Res. Appl. 2007, 32, 320–331. [Google Scholar] [CrossRef]
- Alonso, F.J.; Vázquez, P.; Esbert, R.M.; Ordaz, J. Ornamental granite durability: Evaluation of damage caused by salt crystallization test. Mat. Construcc. 2008, 58, 191–201. [Google Scholar]
- Rivas, T.; Prieto, B.; Silva, B. Artificial weathering of granite. Mater. Construcc. 2008, 58, 179–189. [Google Scholar]
- Vazquez, P.; Luque, A.; Alonso, F.J.; Grossi, C.M. Surface changes on crystalline stones due to salt crystallisation. Environ. Earth Sci. 2013, 69, 1237–1248. [Google Scholar] [CrossRef]
- Iñigo, A.C.; García-Talegón, J.; Vicente-Tavera, S. Canonical biplot statistical analysis to detect the magnitude of the effects of phosphates crystallization aging on the color in siliceous conglomerates. Color Res. Appl. 2014, 39, 82–87. [Google Scholar] [CrossRef]
- Aly, N.; Gomez-Heras, M.; Hamed, A.; De Buergo, M.; Soliman, F. The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone. Mater. Construcc. 2015, 65, e044. [Google Scholar] [CrossRef] [Green Version]
- Navarro, R.; Catarino, L.; Pereira, D.; de Sá Campos Gil, F.P. Effect of UV radiation on chromatic parameters in serpentinites used as dimension stones. Bull. Eng. Geol. Environ. 2019, 78, 5345–5355. [Google Scholar] [CrossRef]
- Martin, J.; Feliu, M.J.; Edreira, M.C.; Villena, A.; Calleja, S.; Pérez, F.; Barros, J.R.; Ortega, P. The original colour of the building facades from “El Pópulo” an old quarter of Cádiz. In 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Galan, E., Zezza, F., Eds.; Swets & Zeitlinger B.V.: Lisse, The Netherlands, 2002; pp. 649–653. [Google Scholar]
- Zezza, F. Non-destructive technique for the assessment of the deterioration processes of prehistoric rock art in karstic caves: The paleolithic paintings of Altamira (Spain). In 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Galan, E., Zezza, F., Eds.; Swets & Zeitlinger B.V.: Lisse, The Netherlands, 2002; pp. 377–388. [Google Scholar]
- Zezza, F. Inland dispersion of marine spray and its effects on monument stone. In 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin; Galán, E., Zezza, F., Eds.; Swets & Zeitlinger B.V.: Lisse, The Netherlands, 2002; pp. 23–39. [Google Scholar]
- Grossi, C.M.; Brimblecombe, P. Past and future colouring patterns of historic stone buildings. Mater. Construcc. 2008, 58, 143–160. [Google Scholar]
- Aparecida-del Lama, E.; Kazumi-Dehira, L.; Grossi, D.; Kuzmickas, L. The colour of the granite that built the city of São Paulo, Brazil. Color Res. Appl. 2015, 41, 241–245. [Google Scholar] [CrossRef]
- Pelin, V.; Rusu, O.; Sandu, I.; Vasilache, V.; Gurlui, S.; Sandu, A.V.; Cazacu, M.M.; Sandu, I.G. Approaching on Colorimetric Change of Porous Calcareous Rocks Exposed in Urban Environmental Conditions from Iasi–Romania. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012080. [Google Scholar] [CrossRef]
- García-Talegón, J.; Iñigo, A.C.; Vicente-Tavera, S.; Molina-Ballesteros, E. Silicified Granites (Bleeding Stone and Ochre Granite) as Global Heritage Stones Resources from Avila (Central of Spain). Geosci. Can. 2016, 43, 53–62. [Google Scholar] [CrossRef] [Green Version]
- García Talegón, J.; Molina, E.; Vicente, M.A. Nature and characteristics of 1:1 phyllosilicates from weathered granite. Central Spain. Clay Miner. 1994, 29, 727–734. [Google Scholar]
- Thiry, M.; Milnes, A.R.; Rayot, V.; Simon-Coinçon, R. Interpretation of palaeoweathering features and successive silicifications in the Tertiary regolith of inland Australia. J. Geol. Soc. Lond. 2006, 163, 723–736. [Google Scholar] [CrossRef]
- Delvigne, J.E. Atlas of micromorphology of mineral alteration and weathering. Mineral. Mag. 1998, 64, 369–370. [Google Scholar]
- Bauluz, B.; Mayayo, M.J.; Yuste, A.; López, J.M.G. Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): Analysis by XRD, SEM and TEM. Clay Miner. 2008, 43, 459–475. [Google Scholar] [CrossRef]
- Iñigo, A.C.; Supit, J.F.; Prieto, O.; Rives, V. Change in Microporosity of Granitic Building Stones upon Consolidation Treatments. J. Mater. Civ. Eng. 2007, 19, 437–440. [Google Scholar] [CrossRef]
- Robertson, A.R. The CIE 1976 Color-Difference Formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Sève, R. New formula for the computation of CIE 1976 Hue difference. Color Res. Appl. 1991, 16, 217–218. [Google Scholar] [CrossRef]
- Amaro, I.R.; Vicente-Villardón, J.L.; Galindo-Villardón, M.P. MANOVA Biplot para arreglos de tratamientos con dos factores basado en modelos lineales generales multivariantes. Interciencia 2004, 29, 26–32. [Google Scholar]
- Vicente-Villardón, J.L. MULTBIPLOT: Multivariate Analysis Using Biplots. 2016. Available online: http://biplot.usal.es (accessed on 31 March 2016).
Samples | FP (%) | TP (%) | AC (%) | RD (g/cm3) | AD (g/cm3) | IC (%) | CAC (g/cm2S½) | P (Kg/m2s) |
---|---|---|---|---|---|---|---|---|
Z1 | 11.7 | 14.3 | 82 | 2.57 | 2.28 | 5.4 | 0.001075 | 0.000221 |
Z2 | 9.6 | 10.1 | 95 | 2.60 | 2.33 | 3.8 | 0.000844 | 0.000195 |
Z3B | 8.7 | 9.2 | 95 | 2.57 | 2.33 | 4.2 | 0.000927 | 0.000179 |
Z3R | 9.1 | 9.2 | 99 | 2.56 | 2.33 | 3.7 | 0.000866 | 0.000164 |
Sample and Treatment | ∆E1* | ∆E2* | ∆E3* | ∆E4* | ∆E5* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | |
Z1, T1 | 0.505 | 0.133 | 0.657 | 0.175 | 0.918 | 0.172 | 1.199 | 0.194 | 1.011 | 0.198 |
Z1, T2 | 1.032 | 0.197 | 1.054 | 0.193 | 1.836 | 0.248 | 1.475 | 0.272 | 1.316 | 0.185 |
Z1, T3 | 0.643 | 0.236 | 0.835 | 0.296 | 0.962 | 0.329 | 0.721 | 0.349 | 0.914 | 0.208 |
Z2, T1 | 0.410 | 0.065 | 0.595 | 0.101 | 0.628 | 0.107 | 0.743 | 0.148 | 0.691 | 0.123 |
Z2, T2 | 0.539 | 0.061 | 0.623 | 0.113 | 0.948 | 0.102 | 1.533 | 0.155 | 2.079 | 0.607 |
Z2, T3 | 0.549 | 0.228 | 0.621 | 0.179 | 0.831 | 0.267 | 0.794 | 0.299 | 0.818 | 0.266 |
Z3B, T1 | 0.653 | 0.065 | 0.694 | 0.072 | 0.835 | 0.090 | 0.953 | 0.086 | 0.821 | 0.083 |
Z3B, T2 | 1.189 | 0.128 | 1.181 | 0.167 | 1.228 | 0.242 | 1.317 | 0.178 | 2.423 | 0.279 |
Z3B, T3 | 0.695 | 0.169 | 0.548 | 0.166 | 0.891 | 0.278 | 0.640 | 0.230 | 0.760 | 0.135 |
Z3R, T1 | 0.666 | 0.061 | 0.577 | 0.065 | 0.854 | 0.149 | 0.621 | 0.096 | 0.695 | 0.077 |
Z3R, T2 | 1.377 | 0.130 | 0.621 | 0.081 | 1.251 | 0.149 | 1.092 | 0.101 | 1.687 | 0.066 |
Z3R, T3 | 0.735 | 0.154 | 0.645 | 0.193 | 0.618 | 0.177 | 0.655 | 0.152 | 0.725 | 0.132 |
Sample and Treatment | ∆L1* | ∆L2* | ∆L3* | ∆L4* | ∆L5* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | |
Z1, T1 | −0.295 | 0.098 | −0.409 | 0.118 | −0.703 | 0.124 | −0.892 | 0.123 | −0.703 | 0.094 |
Z1, T2 | −0.587 | 0.224 | 0.375 | 0.319 | 0.914 | 0.660 | 0.376 | 0.444 | −0.005 | 0.211 |
Z1, T3 | −0.346 | 0.219 | −0.394 | 0.303 | −0.588 | 0.332 | −0.445 | 0.309 | −0.428 | 0.261 |
Z2, T1 | −0.324 | 0.061 | −0.397 | 0.102 | −0.528 | 0.101 | −0.506 | 0.124 | −0.482 | 0.108 |
Z2, T2 | −0.329 | 0.093 | −0.006 | 0.026 | −0.549 | 0.114 | −0.569 | 0.097 | −1.017 | 0.570 |
Z2, T3 | −0.082 | 0.253 | −0.020 | 0.263 | −0.265 | 0.358 | −0.101 | 0.355 | −0.154 | 0.318 |
Z3B, T1 | −0.534 | 0.090 | −0.614 | 0.092 | −0.673 | 0.125 | −0.828 | 0.088 | −0.698 | 0.104 |
Z3B, T2 | −1.028 | 0.181 | −0.932 | 0.183 | −0.751 | 0.310 | −0.972 | 0.170 | −2.177 | 0.280 |
Z3B, T3 | −0.610 | 0.195 | −0.449 | 0.132 | −0.763 | 0.260 | −0.502 | 0.168 | −0.676 | 0.123 |
Z3R, T1 | −0.580 | 0.080 | −0.516 | 0.082 | −0.616 | 0.116 | −0.534 | 0.085 | −0.573 | 0.083 |
Z3R, T2 | −1.310 | 0.128 | −0.332 | 0.166 | −0.983 | 0.286 | −0.573 | 0.220 | −1.347 | 0.191 |
Z3R, T3 | −0.420 | 0.236 | −0.177 | 0.294 | −0.189 | 0.288 | −0.151 | 0.279 | −0.161 | 0.263 |
Sample and Treatment | ∆a1* | ∆a2* | ∆a3* | ∆a4* | ∆a5* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | |
Z1, T1 | 0.000 | 0.019 | 0.096 | 0.024 | 0.251 | 0.027 | 0.326 | 0.030 | 0.166 | 0.026 |
Z1, T2 | −0.080 | 0.032 | −0.013 | 0.049 | 0.067 | 0.068 | 0.055 | 0.047 | −0.008 | 0.037 |
Z1, T3 | −0.190 | 0.050 | −0.067 | 0.061 | 0.056 | 0.038 | −0.064 | 0.031 | −0.124 | 0.030 |
Z2, T1 | 0.017 | 0.025 | 0.079 | 0.029 | 0.080 | 0.029 | 0.095 | 0.032 | 0.033 | 0.039 |
Z2, T2 | 0.009 | 0.025 | 0.040 | 0.049 | 0.135 | 0.030 | 0.291 | 0.039 | 0.451 | 0.079 |
Z2, T3 | 0.099 | 0.043 | 0.147 | 0.031 | 0.208 | 0.042 | 0.170 | 0.052 | 0.108 | 0.068 |
Z3B, T1 | 0.176 | 0.028 | 0.121 | 0.028 | 0.182 | 0.034 | 0.140 | 0.030 | 0.077 | 0.035 |
Z3B, T2 | 0.350 | 0.110 | 0.473 | 0.108 | 0.499 | 0.135 | 0.515 | 0.119 | 0.660 | 0.097 |
Z3B, T3 | −0.107 | 0.042 | 0.009 | 0.036 | 0.164 | 0.048 | 0.044 | 0.035 | 0.070 | 0.050 |
Z3R, T1 | 0.093 | 0.034 | 0.040 | 0.025 | 0.262 | 0.030 | 0.039 | 0.030 | 0.000 | 0.040 |
Z3R, T2 | −0.240 | 0.106 | −0.320 | 0.075 | −0.305 | 0.154 | −0.232 | 0.125 | −0.108 | 0.165 |
Z3R, T3 | −0.305 | 0.068 | −0.214 | 0.083 | −0.135 | 0.041 | −0.287 | 0.050 | −0.322 | 0.075 |
Sample and Treatment | ∆b1* | ∆b2* | ∆b3* | ∆b4* | ∆b5* | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | Mean | (S.E.) | |
Z1, T1 | 0.143 | 0.135 | 0.260 | 0.172 | 0.345 | 0.159 | 0.619 | 0.180 | 0.504 | 0.218 |
Z1, T2 | 0.759 | 0.148 | 0.684 | 0.243 | 0.607 | 0.402 | 1.092 | 0.290 | 1.222 | 0.218 |
Z1, T3 | 0.000 | 0.264 | −0.108 | 0.351 | −0.233 | 0.357 | 0.098 | 0.320 | −0.303 | 0.332 |
Z2, T1 | 0.114 | 0.059 | 0.251 | 0.089 | 0.146 | 0.082 | 0.362 | 0.129 | 0.146 | 0.133 |
Z2, T2 | 0.367 | 0.081 | 0.613 | 0.111 | 0.733 | 0.083 | 1.385 | 0.139 | 1.535 | 0.469 |
Z2, T3 | −0.142 | 0.229 | −0.058 | 0.229 | −0.177 | 0.278 | −0.131 | 0.323 | −0.186 | 0.339 |
Z3B, T1 | −0.170 | 0.034 | 0.105 | 0.040 | 0.234 | 0.051 | 0.397 | 0.045 | 0.204 | 0.069 |
Z3B, T2 | −0.041 | 0.173 | 0.218 | 0.216 | 0.142 | 0.336 | 0.541 | 0.216 | 0.653 | 0.242 |
Z3B, T3 | −0.014 | 0.116 | 0.107 | 0.175 | 0.073 | 0.228 | 0.366 | 0.171 | −0.007 | 0.172 |
Z3R, T1 | −0.106 | 0.050 | 0.015 | 0.038 | 0.288 | 0.149 | 0.205 | 0.071 | 0.006 | 0.092 |
Z3R, T2 | −0.251 | 0.068 | 0.094 | 0.121 | 0.319 | 0.132 | 0.725 | 0.132 | 0.797 | 0.193 |
Z3R, T3 | −0.301 | 0.092 | −0.219 | 0.129 | −0.292 | 0.086 | −0.133 | 0.138 | −0.299 | 0.138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Talegón, J.; Iñigo, A.C.; Sepúlveda, R.; Azofra, E. Effect of Artificial Freeze/Thaw and Thermal Shock Ageing, Combined or Not with Salt Crystallisation on the Colour of Zamora Building Stones (Spain). ChemEngineering 2022, 6, 61. https://doi.org/10.3390/chemengineering6040061
García-Talegón J, Iñigo AC, Sepúlveda R, Azofra E. Effect of Artificial Freeze/Thaw and Thermal Shock Ageing, Combined or Not with Salt Crystallisation on the Colour of Zamora Building Stones (Spain). ChemEngineering. 2022; 6(4):61. https://doi.org/10.3390/chemengineering6040061
Chicago/Turabian StyleGarcía-Talegón, Jacinta, Adolfo Carlos Iñigo, Rosa Sepúlveda, and Eduardo Azofra. 2022. "Effect of Artificial Freeze/Thaw and Thermal Shock Ageing, Combined or Not with Salt Crystallisation on the Colour of Zamora Building Stones (Spain)" ChemEngineering 6, no. 4: 61. https://doi.org/10.3390/chemengineering6040061
APA StyleGarcía-Talegón, J., Iñigo, A. C., Sepúlveda, R., & Azofra, E. (2022). Effect of Artificial Freeze/Thaw and Thermal Shock Ageing, Combined or Not with Salt Crystallisation on the Colour of Zamora Building Stones (Spain). ChemEngineering, 6(4), 61. https://doi.org/10.3390/chemengineering6040061