Green Synthesis of Silver Nanoparticles from Cannabis sativa: Properties, Synthesis, Mechanistic Aspects, and Applications
Abstract
:1. Introduction
2. Mechanism of C. sativa Bioactive Compounds
3. Plant-Based AgNPs; What Do They Hold?
4. Mechanism of Cannabis-Based AgNP Synthesis: The Pursued Routes
5. Challenges in Plant-Based AgNP Synthesis
5.1. Incubation Time
5.2. pH
5.3. Light Intensity
5.4. Temperature
Preparation Method | Reducing Agent | Conc. of AgNO3 | Crystallite Size (nm) c | pH | Temp. °C | Particle Size (nm) d | Amax, (nm) | Reference |
---|---|---|---|---|---|---|---|---|
Green synthesis a | Acacia raddiana leave extract (25 mL) | 5 mM | 35.5 | 10 | 70 | 8–41 (spherical) | 423 | [99] |
Green synthesis a | Leaf extract of Acer pento-pomicum (1 mL) | 1 mM | 9.5 | 6–7 | 35–55 | 19–25 (spherical) | 450 | [100] |
Green synthesis a | Acalypho hispido leaf extract (10.5 mL) | 1.75 mM | - | - | 50 | 20–50 (spherical) | - | [101] |
Green synthesis b | Aloefera (15%) | 5 mM | - | - | 60 | 34–102 (spherical) | 420 | [102] |
Green synthesis b | Boswellia ovalifolio (5 mL) | 0.01 M | 15 | - | - | - | 455 | [103] |
Green synthesis b | Clitoria ternatea (5 mL) | 0.1 M | 20 | 9 | - | - | 420 | [104] |
6. Cannabis-Based AgNO3 Functional Groups
7. Application of Cannabis-Based AgNPs
Antibacterial Properties of AgNPs
8. Mechanisms of Antibacterial Action
Factors Affecting the Antibacterial Activity of AgNPs
9. Evaluation of the Antioxidant Activity of Cannabis-sativa-Derived AgNPs
10. Evaluation of Hemolytic Activity
11. Nanobiosensors
12. Agricultural Engineering
13. Toxicological Limitations of Silver Nanoparticles
14. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Csakvari, A.C.; Moisa, C.; Radu, D.G.; Olariu, L.M.; Lupitu, A.I.; Panda, A.O.; Copolovici, D.M. Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts. Molecules 2021, 26, 4041. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Guleria, S. Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast, and α-amylase inhibitory activity. Mater. Sci. Energy Technol. 2020, 3, 536–544. [Google Scholar] [CrossRef]
- Nadaf, S.J.; Jadhav, N.R.; Naikwadi, H.S.; Savekar, P.L.; Sapkal, I.D.; Kambli, M.M.; Desai, I.A. Green synthesis of gold and silver nanoparticles: Updates on research, patents, and prospects. OpenNano 2022, 8, 100076. [Google Scholar] [CrossRef]
- Antezana, P.E.; Municoy, S.; Pérez, C.J.; Desimone, M.F. Collagen hydrogels loaded with silver nanoparticles and Cannabis sativa oil. Antibiotics 2021, 10, 1420. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Ali, S. Green Nanotechnology: A review on green synthesis of silver nanoparticles—An eco-friendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016, 12, 3157–3177. [Google Scholar] [CrossRef]
- Mandal, S.; Marpu, S.B.; Hughes, R.; Omary, M.A.; Shi, S.Q. Green synthesis of silver nanoparticles using Cannabis sativa extracts and their anti-bacterial activity. Green Sustain. Chem. 2021, 11, 38–48. [Google Scholar] [CrossRef]
- Majeed, M.; Hakeem, K.R.; Rehman, R.U. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications-present insights and bottlenecks. Chemosphere 2022, 288, 132527. [Google Scholar] [CrossRef]
- Yontar, A.K.; Çevik, S. Bio-Synthesized Silver Nanoparticles Using Cannabis Sativa Seed Extracts and Its Anticancer Effects. Plasmonics 2023, 9, 1–13. [Google Scholar] [CrossRef]
- Zaka, M.; Hashmi, S.S.; Siddiqui, M.A.; Rahman, L.; Mushtaq, S.; Ali, H.; Abbasi, B.H. Callus-mediated biosynthesis of Ag and ZnO nanoparticles using aqueous callus extract of Cannabis sativa: Their cytotoxic potential and clinical potential against human pathogenic bacteria and fungi. Green Process. Synth. 2021, 10, 569–584. [Google Scholar] [CrossRef]
- Some, S.; Mondal, R.; Dam, P.; Mandal, A.K. Synthesis of biogenic silver nanoparticles using medicinal plant extract: A new age in nanomedicine to combat multidrug-resistant pathogens. In Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 359–387. [Google Scholar]
- Siddique, S. Biogenic Synthesis of Silver Nanoparticles by Cannabis sativa and Evaluation of Their Cytotoxic Effect on Cervical Cancer HeLa Cells. Master’s Thesis, Integral University, Dashauli, India, 2022. [Google Scholar]
- Kumar, S.; Biswas, S.K.; Lal, K.; Verma, B.; Kumar, R.; Singh, S. Synthesis of green nanoparticles from leaves of Cannabis sativa L. and its effective role on growth performance of tomato. Ann. Phytomed. 2023, 12, 892–899. [Google Scholar] [CrossRef]
- Shuaibu, A.D.; Shawai, S.A.A.; Nahannu, M.S.; Abdullahi, A.D. Synthesis and applications of plant-based silver nanoparticles: A review. Int. J. Chem. Sci. 2020, 5, 230–242. [Google Scholar]
- Singh, P.; Pandit, S.; Garnæs, J.; Tunjic, S.; Mokkapati, V.R.; Sultan, A.; Mijakovic, I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomed. 2018, 13, 3571–3591. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, B.H.; Zaka, M.; Hashmi, S.S.; Khan, Z. Biogenic synthesis of Au, Ag, and Au–Ag alloy nanoparticles using Cannabis sativa leaf extract. IET Nanobiotechnol. 2018, 12, 277–284. [Google Scholar] [CrossRef]
- Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa and Hemp. In Nutraceuticals; Academic Press: New York, NY, USA, 2016; pp. 735–754. [Google Scholar]
- Cherney, J.H.; Small, E. Industrial hemp in North America: Production, politics, and potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef]
- Singh, M.; Mamania, D.; Shinde, V. The Scope of Hemp (Cannabis sativa L.) Use in Historical Conservation in India; NISCAIR-CSIR: New Delhi, India, 2018. [Google Scholar]
- Strzelczyk, M.; Lochynska, M.; Chudy, M. Systematics and botanical characteristics of industrial hemp Cannabis sativa L. J. Nat. Fibers 2022, 19, 5804–5826. [Google Scholar] [CrossRef]
- Fike, J. Industrial hemp: Renewed opportunities for an ancient crop. Crit. Rev. Plant Sci. 2016, 35, 406–424. [Google Scholar] [CrossRef]
- Nath, M.K. Benefits of cultivating industrial hemp (Cannabis sativa ssp. sativa)—A versatile plant for a sustainable future. Chem. Proc. 2022, 10, 14. [Google Scholar] [CrossRef]
- Karche, T. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Mazzara, E.; Torresi, J.; Fico, G.; Papini, A.; Kulbaka, N.; Dall’Acqua, S.; Petrelli, R. Potential applications of hemp (Cannabis sativa L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: A narrative review. Int. J. Food Sci. Technol. 2022, 57, 891. [Google Scholar]
- Tzimas, P.S.; Beteinakis, S.; Petrakis, E.A.; Papastylianou, P.T.; Kakabouki, I.; Small-Howard, A.L.; Halabalaki, M. Uncovering the metabolite complexity and variability of cultivated hemp (Cannabis sativa L.): A first phytochemical diversity mapping in Greece. Phytochemistry 2024, 222, 114076. [Google Scholar] [CrossRef] [PubMed]
- Judžentienė, A.; Garjonytė, R.; Būdienė, J. Phytochemical composition and antioxidant activity of various extracts of fibre hemp (Cannabis sativa L.) cultivated in Lithuania. Molecules 2023, 28, 4928. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, H.; Xu, J.; Zhou, H.; Seeram, N.P.; Ma, H.; Gu, Q. Chemical constituents of industrial hemp roots and their anti-inflammatory activities. J. Cannabis Res. 2023, 5, 1. [Google Scholar] [CrossRef]
- Esfandi, A.; Mehrafarin, A.; Kalateh Jari, S.; Naghdi Badi, H.; Larijani, K. Variability in Color and Phytochemical Properties of Hemp (Cannabis sativa L.) upon Drying Techniques; An Opportunity for Industrial Products. J. Med. Plants By-Prod. 2023, 13, 79–86. [Google Scholar]
- Farag, S.; Kayser, O. The cannabis plant: Botanical aspects. In Handbook of Cannabis and Related Pathologies; Academic Press: New York, NY, USA, 2017; pp. 3–12. [Google Scholar]
- Devi, L.S.; Bareh, D.A.; Joshi, S.R. Studies on biosynthesis of antimicrobial silver nanoparticles using endophytic fungi isolated from the ethno-medicinal plant Gloriosa superba L. Proc. Natl. Acad. Sci. India Sect. B Bio Sci. 2014, 84, 1091–1099. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; ElSohly, M.A. (Eds.) Cannabis sativa L. Botany and Biotechnology; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Richter, G.; Hazzah, T.; Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa: An overview. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 603–624. [Google Scholar]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–36. [Google Scholar]
- Moore, E. An Overview of the Phytochemistry of Cannabis sativa L. IDOSR-JBBAF 2020, 5, 39–44. [Google Scholar]
- Hourfane, S.; Mechqoq, H.; Bekkali, A.Y.; Rocha, J.M.; El Aouad, N. A comprehensive review on Cannabis sativa ethnobotany, phytochemistry, molecular docking and biological activities. Plants 2023, 12, 1245. [Google Scholar] [CrossRef]
- Russo, E.B.; Jiang, H.E.; Li, X.; Sutton, A.; Carboni, A.; Del Bianco, F.; Li, C.S. Phytochemical and genetic analyses of ancient cannabis from Central Asia. J. Exp. Bot. 2008, 59, 4171–4182. [Google Scholar] [CrossRef] [PubMed]
- Asati, A.K.; Sahoo, H.B.; Sahu, S.S.; Dwivedi, A.D. Phytochemical and pharmacological profile of Cannabis sativa L. Int. J. Indig. Herbs Drugs 2017, 2, 37–45. [Google Scholar]
- Smith, C.J.; Vergara, D.; Keegan, B.; Jikomes, N. The phytochemical diversity of commercial Cannabis in the United States. PLoS ONE 2022, 17, e0267498. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. Bioactive compounds and their protective role in oxidative stress and inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.Y.; Li, S.H.; Ma, W.; Wu, D.T.; Li, H.B.; Gan, R.Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TrAC Trends Anal. Chem. 2022, 149, 116554. [Google Scholar] [CrossRef]
- Silva-Reis, R.; Silva, A.M.; Oliveira, P.A.; Cardoso, S.M. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules 2023, 13, 764. [Google Scholar] [CrossRef] [PubMed]
- Messina, F.; Rosati, O.; Curini, M.; Marcotullio, M.C. Cannabis and bioactive cannabinoids. Stud. Nat. Prod. Chem. 2015, 45, 17–57. [Google Scholar]
- Kis, B.; Ifrim, F.C.; Buda, V.; Avram, S.; Pavel, I.Z.; Antal, D.; Danciu, C. Cannabidiol—From plant to human body: A promising bioactive molecule with multi-target effects in cancer. Int. J. Mol. Sci. 2019, 20, 5905. [Google Scholar] [CrossRef] [PubMed]
- Hazekamp, A. Cannabis Review; Department of Plant Metobolomics, Leiden University: Leiden, The Netherlands, 2009. [Google Scholar]
- Guo, T.T.; Zhang, J.C.; Zhang, H.; Liu, Q.C.; Zhao, Y.; Hou, Y.F.; Bai, N.S. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa. J. Asian Nat. Prod. Res. 2017, 19, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Alam, T.; Khan, M.A.; Tarannum, H.; Chauhan, N. Biosynthesis of silver nanoparticles using medicinal plant Anacyclus pyrethrum and its antibacterial efficacy. Asian J. Re Chem. 2018, 11, 515–520. [Google Scholar] [CrossRef]
- Yang, Y.; Vyawahare, R.; Lewis-Bakker, M.; Clarke, H.A.; Wong, A.H.; Kotra, L.P. Bioactive chemical composition of Cannabis extracts and cannabinoid receptors. Molecules 2020, 25, 3466. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Khan, T.; Adil, M.; Khan, A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 2021, 7, e07448. [Google Scholar] [CrossRef]
- Shyam, A.; Chandran, S.S.; George, B.E.S. Plant mediated synthesis of AgNPs and its applications: An overview. Inorg. Nano-Met. Chem. 2021, 51, 1646–1662. [Google Scholar] [CrossRef]
- Chakrabartty, I. Plant-Based Nanoparticles and Their Applications. In Diverse Applications of Nanotechnology in the Biological Sciences; Apple Academic Press: Waretown, NJ, USA, 2022; pp. 327–340. [Google Scholar]
- Irfan, M.; Saeed, M.; Iqbal, B.; Ghazanfar, M. Applications of plant-based natural products to synthesize nanomaterial. In Nanomaterials in Biofuels Research; Springer: Singapore, 2020; pp. 29–52. [Google Scholar]
- Patel, P.; Agarwal, P.; Kanawaria, S.; Kachhwaha, S.; Kothari, S.L. Plant-based synthesis of silver nanoparticles and their characterization. In Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants; Springer: Cham, Switzerland, 2015; pp. 271–288. [Google Scholar]
- Hano, C.; Abbasi, B.H. Plant-based green synthesis of nanoparticles: Production, characterization, and applications. Biomolecules 2021, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Azwatul, H.M.; Uda, M.N.A.; Gopinath, S.C.; Arsat, Z.A.; Abdullah, F.; Muttalib, M.F.A.; Adam, T. Plant-based green synthesis of silver nanoparticle via chemical bonding analysis. Mater. Today Proc. 2023; in press. [Google Scholar]
- Shukla, A.; Makwana, B.A. Facile synthesis of silver nanoparticle and their potential application. Am. J. Nanosci. Nanotechnol. 2014, 2, 84–92. [Google Scholar] [CrossRef]
- Ramaraghavulu, R.; Rao, V.K.; Devarayapalli, K.C.; Yoo, K.; Nagajyothi, P.C.; Shim, J. Green synthesized AgNPs decorated on Ketjen black for enhanced catalytic dye degradation. Res. Chem. Intermed. 2021, 47, 637–648. [Google Scholar] [CrossRef]
- Willian, N. Silver Nanoparticles (AgNPs) as Effective Disinfectants with Natural Source: A New Inspiration. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1148, p. 012002. [Google Scholar]
- Dutta, M.S. A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: Scaffold for future therapeutics of Alzheimer’s disease. Med. Chem. Res. 2023, 32, 15–31. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007, 2, 107–118. [Google Scholar] [CrossRef]
- Mishra, P.; Rafi, Z.; Faruqui, T.; Mansoor, S.; Ahmad, I.; Ahmad, I.; Saeed, M. Exploring the Significance and Cutting-Edge Applications of Terpenes and Terpenoid-Derived Inorganic Nanoparticles. Sci. Adv. Mater. 2024, 16, 665–681. [Google Scholar] [CrossRef]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef]
- Vaidyanathan, R.; Gopalram, S.; Kalishwaralal, K.; Deepak, V.; Pandian, S.R.K.; Gurunathan, S. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf. B Biointerfaces 2010, 75, 335–341. [Google Scholar] [CrossRef]
- Nayak, R.R.; Pradhan, N.; Behera, D.; Pradhan, K.M.; Mishra, S.; Sukla, L.B.; Mishra, B.K. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. J. Nanoparticle Res. 2011, 13, 3129–3137. [Google Scholar] [CrossRef]
- Almatroudi, A. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. 2020, 15, 819–839. [Google Scholar] [CrossRef]
- Tran, Q.H.; Le, A.T. Silver nanoparticles: Synthesis, properties, toxicology, applications, and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 033001. [Google Scholar] [CrossRef]
- Pryshchepa, O.; Pomastowski, P.; Buszewski, B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020, 284, 102246. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications, and biosafety. Theranostics 2020, 10, 8996. [Google Scholar] [CrossRef] [PubMed]
- Natsuki, J.; Natsuki, T.; Hashimoto, Y. A review of silver nanoparticles: Synthesis methods, properties, and applications. Int. J. Mater. Sci. Appl. 2015, 4, 325–332. [Google Scholar] [CrossRef]
- Alqadi, M.K.; Abo Noqtah, O.A.; Alzoubi, F.Y.; Alzouby, J.; Aljarrah, K. pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci.-Pol. 2014, 32, 107–111. [Google Scholar] [CrossRef]
- Fabrega, J.; Fawcett, S.R.; Renshaw, J.C.; Lead, J.R. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009, 43, 7285–7290. [Google Scholar] [CrossRef] [PubMed]
- Peretyazhko, T.S.; Zhang, Q.; Colvin, V.L. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: Kinetics and size changes. Environ. Sci. Technol. 2014, 48, 11954–11961. [Google Scholar] [CrossRef] [PubMed]
- Badawy AM, E.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 2010, 44, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Chitra, K.; Annadurai, G. Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. BioMed Res. Int. 2014, 2014, 725165. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, D. Preparation of a novel pH-responsive silver nanoparticle/poly (HEMA–PEGMA–MAA) composite hydrogel. Eur. Polym. J. 2007, 43, 4178–4187. [Google Scholar] [CrossRef]
- Lee, G.J.; Shin, S.I.; Kim, Y.C.; Oh, S.G. Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater. Chem. Phys. 2004, 84, 197–204. [Google Scholar] [CrossRef]
- Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S.; Parajuli, N. Current research on silver nanoparticles: Synthesis, characterization, and applications. J. Nanomater. 2021, 2021, 6687290. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 1825–1827. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, N.; Daneshpajouh, S.; Seyedbagheri, S.; Atashdehghan, R.; Abdi, K.; Sarkar, S.; Shahverdi, A.R. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 2009, 44, 1415–1421. [Google Scholar] [CrossRef]
- Wei, X.; Luo, M.; Li, W.; Yang, L.; Liang, X.; Xu, L.; Liu, H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour. Technol. 2012, 103, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Kumar, S.; Bafana, A.; Lin, J.; Dahoumane, S.A.; Jeffryes, C. A mechanistic view of the light-induced synthesis of silver nanoparticles using extracellular polymeric substances of Chlamydomonas reinhardtii. Molecules 2019, 24, 3506. [Google Scholar] [CrossRef] [PubMed]
- Moradi, F.; Sedaghat, S.; Moradi, O.; Arab Salmanabadi, S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorg. Nano-Met. Chem. 2021, 51, 133–142. [Google Scholar] [CrossRef]
- Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007, 84, 322. [Google Scholar] [CrossRef]
- Sivaraman, S.K.; Elango, I.; Kumar, S.; Santhanam, V. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 2009, 97, 00113891. [Google Scholar]
- Ponvel, K.M.; Narayanaraja, T.; Prabakaran, J. Biosynthesis of silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications. Int. J. Nano Dimens. 2015, 4, 339–349. [Google Scholar]
- Kumar, D.A.; Palanichamy, V.; Roopan, S.M. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2014, 127, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Umoren, S.A.; Obot, I.B.; Gasem, Z.M. Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. J. Mater. Environ. Sci. 2014, 5, 907–914. [Google Scholar]
- Roy, S.; Das, T.K. Plant mediated green synthesis of silver nanoparticles-A. Int. J. Plant Biol. Res. 2015, 3, 1044–1055. [Google Scholar]
- Antony, E.; Sathiavelu, M.; Arunachalam, S. Synthesis of silver nanoparticles from the medicinal plant Bauhinia acuminata and Biophytum sensitivum–a comparative study of its biological activities with plant extract. Int. J. Appl. Pharm. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Lee, S.W.; Chang, S.H.; Lai, Y.S.; Lin, C.C.; Tsai, C.M.; Lee, Y.C.; Huang, C.L. Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials 2014, 7, 7781–7798. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, N. Silver Nanoparticles: Synthesis, Characterization and Applications; IntechOpen: London, UK, 2018; Volume 1, pp. 1–39. [Google Scholar]
- Mukherji, S.; Bharti, S.; Shukla, G.; Mukherji, S. Synthesis and characterization of size-and shape-controlled silver nanoparticles. Phys. Sci. Rev. 2019, 4, 20170082. [Google Scholar] [CrossRef]
- Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Shenashen, M.A.; El-Safty, S.A.; Elshehy, E.A. Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part. Part. Syst. Charact. 2014, 31, 293–316. [Google Scholar] [CrossRef]
- Logaranjan, K.; Raiza, A.J.; Gopinath, S.C.; Chen, Y.; Pandian, K. Shape-and-size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 2016, 11, 520. [Google Scholar] [CrossRef]
- Ponsanti, K.; Tangnorawich, B.; Ngernyuang, N.; Pechyen, C. A flower shape-green synthesis and characterization of silver nanoparticles (AgNPs) with different starch as a reducing agent. J. Mater. Res. Technol. 2020, 9, 11003–11012. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Alarcon, E.I.; Griffith, M.; Udekwu, K.I. Silver Nanoparticle Applications; Springer International Publishing: Cham, Switzerland, 2015; Volume 10, pp. 978–983. [Google Scholar]
- Salih, A.M.; Al-Qurainy, F.; Khan, S.; Nadeem, M.; Tarroum, M.; Shaikhaldein, H.O. Biogenic silver nanoparticles improve bioactive compounds in medicinal plant Juniperus procera in vitro. Front. Plant Sci. 2022, 13, 962112. [Google Scholar] [CrossRef] [PubMed]
- Manjamadha, V.P.; Muthukumar, K. Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess. Biosyst. Eng. 2016, 39, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 2017, 7, 15867. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property, and toxicity analysis. Bioresour. Bioprocess. 2014, 1, 3. [Google Scholar] [CrossRef]
- Bujak, T.; Nizioł-Łukaszewska, Z.; Gaweł-Bęben, K.; Seweryn, A.; Kucharek, M.; Rybczyńska-Tkaczyk, K.; Matysiak, M. The application of different Stevia rebaudiana leaf extracts in the “green synthesis” of AgNPs. Green Chem. Lett. Rev. 2015, 8, 78–87. [Google Scholar] [CrossRef]
- Sorescu, A.A.; Nuţă, A.; Rodica, M.; Bunghez, I. Green synthesis of silver nanoparticles using plant extracts. In Proceedings of the 4th International Virtual Conference on Advanced Scientific Results, Online, 6–10 June 2016; pp. 10–16. [Google Scholar]
- Sun, Q.; Cai, X.; Li, J.; Zheng, M.; Chen, Z.; Yu, C.P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 226–231. [Google Scholar] [CrossRef]
- Balamurugan, A.; Ho, K.C.; Chen, S.M. One-pot synthesis of highly stable silver nanoparticles-conducting polymer nanocomposite and its catalytic application. Synth. Met. 2009, 159, 2544–2549. [Google Scholar] [CrossRef]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Ugarte, D.; Zanchet, D.; Zarbin, A.J. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Colloid Interface Sci. 2005, 292, 429–435. [Google Scholar] [CrossRef]
- González, A.L.; Noguez, C.; Beránek, J.; Barnard, A.S. Size, shape, stability, and color of plasmonic silver nanoparticles. J. Phys. Chem. C 2014, 118, 9128–9136. [Google Scholar] [CrossRef]
- Pinto, V.V.; Ferreira, M.J.; Silva, R.; Santos, H.A.; Silva, F.; Pereira, C.M. Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 19–25. [Google Scholar] [CrossRef]
- Bélteky, P.; Rónavári, A.; Igaz, N.; Szerencsés, B.; Tóth, I.Y.; Pfeiffer, I.; Kónya, Z. Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. Int. J. Nanomed. 2019, 14, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Michailidu, J.; Miškovská, A.; Jarošová, I.; Čejková, A.; Mat’átková, O. Bimetallic nanoparticle production using Cannabis sativa and Vitis vinifera waste extracts. RSC Adv. 2024, 14, 5309–5318. [Google Scholar] [CrossRef] [PubMed]
- Ijaz Hussain, J.; Kumar, S.; Adil Hashmi, A.; Khan, Z. Silver nanoparticles: Preparation, characterization, and kinetics. Adv. Mater. Lett. 2011, 2, 188–194. [Google Scholar] [CrossRef]
- Singh, K.; Coopoosamy, R.M.; Naidoo, K.K.; Adam, J.K. Antibacterial activities and biosynthesis of nanoparticles using hemp extracts. J. Med. Plants Econ. Dev. 2022, 6, 52361. [Google Scholar] [CrossRef]
- Cirrincione, M.; Saladini, B.; Brighenti, V.; Salamone, S.; Mandrioli, R.; Pollastro, F.; Mercolini, L. Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance-infrared (ATR-FTIR) spectroscopy: A proof of concept. J. Pharm. Biomed. Anal. 2021, 204, 114270. [Google Scholar] [CrossRef]
- González, M.; Borille, B.T.; dos Santos, M.K.; Gorziza, R.P.; Ramos, M.F.; de Rose, N.M.; Limberger, R.P. Application of Chemometric Tools on Cannabis Samples Analyzed by the FTIR-ATR Method. Braz. J. Forensic Sci. Med. Law. Bioeth. 2020, 9, 477–498. [Google Scholar] [CrossRef]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nano Chem. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Suman, S.; Loveleen, L.; Bhandari, M.; Syed, A.; Bahkali, A.H.; Manchanda, R.; Nimesh, S. Antibacterial, antioxidant, and hemolytic potential of silver nanoparticles biosynthesized using roots extract of Cannabis sativa plant. Artif. Cells Nanomed. Biotechnol. 2022, 50, 343–351. [Google Scholar] [CrossRef]
- Gopinath, P.M.; Narchonai, G.; Dhanasekaran, D.; Ranjani, A.; Thajuddin, N. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug-resistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 2015, 10, 138–145. [Google Scholar] [CrossRef]
- Nazeema, T.H.; Sugannya, P.K. Synthesis and characterization of silver nanoparticle from two medicinal plants and its anticancer property. Int. J. Res. Eng. Technol. 2014, 2, 49–56. [Google Scholar]
- Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng. 2016, 2016, 4102196. [Google Scholar] [CrossRef]
- Gloria, E.C.; Ederley, V.; Gladis, M.; César, H.; Jaime, O.; Oscar, A.; Franklin, J. Synthesis of silver nanoparticles (AgNPs) with antibacterial activity. J. Phys. Conf. Ser. 2017, 850, 012023. [Google Scholar] [CrossRef]
- Rachna Bhateria, R.B.; Yogita Sharma, Y.S.; Atul Bhardwaj, A.B.; Rajani Upadhyay, R.U.; Preeti Malik, P.M.; Preeti Verdodia, P.V.; Sunaina Narwal, S.N. Synthesizing silver nanoparticles biogenetically using easily accessible weeds. Ann. Biol. 2019, 35, 186–190. [Google Scholar]
- Patil, A.P.; Kapadnis, K.H.; Elangovan, S. Antibacterial applications of biosynthesized AgNPs: A short review (2015–2020). Mater. Sci. Res. India 2021, 18, 143–153. [Google Scholar] [CrossRef]
- Bedlovicová, Z.; Salayová, A. Green-synthesized silver nanoparticles and their potential for antibacterial applications. In Bacterial Pathogenesis and Antibacterial Control; Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Salman, H.D. Evaluation and comparison the antibacterial activity of silver nano particles (AgNPs) and silver nitrate (AgNO3) on some pathogenic bacteria. J. Glob. Pharma Technol. 2017, 9, 238–248. [Google Scholar]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Randall, C.P. The Silver Cation (Ag+): Antibacterial Mode of Action and Mechanisms of Resistance; University of Leeds: Leeds, UK, 2013. [Google Scholar]
- Tashi, T.; Gupta, N.V.; Mbuya, V.B. Silver nanoparticles: Synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. J. Chem. Pharm. Res. 2016, 8, 526–537. [Google Scholar]
- Maliszewska, I.; Sadowski, Z. Synthesis and antibacterial activity of silver nanoparticles. J. Phys. Conf. Ser. 2009, 146, 012024. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Phuong, T.N.M.; Hai, N.T.T.; Thuy, N.T.T.; Phu, N.V.; Huong, N.T.; Nga, D.T.H.; Hoa, T.T. Factors affecting synthesis of silver-nanoparticles and antimicrobial applications. Hue Univ. J. Sci. Nat. Sci. 2020, 129, 25–31. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura MA, R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol. 2018, 9, 379304. [Google Scholar] [CrossRef]
- Pazos-Ortiz, E.; Roque-Ruiz, J.H.; Hinojos-Márquez, E.A.; López-Esparza, J.; Donohué-Cornejo, A.; Cuevas-González, J.C.; Reyes-López, S.Y. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J. Nanomater. 2017, 2017, 4752314. [Google Scholar] [CrossRef]
- Li, J.; Rong, K.; Zhao, H.; Li, F.; Lu, Z.; Chen, R. Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis. J. Nanosci. Nanotechnol. 2013, 13, 6806–6813. [Google Scholar] [CrossRef]
- Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 2015, 30, 577–591. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503. [Google Scholar] [CrossRef] [PubMed]
- Durán, N.; Durán, M.; De Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Ali, A.; Zahoor, S.; Xinghua, X.; Shah, J.; Hamza, M.; Iqbal, A. Synthesis of Silver oxide nanoparticles and its antimicrobial, anticancer, anti-inflammatory, wound healing, and immunomodulatory activities—A review. Acta Sci. Appl. Phys. Vol. 2023, 3, 33–48. [Google Scholar]
- Imazato, S.; Ebi, N.; Tarumi, H.; Russell, R.R.; Kaneko, T.; Ebisu, S. Bactericidal activity and cytotoxicity of antibacterial monomer MDPB. Biomaterials 1999, 20, 899–903. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef]
- Abdalla, S.S.; Katas, H.; Azmi, F.; Busra, M.F.M. Antibacterial and anti-biofilm biosynthesised silver and gold nanoparticles for medical applications: Mechanism of action, toxicity, and current status. Curr. Drug Deliv. 2020, 17, 88–100. [Google Scholar] [CrossRef]
- Alshareef, A. An Investigation into the Effects of Shape and Structure on the Antibacterial Efficacy of Metal Nanoparticles. Doctoral Dissertation, De Montfort University, Leicester, UK, 2019. [Google Scholar]
- Shahzadi, S.; Zafar, N.; Sharif, R. Antibacterial activity of metallic nanoparticles. Bact. Pathog. Antibact. Control 2018, 51, 10.5772. [Google Scholar]
- Gibała, A.; Żeliszewska, P.; Gosiewski, T.; Krawczyk, A.; Duraczyńska, D.; Szaleniec, J.; Oćwieja, M. Antibacterial and antifungal properties of silver nanoparticles—Effect of a surface-stabilizing agent. Biomolecules 2021, 11, 1481. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.P.V.F.; Dalmasso, P.R.; de Mishima, B.A.L.; Hollmann, A. Interaction of green silver nanoparticles with model membranes: Possible role in the antibacterial activity. Colloids Surf. B Biointerfaces 2018, 171, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Siskova, K.M.; Zboril, R.; Gardea-Torresdey, J.L. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci. 2014, 204, 15–34. [Google Scholar] [CrossRef]
- Graves, J.L., Jr. Principles and Applications of Antimicrobial Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Prema, P.; Raju, R. Fabrication and characterization of silver nanoparticle and its potential antibacterial activity. Biotechnol. Bioprocess Eng. 2009, 14, 842–847. [Google Scholar] [CrossRef]
- Joo, S.H.; Aggarwal, S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. J. Environ. Manag. 2018, 225, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Adamecz, D.I. The possible modulatory effect of metallic nanoparticles on macrophage polarization. Acta Biol. Szeged. 2023, 67, 145–166. [Google Scholar]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Alizadeh, A.; Salouti, M.; Alizadeh, H.; Kazemizadeh, A.R.; Safari, A.A.; Mahmazi, S. Enhanced antibacterial effect of azlocillin in conjugation with silver nanoparticles against Pseudomonas aeruginosa. IET Nanobiotechnol. 2017, 11, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Junejo, Y.; Baykal, A. Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles. Turk. J. Chem. 2014, 38, 765–774. [Google Scholar] [CrossRef]
- Karachkovska, A.D.; Syrvatka, V.J.; Gromyko, O.M.; Fedorenko, V.O. Synthesis of antibiotic-silver nanoparticles complexes, their properties, and application for investigation of antibiotic-resistance mechanisms. In Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII; SPIE: Bellingham, WA, USA, 2020; Volume 11467, pp. 174–182. [Google Scholar]
- Rogowska, A.; Rafińska, K.; Pomastowski, P.; Walczak, J.; Railean-Plugaru, V.; Buszewska-Forajta, M.; Buszewski, B. Silver nanoparticles functionalized with ampicillin. Electrophoresis 2017, 38, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, N.; Alam, H.; Khan, A.; Raza, K.; Sardar, M. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci. Rep. 2019, 9, 6848. [Google Scholar] [CrossRef] [PubMed]
- Hasan, K.F.; Horváth, P.G.; Zsolt, K.; Koczan, Z.; Bak, M.; Horvath, A.; Alpar, T. Hemp/glass woven fabric reinforced laminated nanocomposites via in-situ synthesized silver nanoparticles from Tilia cordata leaf extract. Compos. Interfaces 2022, 29, 503–521. [Google Scholar] [CrossRef]
- Nikparast, Y.; Ghorbani, R.; Ahmadzadeh, H.; Asadi, G.A. Green synthesis of silver nanoparticles using leaf extract of weed and evaluation of antibacterial effect. J. Plant Prot. 2018, 32, Pe139–Pe146. [Google Scholar]
- Priya, R.S.; Geetha, D.; Ramesh, P.S. Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs–A comparative study. Ecotoxicol. Environ. Saf. 2016, 134, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; David, L.; Achim, M.; Clichici, S.; Filip, G.A. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J. Mol. Liq. 2016, 221, 271–278. [Google Scholar] [CrossRef]
- Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization, and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C 2016, 62, 719–724. [Google Scholar] [CrossRef]
- Sreelekha, E.; George, B.; Shyam, A.; Sajina, N.; Mathew, B. A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. BioNanoScience 2021, 11, 489–496. [Google Scholar] [CrossRef]
- Flieger, J.; Franus, W.; Panek, R.; Szymańska-Chargot, M.; Flieger, W.; Flieger, M.; Kołodziej, P. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules 2021, 26, 4986. [Google Scholar] [CrossRef]
- Sivakumar, T. A modern review of silver nanoparticles mediated plant extracts and its potential bioapplications. Int. J. Bot. Stud. 2021, 6, 170–175. [Google Scholar]
- Korkmaz, N.; Kısa, D.; Ceylan, Y.; Güçlü, E.; Şen, F.; Karadağ, A. Synthesis of CeO2 nanoparticles from hemp leaf Extract: Evaluation of Antibacterial, anticancer and enzymatic activities. Inorg. Chem. Commun. 2024, 159, 111797. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Shamova, O.V.; Orlov, D.S.; Pazina, T.Y.; Boldina, A.S.; Kokryakov, V.N. Study of antimicrobial and hemolytic activities of silver nanoparticles prepared by chemical reduction. Glass Phys. Chem. 2010, 36, 628–634. [Google Scholar] [CrossRef]
- Liaqat, N.; Jahan, N.; Anwar, T.; Qureshi, H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 2022, 10, 952006. [Google Scholar] [CrossRef] [PubMed]
- Fifere, A.; Moleavin, I.T.; Mircea, C.; Macovei, I.; Burlec, A.F. In vitro Evaluation of Antioxidant and Antibacterial Activities of Eco-friendly Synthesized Silver Nanoparticles using Quercus robur Bark Extract. Curr. Pharm. Biotechnol. 2023, 24, 460–470. [Google Scholar]
- Rajagopal, G.; Manivannan, N.; Mahalingam, S.; Anand, K.; Senthilkumar, S.; Mathivanan, N.; Ilango, S. Biogenic Synthesis of Silver Chloride Nanoparticles from Padina gymnospora and their Evaluation of Antimicrobial, Larvicidal, Hemolytic and Anticancer Activities. 2020; preprint. ISSN 2693-5015. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, Y.; Kianfar, E. Nano biosensors: Properties, applications, and electrochemical techniques. J. Mater. Res. Technol. 2021, 12, 1649–1672. [Google Scholar] [CrossRef]
- Dede, S.; Altay, F. Biosensors from the first generation to nano-biosensors. Int. Adv. Res. Eng. J. 2018, 2, 200–207. [Google Scholar]
- Zhu, S.; Du, C.; Fu, Y. Fabrication and characterization of rhombic silver nanoparticles for biosensing. Opt. Mater. 2009, 31, 769–774. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Nahli, R.E. Nano-biosensors and Nano-aptasensors for Stimulant Detection. Environ. Nanotechnol. 2019, 2, 169–193. [Google Scholar]
- Kale, S.K.; Parishwad, G.V.; Patil, A.S.H.A.S. Emerging agriculture applications of silver nanoparticles. ES Food Agrofor. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- Thamilselvi, V.; Radha, K.V. A review on the diverse application of silver nanoparticle. IOSR J. Pharm. 2017, 7, 21–27. [Google Scholar] [CrossRef]
- Mufamadi, M.S.; Mulaudzi, R.B. Green engineering of silver nanoparticles to combat plant and foodborne pathogens: Potential economic impact and food quality. In Plant Nanobionics: Volume 2, Approaches in Nanoparticles, Biosynthesis, and Toxicity; Springer: Cham, Switzerland, 2019; pp. 451–476. [Google Scholar]
- Kumari, R.; Singh, D.P. Silver nanoparticle in agroecosystem: Applicability on plant and risk-benefit assessment. In Plant Responses Xenobiotics; Springer: Singapore, 2016; pp. 293–305. [Google Scholar]
- Goyal, M.R.; Mishra, S.K.; Kumar, S. (Eds.) Nanotechnology Horizons in Food Process Engineering: Volume 3: Trends, Nanomaterials, and Food Delivery; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Stensberg, M.C.; Wei, Q.; McLamore, E.S.; Porterfield, D.M.; Wei, A.; Sepúlveda, M.S. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 2011, 6, 879–898. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef]
- Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Ozdemir, B.; Karavelioglu, Z.; Egil, A.C.; Kecel-Gunduz, S. Assessment of Nano-Toxicity and Safety Profiles of Silver Nanoparticles; IntechOpen: London, UK, 2018; p. 75645. [Google Scholar]
- Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 2010, 118, 407–413. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
Antibiotics Used with AgNP | Bacteria Tested | Antibacterial Parameters | Reference |
---|---|---|---|
Chloramphenicol, Kanamycin | S. typhymurium, B. subtilis | The cooperative and enhancing impact of combining AgNPs with chloramphenicol and AgNPs with kanamycin, as per the Fractional Inhibitory Concentration Index (FICI) 1 of 1, was observed. | [151] |
Azlocillin | P. aeruginosa | The antibacterial efficacy of azlocillin was boosted when combined with AgNPs, reducing the minimum inhibitory concentration (MIC) from 8 ppm when used alone to 4 ppm when combined with AgNPs. | [152] |
Erythromycin | S. oralis, Enterococcus faecalis, E. coli, A. actinomycetemcomitans | When the antibiotic was combined with AgNPs, its antibacterial effectiveness increased synergistically, transitioning from no growth inhibition to falling within the susceptible range. | [153] |
Vancomycin | E. coli, S. aureus | The synergistic antibacterial effects were observed with AgNPs functionalized with antibiotics. Notably, E. coli shifted from being resistant to vancomycin to becoming susceptible. | [154] |
Ampicillin | Ampicillin resistant S. aureus, K. pneumonia and P. aeruginosa | The minimum inhibitory concentration (MIC) of AgNPs synthesized with ampicillin ranged from 3 to 28 µg/mL against all tested bacteria, compared to 12 to over 720 µg/mL for ampicillin alone. | [155] |
Ampicillin | E. coli, E. aerogenes ampicillin resistant, S. aureus | Ampicillin-functionalized AgNPs significantly reduced colony-forming units (CFU) in all tested bacteria, including resistant strains. | [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, F.; Lackner, M. Green Synthesis of Silver Nanoparticles from Cannabis sativa: Properties, Synthesis, Mechanistic Aspects, and Applications. ChemEngineering 2024, 8, 64. https://doi.org/10.3390/chemengineering8040064
Ahmadi F, Lackner M. Green Synthesis of Silver Nanoparticles from Cannabis sativa: Properties, Synthesis, Mechanistic Aspects, and Applications. ChemEngineering. 2024; 8(4):64. https://doi.org/10.3390/chemengineering8040064
Chicago/Turabian StyleAhmadi, Fatemeh, and Maximilian Lackner. 2024. "Green Synthesis of Silver Nanoparticles from Cannabis sativa: Properties, Synthesis, Mechanistic Aspects, and Applications" ChemEngineering 8, no. 4: 64. https://doi.org/10.3390/chemengineering8040064
APA StyleAhmadi, F., & Lackner, M. (2024). Green Synthesis of Silver Nanoparticles from Cannabis sativa: Properties, Synthesis, Mechanistic Aspects, and Applications. ChemEngineering, 8(4), 64. https://doi.org/10.3390/chemengineering8040064