Integrated Process for High Phenol Removal from Wastewater Employing a ZnO Nanocatalyst in an Ozonation Reaction in a Packed Bubble Column Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Apparatus
2.3. Experimental Procedure
2.4. Measurement Methods
3. Results and Discussion
3.1. Effect of the Ozone Concentration on the Phenol Conversion
3.2. Effect of the ZnO Nanocatalyst Dose
3.3. Evaluation of the Channeling Flow Problem
3.4. Influence of the Initial Phenol Concentrations on the Removal Rate
3.5. Reaction Mechanism of the Ozonation Reaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Shao, S.; Ding, X.; Li, Z.; Jing, J.; Jiao, W.; Liu, Y. Removal of phenol from wastewater by high-gravity intensified heterogeneous catalytic ozonation with activated carbon. Environ. Pollut. 2022, 29, 34830–34840. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Zhang, S.; Sun, X.; Li, Y.; Shang, R.; Wu, W.; Jiao, W.; Liu, Y. Degradation of phenol with Mn-CoOX/γ-Al2O3 catalytic ozonation enhanced by high gravity technology. Chem. Eng. Sci. 2023, 280, 119036. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z.; Manhaeghe, D.; Yang, Y.; Hogie, J.; Demeestere, K.; Van Hulle, S. Intensified ozonation in packed bubble columns for water treatment: Focus on mass transfer and humic acids removal. Chemosphere 2021, 283, 131217. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Zheng, M.; Han, J.; Liu, R.; Lewis, A.; Huang, Y.; Yun, J. Efficient mineralization of organic pollutants in water via a phenol-responsive catalytic ozonation process. J. Taiwan Inst. Chem. Eng. 2023, 145, 104804. [Google Scholar] [CrossRef]
- Wei, X.; Shao, S.; Ding, X.; Jiao, W.; Liu, Y. Degradation of phenol with heterogeneous catalytic ozonation enhanced by high gravity technology. J. Clean. Prod. 2020, 248, 119179. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Vo, T.C.; Alawi, N.M.; Pham, P.T.V. Microwave-assisted degradation of organic compounds in municipal wastewater over Fe2O3 catalyst. AIP Conf. Proc. 2022, 2443, 030036. [Google Scholar]
- Wu, C.; Li, P.; Xia, S.; Wang, S.; Wang, Y.; Hu, J.; Liu, Z.; Yu, S. The role of interface in microbubble ozonation of aromatic compounds. Chemosphere 2019, 220, 1067–1074. [Google Scholar] [CrossRef]
- Broccoli, F.; Paparo, R.; Iesce, M.R.; Di Serio, M.; Russo, V. Heterogeneous photodegradation reaction of phenol promoted by TiO2: A kinetic study. Chemengineering 2023, 7, 27. [Google Scholar] [CrossRef]
- Patel, S.; Majumder, S.; Ghosh, P. Ozonation of diclofenac in a laboratory scale bubble column: Intermediates, mechanism, and mass transfer study. J. Water Process. Eng. 2021, 44, 102325. [Google Scholar] [CrossRef]
- Paździor, K.; Wrębiak, J.; Klepacz-Smółka, A.; Gmurek, M.; Bilińska, L.; Kos, L.; Sójka-Ledakowicz, J.; Ledakowicz, S. Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. J. Environ. Manag. 2017, 195, 166–173. [Google Scholar] [CrossRef]
- Majhool, A.; Sukkar, K.; Alsaffar, M. Combining α-Al2O3 packing material and a ZnO nanocatalyst in an ozonized bubble column reactor to increase the phenol degradation from wastewater. Processes 2023, 11, 2416. [Google Scholar] [CrossRef]
- Levanov, A.; Isaikina, O.; Lunin, V. Mathematical Modeling of the Kinetics of Molecular Chlorine Release during the Ozonation of Chlorides in a Bubble Column Reactor. Russ. J. Phys. Chem. A 2020, 94, 81–87. [Google Scholar] [CrossRef]
- Sukkar, K.; Al-Zuhairi, F.; Dawood, E. Evaluating the influence of temperature and flow rate on biogas production from wood waste via a packed-bed bioreactor. Arab. J. Sci. Eng. 2021, 46, 6167–6175. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Demeestere, K.; Van Hulle, S. Insights into a packed bubble column for removal of several ozone persistent TrOCs by ozonation: Removal kinetics, energy efficiency and elimination prediction. Sep. Purif. Technol. 2021, 275, 119170. [Google Scholar] [CrossRef]
- Lima, V.; Rodrigues, C.; Madeira, L. Application of the Fenton’s process in a bubble column reactor for hydroquinone degradation. Environ. Pollut. 2018, 25, 34851–34862. [Google Scholar] [CrossRef]
- Mukherjee, A.; Avisar, D.; Roy, A. Recent trends in ozonation technology: Theory and application. In Sustainable Water Treatment: Advances and Technological Interventions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 117–170. [Google Scholar]
- Lima, V.; Rodrigues, C.; Borges, R.; Madeira, L. Gaseous and liquid effluents treatment in bubble column reactors by advanced oxidation processes: A review. Crit. Rev. Environ. Sci. Technol. 2018, 48, 949–996. [Google Scholar] [CrossRef]
- Awad, E.S.; Sabirova, T.M.; Tretyakova, N.A.; Alsalhy, Q.F.; Figoli, A.; Salih, I.K. A mini-review of enhancing ultrafiltration membranes (UF) for wastewater treatment: Performance and stability. Chemengineering 2021, 5, 34. [Google Scholar] [CrossRef]
- Zou, J.; Liu, Y.; Han, Q.; Tian, Y.; Shen, F.; Kang, L.; Feng, L.; Ma, J.; Zhang, L.; Du, Z. Importance of Chain Length in Propagation Reaction on •OH Formation during Ozonation of Wastewater Effluent. Environ. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Dong, J.; Yao, J.; Tao, J.; Shi, X.; Wei, F. Degradation of Methyl Orange by ozone microbubble process with packing in the bubble column reactor. Environ. Technol. 2023, 44, 2512–2524. [Google Scholar] [CrossRef]
- Lan, B.; Nigmatullin, R.; Puma, G. Ozonation kinetics of cork-processing water in a bubble column reactor. Water Res. 2008, 42, 2473–2482. [Google Scholar] [CrossRef]
- Alsaedi, S.S.; Mohammed, S.S.; Mahdi, A.E.; Shnain, Z.Y.; Majdi, H.S.; AbdulRazak, A.A.; Alwasiti, A.A. Modeling spinel oxide based-photocatalytic degradation of organic pollutants from industrial wastewater. Chem. Eng. Commun. 2023, 1–11. [Google Scholar] [CrossRef]
- Alsaffar, M.A.; Ghany, M.A.R.A.; Mageed, A.K.; AbdulRazak, A.A.; Ali, J.M.; Sukkar, K.A.; Ayodele, B.V. Effect of textural properties on the degradation of bisphenol from industrial wastewater effluent in a photocatalytic reactor: A modeling approach. Appl. Sci. Res. 2023, 13, 8966. [Google Scholar] [CrossRef]
- Manjrekar, O.; Dudukovic, M. Identification of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique. Chem. Eng. Sci. 2019, 2, 100023. [Google Scholar] [CrossRef]
- Lara-Ramos, J.; Diaz-Angulo, J.; Machuca-Martínez, F. Use of modified flotation cell as ozonation reactor to minimize mass transfer limitations. Chem. Eng. J. 2021, 405, 126978. [Google Scholar] [CrossRef]
- Al-Timimi, D.A.H.; Alsalhy, Q.F.; AbdulRazak, A.A. Polyethersulfone/amine grafted silica nanoparticles mixed matrix membrane: A comparative study for mebeverine hydrochloride wastewater treatment. Alex. Eng. J. 2023, 66, 167–190. [Google Scholar] [CrossRef]
- Jaber, T.N.; Sukkar, K.A.; Karamalluh, A.A. Specifications of heavy diesel lubricating oil improved by MWCNTs and CuO as nano-additives. IOP Conf. Ser. Mater. Sci. Eng. 2019, 579, 012014. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. J. Water Proc. Eng. 2020, 35, 101193. [Google Scholar] [CrossRef]
- Khader, E.H.; Mohammed, T.J.; Albayati, T.M.; Harharah, H.N.; Amari, A.; Saady, N.M.C.; Zendehboudi, S. Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: A review. Chem. Eng. Process. Process. Intensif. 2023, 192, 109503. [Google Scholar] [CrossRef]
- Matheswaran, M.; Moon, I.S. Influence parameters in the ozonation of phenol wastewater treatment using bubble column reactor under continuous circulation. J. Ind. Eng. Chem. 2021, 15, 287–292. [Google Scholar] [CrossRef]
- Lucas, M.; Peres, J.; Puma, G. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics. Sep. Purif. Technol. 2010, 72, 235–241. [Google Scholar] [CrossRef]
- Al-Rubaiey, N.A.; Al-Barazanjy, M.G. Ultrasonic technique in treating wastewater by electrocoagulation. Eng. Technol. J. 2018, 36, 54–62. [Google Scholar] [CrossRef]
- Lian, B.; Jiang, Q.; Garg, S.; Wang, Y.; Yuan, Y.; Waite, T.D. Analysis of ozonation processes using coupled modeling of fluid dynamics, mass transfer, and chemical reaction kinetics. Environ. Sci. Technol. 2022, 56, 4377–4385. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.S.; Harharah, H.N.; Salih, I.K.; Cata Saady, N.M.; Zendehboudi, S.; Albayati, T.M. Applying MCM-48 mesoporous material, equilibrium, isotherm, and mechanism for the effective adsorption of 4-nitroaniline from wastewater. Sci. Rep. 2023, 13, 9837. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef]
- Cheng, W.; Quan, X.; Li, R.; Wu, J.; Zhao, Q. Ozonation of phenol-containing wastewater using O3/Ca(OH)2 system in a microbubble gas-liquid reactor. Ozone Sci. Eng. 2018, 40, 173–182. [Google Scholar] [CrossRef]
- Kadhim, R.J.; Al-Ani, F.H.; Al-Shaeli, M.; Alsalhy, Q.F.; Figoli, A. Removal of dyes using graphene oxide (GO) mixed matrix membranes. Membranes 2020, 10, 366. [Google Scholar] [CrossRef]
- Quan, X.; Luo, D.; Wu, J.; Li, R.; Cheng, W. Ozonation of acid red 18 wastewater using O3/Ca(OH)2 system in a microbubble gas-liquid reactor. J. Environ. Eng. 2017, 5, 283–291. [Google Scholar]
- Zheng, T.; Wang, Q.; Zhang, T.; Shi, Z.; Tian, Y.; Shi, S.; Smale, N.; Wang, J. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. J. Hazard. Mater. 2015, 287, 412–420. [Google Scholar] [CrossRef]
- Yang, X.; Chen, C.; Zhang, T.; Tian, X.; Zhang, R.; Manhaeghe, D.; Zhao, Y.; Song, S.; Demeestere, K.; Van Hulle, S. Low-cost mineral packing materials improve DOM and micropollutants removal from landfill leachate in ozonation bubble columns: Insights into the enhancement mechanisms and applicability of surrogate-based monitoring. Chem. Eng. J. 2023, 458, 141461. [Google Scholar] [CrossRef]
- Iboukhoulef, H.; Douani, R.; Amrane, A.; Chaouchi, A.; Elias, A. Heterogeneous Fenton like degradation of olive Mill wastewater using ozone in the presence of BiFeO3 photocatalyst. J. Photochem. Photobiol. A Chem. 2019, 383, 112012. [Google Scholar] [CrossRef]
- Qiao, J.; Luo, S.; Yang, P.; Jiao, W.; Liu, Y. Degradation of nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed. J. Taiwan Inst. Chem. Eng. 2019, 99, 1–8. [Google Scholar] [CrossRef]
- Barlak, M.; Değermenci, N.; Cengiz, I.; Özel, H.; Yildiz, E. Comparison of phenol removal with ozonation in jet loop reactor and bubble column. J. Environ. Eng. 2020, 8, 104402. [Google Scholar] [CrossRef]
- Wang, W.; Yao, H.; Yue, L. Supported catalyst CuO/AC with reduced cost and enhanced activity for the degradation of heavy oil refinery wastewater by catalytic ozonation process. Environ. Pollut. 2020, 27, 7199–7210. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Sang, L.; Tu, J.; Xiao, Y.; Liu, N.; Wu, L.; Zhang, J. Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor. Chemosphere 2021, 270, 128621. [Google Scholar] [CrossRef]
- Yang, X.; De Buyck, P.; Zhang, R.; Manhaeghe, D.; Wang, H.; Chen, L.; Zhao, Y.; Demeestere, K.; Van Hulle, S.W. Enhanced removal of refractory humic-and fulvic-like organics from biotreated landfill leachate by ozonation in packed bubble columns. Sci. Total Environ. 2022, 807, 150762. [Google Scholar] [CrossRef] [PubMed]
- Alattar, S.; Sukkar, K.; Alsaffar, M. The role of TiO2 NPs catalyst and packing material in removal of phenol from wastewater using an ozonized bubble column reactor. Acta Innov. 2023, 46, 90–101. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. Chemengineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Ma, J.; Li, D.; Yong, X.; Zhang, X.; Yan, S.; Liu, J.; Zhou, J. An ozone catalytic oxidation system for the degradation of organic compounds in secondary wastewater from refining and chemical processes. Environ. Technol. 2022, 44, 4060–4070. [Google Scholar] [CrossRef]
- Paucar, N.E.; Kim, I.; Tanaka, H.; Sato, C. Effect of O3 dose on the O3/UV treatment process for the removal of pharmaceuticals and personal care products in secondary effluent. Chemengineering 2019, 3, 53. [Google Scholar] [CrossRef]
- Prasetyaningrum, A.; Arum Kusumaningtyas, D.; Suseno, P.; Jos, B.; Ratnawati, R. Effect of pH and gas flow rate on ozone mass transfer of Κ-carrageenan solution in bubble column reactor. Reaktor 2018, 18, 177–182. [Google Scholar] [CrossRef]
- Alzamily, A.N.; Sultan, A.J.; Abdulrahman, A.A.; Majdi, H.S. Study of the impact of tube configurations on the local heat transfer coefficient in mimicked Fischer-Tropsch bubble column reactor. Processes 2022, 10, 976. [Google Scholar] [CrossRef]
Variable | Units | Uncertainty (%) |
---|---|---|
Ozone Flow Rate | m/s | ±0.006 |
Gas Holdup | [-] | ±1.042 |
Pressure Drop | Pa | ±3.310 |
Contact Time | min | ±0.371 |
pH (Constant at value of 7) | - | ±0.200 |
TOC Measurements | % | ±8.160 |
Authors | Pollutants | Technology | Removal Rate |
---|---|---|---|
Wu et al. [7] | Phenol and nitrobenzene degradation | Applying microbubble technique (>50 μm) | Ozone mass transfer rates were 1.3–1.5 times higher than those of conventional bubble aeration. |
Lima et al. [15] | Hydroquinone | Using H2O2 as an oxidizing agent in Fenton’s technique in a bubble column reactor | Hydroquinone degradation was achieved at 39% of total of TOC |
Alsaffar et al. [23] | Bisphenol | Photocatalytic degradation technology using Er-Fe/TiO2 modified catalyst | 90% removal of Bisphenol |
Qiao et al. [42] | Nitrobenzene | Degradation process in rotating ozonized packed bed reactor using Na2S2O8 as persulfate oxidizing agent | 90.59% degradation efficiency |
Alattar et al. [47] | Phenol concentration of 15 ppm | Glass beads and TiO2 nanocatalyst in bubble column rector | 100% at 105 min in presence of TiO2 nanocatalyst |
The present work | Phenol concentration of 15 ppm | Bubble column rector utilizing alumina balls and ZnO nanocatalyst | 100% at 80 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majhool, A.K.; Sukkar, K.A.; Alsaffar, M.A.; Majdi, H.S. Integrated Process for High Phenol Removal from Wastewater Employing a ZnO Nanocatalyst in an Ozonation Reaction in a Packed Bubble Column Reactor. ChemEngineering 2023, 7, 112. https://doi.org/10.3390/chemengineering7060112
Majhool AK, Sukkar KA, Alsaffar MA, Majdi HS. Integrated Process for High Phenol Removal from Wastewater Employing a ZnO Nanocatalyst in an Ozonation Reaction in a Packed Bubble Column Reactor. ChemEngineering. 2023; 7(6):112. https://doi.org/10.3390/chemengineering7060112
Chicago/Turabian StyleMajhool, Adnan K., Khalid A. Sukkar, May A. Alsaffar, and Hasan Shakir Majdi. 2023. "Integrated Process for High Phenol Removal from Wastewater Employing a ZnO Nanocatalyst in an Ozonation Reaction in a Packed Bubble Column Reactor" ChemEngineering 7, no. 6: 112. https://doi.org/10.3390/chemengineering7060112
APA StyleMajhool, A. K., Sukkar, K. A., Alsaffar, M. A., & Majdi, H. S. (2023). Integrated Process for High Phenol Removal from Wastewater Employing a ZnO Nanocatalyst in an Ozonation Reaction in a Packed Bubble Column Reactor. ChemEngineering, 7(6), 112. https://doi.org/10.3390/chemengineering7060112