Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Biomass and Pretreatment
2.3. Chemical Characterization of Bagasse Samples and Spent Liquor
2.4. Enzymatic Hydrolysis
2.5. Fermentation
2.6. Error and Statistical Analyses
3. Results and Discussion
3.1. Raw and Pretreated Bagasse Chemical Characterization
3.2. Hydrolysis Kinetics and Hydrolysate Chemical Analysis
3.3. Fermentation Kinetics and Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandel, A.K.; Silva, S.S.; Carvalho, W.; Singh, O.V. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 2012, 87, 11–20. [Google Scholar] [CrossRef]
- Yadav, P.; Anu, S.K.T.; Kumar, V.; Singh, D.; Kumar, S.; Manisha, V.M.; Singh, B. Sugarcane bagasse: An important lignocellulosic substrate for production of enzymes and biofuels. Biomass Convers. Biorefin. 2022, 14, 6111–6142. [Google Scholar] [CrossRef]
- Tilley, C. Sugarcane as a biofuel and its impact on the climate. Nat. Sci. Educ. 2025, 54, e70010. [Google Scholar] [CrossRef]
- Cardona, C.A.; Quintero, J.A.; Paz, I.C. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresour. Technol. 2010, 101, 4754–4766. [Google Scholar] [CrossRef]
- Hiranobe, C.T.; Gomes, A.S.; Paiva, F.F.G.; Tolosa, G.R.; Paim, L.L.; Dognani, G.; Cardim, G.P.; Cardim, H.P.; dos Santos, R.J.; Cabrera, F.C. Sugarcane bagasse: Challenges and opportunities for waste recycling. Clean Technol. 2024, 6, 662–699. [Google Scholar] [CrossRef]
- Prado, C.A.; Loureiro, B.M.S.; Arruda, G.L.; Santos, J.C.; Chandel, A.K. Hydrodynamic cavitation assisted pretreatment of sugarcane bagasse in the presence of yeast cell mass for the production of sugars and their use for biopigments production by Monascus ruber. Biomass Bioenergy 2024, 190, 107434. [Google Scholar] [CrossRef]
- Song, G.; Bai, Y.; Pan, Z.; Liu, D.; Qin, Y.; Zhang, Y.; Fan, Z.; Li, Y.; Madadi, M. Enhancing fermentable sugar production from sugarcane bagasse through surfactant-assisted ethylene glycol pretreatment and enzymatic hydrolysis: Reduced temperature and enzyme loading. Renew. Energy 2024, 227, 120515. [Google Scholar] [CrossRef]
- Cunha-Pereira, F.; Hickert, L.R.; Senhem, N.T.; Rosa, C.A.; Souza-Cruz, P.B.; Ayub, M.A.Z. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations. Bioresour. Technol. 2011, 102, 4218–4225. [Google Scholar] [CrossRef]
- Tharunkumar, J.; Arosha, V.K.; Bajhaiya, A.K.; Rakesh, S. Optimizing alkaline pretreatment for delignification of paddy straw and sugarcane bagasse to enhance bioethanol production. Biomass Convers. Biorefin. 2024, 15, 16409–16419. [Google Scholar] [CrossRef]
- Brandt, B.A.; Teke, G.M.; van Zyl, W.H.; Görgens, J.F. Development of a hardened industrial strain of S. cerevisiae for bioethanol production from sugarcane bagasse hydrolysates. Waste Biomass Valorization 2025, 16, 3605–3614. [Google Scholar] [CrossRef]
- Tadesse, H.M.; Atnafu, T.; Kassahun, E.; Tessema, I.; Abewaa, M.; Tibebu, S. Optimization of bioethanol production from a brewers’ spent grain and sugarcane molasses mixture utilizing Saccharomyces cerevisiae. Biomass Convers. Biorefin. 2025, 15, 20765–20788. [Google Scholar] [CrossRef]
- Hahn Hägerdal, B.; Karhumaa, K.; Jeppsson, M.; Gorwa Grauslund, M.F. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 2007, 108, 147–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Skerker, J.M.; Kang, W.; Lesmana, A.; Wei, N.; Arkin, A.P.; Jin, Y.S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS ONE 2013, 8, e57048. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.V.; Neitzel, T.; Lima, C.S.; de Carvalho, L.M.; de Lima, T.B.; Ienczak, J.L.; Pereira, G.A.G. Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains. Microbiol. Res. 2025, 290, 127955. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Yang, J.J.; Qian, F.H.; Sutton, K.B.; Hjort, C.; Wu, W.P.; Jiang, Y.; Yang, S. Engineering a xylose fermenting yeast for lignocellulosic ethanol production. Nat. Chem. Biol. 2025, 21, 443–450. [Google Scholar] [CrossRef]
- Engwa, G.A. Genetic engineering on microorganism: The ecological and bioethical implications. Eur. J. Biotechnol. Biosci. 2013, 1, 27–33. [Google Scholar]
- Arbel-Groissman, M.; Menuhin-Gruman, I.; Naki, D.; Bergman, S.; Tuller, T. Fighting the battle against evolution: Designing genetically modified organisms for evolutionary stability. Trends Biotechnol. 2023, 41, 1518–1531. [Google Scholar] [CrossRef]
- Olsson, L.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 1996, 18, 312–331. [Google Scholar] [CrossRef]
- Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresour. Technol. 2010, 101, 4775–4800. [Google Scholar] [CrossRef]
- Vasylyshyn, R.; Dmytruk, K.; Ruchala, J.; Sibirny, A.A. Construction of the improved producers of first- and second-generation ethanol in conventional and non-conventional yeasts. In Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A.A., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2025; pp. 1–48. [Google Scholar] [CrossRef]
- Jeffries, T.W.; Grigoriev, I.V.; Grimwood, J.; Laplaza, J.M.; Aerts, A.; Salamov, A.; Schmutz, J.; Lindquist, E.; Dehal, P.; Shapiro, H.; et al. Genome sequence of the lignocellulose bioconverting and xylose fermenting yeast Pichia stipitis. Nat. Biotechnol. 2007, 25, 319–326. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [Google Scholar] [CrossRef]
- Fan, J.; Lu, Y.; An, N.; Zhu, W.; Li, M.; Gao, M.; Wang, X.; Wu, C.; Wang, Y. Pretreatment technologies for lignocellulosic biomass: Research progress, mechanisms, and prospects. BioResources 2025, 20, 4897–4924. [Google Scholar] [CrossRef]
- Tavares, J.; Łukasik, R.M.; de Paiva, T.; da Silva, F. Hydrothermal alkaline sulfite pretreatment in the delivery of fermentable sugars from sugarcane bagasse. New J. Chem. 2018, 42, 4474–4484. [Google Scholar] [CrossRef]
- Paz-Cedeno, F.R.; Henares, L.R.; Solorzano-Chavez, E.G.; Scontri, M.; Picheli, F.P.; Roldán, I.U.M.; Monti, R.; de Oliveira, S.C.; Masarin, F. Evaluation of the Effects of Different Chemical Pretreatments in Sugarcane Bagasse on the Response of Enzymatic Hydrolysis in Batch Systems Subject to High Mass Loads. Renew. Energy 2021, 165, 1–13. [Google Scholar] [CrossRef]
- Silva, F.T. Obtenção de Insumos Químicos a Partir do Aproveitamento Integral do Bagaço de Cana (Tese de Doutorado, Universidade Estadual de Campinas, Instituto de Química). Repositório da UNICAMP, 1995. Available online: https://repositorio.unicamp.br/acervo/detalhe/90068 (accessed on 23 July 2025).
- Mendes, F.M.; Siqueira, G.; Carvalho, W.; Ferraz, A.; Milagres, A.M.F. Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnol. Prog. 2011, 27, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, A.; Baeza, J.; Rodriguez, J.; Freer, J. Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresour. Technol. 2000, 74, 201–212. [Google Scholar] [CrossRef]
- Silva, V.F.N.; Arruda, P.V.; Felipe, M.G.A.; Gonçalves, A.R.; Rocha, G.J.M. Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J. Ind. Microbiol. Biotechnol. 2011, 38, 809–817. [Google Scholar] [CrossRef]
- Mendes, F.M.; Laurito, D.F.; Bazzeggio, M.; Ferraz, A.; Milagres, A.M.F. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step. Biotechnol. Prog. 2013, 29, 890–895. [Google Scholar] [CrossRef]
- Guilherme, A.A.; Dantas, P.V.F.; Santos, E.S.; Fernandes, F.A.N.; Macedo, G.R. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 2015, 32, 23–33. [Google Scholar] [CrossRef]
- Gellerstedt, G. Chemistry of chemical pulping. In Pulp and Paper Chemistry and Technology; Monica, E.K., Gellerstedt, G., Henriksson, G., Eds.; Walter de Gruyter: Weinheim, Germany, 2009; Volume 2, pp. 121–136. [Google Scholar]
- Yang, M.; Zhang, X.; Cheng, G. A two-stage pretreatment using dilute sodium hydroxide solution followed by an ionic liquid at low temperatures: Toward construction of lignin-first biomass pretreatment. Bioresour. Technol. Rep. 2019, 7, 100286. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Li, Y.; Wang, W.; Liu, X.; Shu, H.; Jiang, J. Comparison of the effects of NaOH and deep eutectic solvent catalyzed tobacco stock lignin isolation: Chemical structure and thermal characteristics. Catalysts 2024, 14, 744. [Google Scholar] [CrossRef]
- Holtzapple, M.; Cognata, M.; Shu, Y.; Hendrickson, C. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol. Bioeng. 1990, 36, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Gregg, D.J.; Saddler, J.N. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol. Bioeng. 1996, 51, 375–383. [Google Scholar] [CrossRef]
- Yu, Z. Fundamental Factors Affecting Enzymatic Hydrolysis of Lignocellulosic Biomass. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, USA, 2013. [Google Scholar]
- Mussatto, S.I.; Fernandes, M.; Milagres, A.M.F.; Roberto, I.C. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzym. Microb. Technol. 2008, 43, 124–129. [Google Scholar] [CrossRef]
- Tu, M.; Pan, X.; Saddler, J.N. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J. Agric. Food Chem. 2009, 57, 7771–7778. [Google Scholar] [CrossRef]
- Hall, M.; Bansal, P.; Lee, J.H.; Realff, M.J.; Bommarius, A.S. Cellulose crystallinity—A key predictor of the enzymatic hydrolysis rate. FEBS J. 2010, 277, 1571–1582. [Google Scholar] [CrossRef]
- Donzella, L.; Sousa, M.J.; Morrissey, J.P. Evolution and functional diversification of yeast sugar transporters. Essays Biochem. 2023, 67, 811–827. [Google Scholar] [CrossRef]
- Brink, D.P.; Borgström, C.; Persson, V.C.; Ofuji Osiro, K.; Gorwa-Grauslund, M.F. D-xylose sensing in Saccharomyces cerevisiae: Insights from D-glucose signaling and native D-xylose utilizers. Int. J. Mol. Sci. 2021, 22, 12410. [Google Scholar] [CrossRef]
- Laluce, C.; Schenberg, A.C.G.; Gallardo, J.C.M.; Coradello, L.F.C.; Pombeiro-Sponchiado, S.R. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain lignocellulosic ethanol: A review. Appl. Biochem. Biotechnol. 2012, 166, 1908–1926. [Google Scholar] [CrossRef]
- Wagner, E.R.; Gasch, A.P. Advances in S. cerevisiae engineering for xylose fermentation and biofuel production: Balancing growth, metabolism, and defense. J. Fungi 2023, 9, 786. [Google Scholar] [CrossRef]
- Gibson, B.R.; Lawrence, S.J.; Leclaire, J.P.; Powell, C.D.; Smart, K.A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 2007, 31, 535–569. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; van Uden, N. Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl. Microbiol. Biotechnol. 1986, 23, 491–495. [Google Scholar] [CrossRef]
- Kilian, S.G.; Prior, B.A.; du Preez, J.C. The kinetics and regulation of d xylose transport in Candida utilis. World J. Microbiol. Biotechnol. 1993, 9, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; He, P.; Lu, D.; Shen, A.; Jiang, N. Cloning and molecular characterization of a gene coding D-xylulokinase (CmXYL3) from Candida maltosa. J. Appl. Microbiol. 2006, 101, 139–150. [Google Scholar] [CrossRef]
- Preziosi-Belloy, L.; Nolleau, V.; Navarro, J.M. Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis. Enzyme Microb. Technol. 1997, 21, 124–129. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochem. 2005, 40, 3801–3806. [Google Scholar] [CrossRef]
- Schirmer-Michel, Â.C.; Flôres, S.H.; Hertz, P.F.; Ayub, M.A.Z. Effect of oxygen transfer rates on alcohols production by Candida guilliermondii cultivated on soybean hull hydrolysate. J. Chem. Technol. Biotechnol. 2009, 84, 223–228. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, J.; Wang, K.; Su, C.; Chen, C.; Cui, Z.; Cai, D.; Cheng, S.; Cao, H.; Qin, P. Understanding the Dynamics of the Saccharomyces cerevisiae and Scheffersomyces stipitis Abundance in Co-Culturing Process for Bioethanol Production from Corn Stover. Waste Biomass Valor. 2023, 14, 43–55. [Google Scholar] [CrossRef]
- Ochoa-Chacón, A.; Martinez, A.; Poggi-Varaldo, H.M.; Villa-Tanaca, L.; Ramos-Valdivia, A.C.; Ponce-Noyola, T. Xylose Metabolism in Bioethanol Production: Saccharomyces cerevisiae vs. Non-Saccharomyces Yeasts. Bioenerg. Res. 2022, 15, 905–923. [Google Scholar] [CrossRef]
- Biazi, L.E.; Santos, S.C.; Kaupert Neto, A.A.; Sousa, A.S.; Soares, L.B.; Renzano, E.; Velasco, J.; Rabelo, S.C.; Costa, A.C.; Ienczak, J.L. Adaptation Strategy to Increase the Tolerance of Scheffersomyces stipitis NRRL Y-7124 to Inhibitors of Sugarcane Bagasse Hemicellulosic Hydrolysate through Comparative Studies of Proteomics and Fermentation. Bioenerg. Res. 2022, 15, 479–492. [Google Scholar] [CrossRef]
- Rossi, L.M.; Gallo, J.M.R.; Mattoso, L.H.C.; Buckeridge, M.S.; Licence, P.; Allen, D.T. Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector. ACS Sustain. Chem. Eng. 2021, 9, 4293–4295. [Google Scholar] [CrossRef]
- Dai, N.H.; Huynh, K.T.T.; Nguyen, T.A.D.; Do, V.V.T.; Van Tran, M. Hydrothermal and Steam Explosion Pretreatment of Bambusa stenostachya Bamboo. Waste Biomass Valor. 2021, 12, 4103–4112. [Google Scholar] [CrossRef]
- Paul, M.; Shroti, G.K.; Mohapatra, S.; DasMohapatra, P.K.; Thatoi, H. A Comparative Study on Pretreatment of Rice Straw and Saccharification by Commercial and Isolated Cellulase–Xylanase Cocktails Towards Enhanced Bioethanol Production. Syst. Microbiol. Biomanuf. 2024, 4, 731–749. [Google Scholar] [CrossRef]
- José, Á.H.M.; Moura, E.A.B.; Rodrigues, D., Jr.; Kleingesinds, E.K.; Rodrigues, R.C.L.B. A Residue-Free and Effective Corncob Extrusion Pretreatment for the Enhancement of High Solids Loading Enzymatic Hydrolysis to Produce Sugars. Ind. Crops Prod. 2022, 188, 115655. [Google Scholar] [CrossRef]
- Cavailles, J.; Vaca-Medina, G.; Wu-Tiu-Yen, J.; Labonne, L.; Evon, P.; Peydecastaing, J.; Pontalier, P.-Y. Impact of thermomechanical pretreatment by twin-screw extrusion on the properties of bio-based materials from sugarcane bagasse obtained by thermocompression. Bioresour. Technol. 2024, 414, 131642. [Google Scholar] [CrossRef]
- Modenbach, A.A.; Nokes, S.E. Enzymatic hydrolysis of biomass at high-solids loadings–A review. Biomass Bioenergy 2013, 56, 526–544. [Google Scholar] [CrossRef]
- Qiao, H.; Ma, Z.; Wang, Y.; Zheng, Z.; Ouyang, J. Achieving efficient and rapid high-solids enzymatic hydrolysis for producing high titer ethanol with the assistance of di-rhamnolipids. Bioresour. Technol. 2024, 394, 130189. [Google Scholar] [CrossRef]
- Montiel, C.; Hernández-Meléndez, O.; Marques, S.; Gírio, F.; Tavares, J.; Ontañon, O.; Campos, E.; Bárzana, E. Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production. Sustainability 2024, 16, 6722. [Google Scholar] [CrossRef]
Substrate | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Extractives (%) | Ashes (%) | ||
---|---|---|---|---|---|---|---|
Total | Acetyl | Arabinan | |||||
Raw bagasse | 37.5 ± 2 | 24.3 ± 1 | 2.6 ± 0.1 | 2.8 ± 0.3 | 19.3 ± 1 | 8.1 ± 0.1 | 4.8 ± 0.4 |
Pretreated bagasse | 55.0 ± 1 | 27.4 ± 1 | 0.7 ± 0.0 | 2.5 ± 0.0 | 10.6 ± 0.3 | n.d. | 3.0 ± 0.4 |
Component | Raw Bagasse | Pretreated Bagasse | Component Loss |
---|---|---|---|
Mass yield | 100 | 66.7 ± 1 | 33.3 |
Cellulose | 37.5 ± 2 | 36.7 ± 1 | 2.1 |
Xylan | 19.0 ± 1 | 16.1 ± 1 | 15.3 |
Acetyl Groups | 2.6 ± 0.1 | 0.5 ± 0.0 | 80.8 |
Arabinan Groups | 2.8 ± 0.3 | 1.7 ± 0.0 | 39.3 |
Lignin | 19.3 ± 1 | 7.1 ± 0.3 | 63.2 |
Extractives | 8.1 ± 1 | n.d. | - |
Ashes | 4.8 ± 0.4 | 3.0 ± 0.4 | 58.3 |
Total | 94.1 | 64.1 | - |
Conversion (%) | Hydrolysate Main Components (g/L) | |||
---|---|---|---|---|
Glucan | Xylan | Cellobiose | Glucose | Xylose |
72.6 ± 2 | 62.7 ± 2 | 1.4 ± 0.2 | 20.7 ± 1 | 9.8 ± 0.4 |
S. cerevisiae PE-2: Kinetic Parameters after 4h Fermentation | ||||||||
A | ΔS-Glu | ΔS-Xyl | Ethanol Max. | YEt/S | YEt | Qp | YX/S | (YG/S) |
(g) | (g) | (g/L) | (g/g) | (%) | (g/L·h) | (g/g) | (g/g) | |
Hydrolysate | 19.19 | 0.07 | 9.8 | 0.51 | 99.9 | 2.5 | 0.08 | 0.07 |
Control | 17.33 | 1.09 | 9.2 | 0.53 | 103.9 | 2.3 | 0.07 | 0.07 |
S. stipitis CBS 5773: Kinetic Parameters after 8h Fermentation | ||||||||
B | ΔS-Glu | ΔS-Xyl | Ethanol Max. | YEt/S | YEt | Qp | YX/S | (YG/S) |
(g) | (g) | (g/L) | (g/g) | (%) | (g/L·h) | (g/g) | (g/g) | |
Hydrolysate | 19.58 | 5.34 | 10.24 | 0.41 | 80.41 | 1.3 | 0.12 | 0.05 |
Control | 18.17 | 4.44 | 9.83 | 0.43 | 85.08 | 1.2 | 0.15 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, J.; Rai, A.; de Paiva, T.; da Silva, F. Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment. ChemEngineering 2025, 9, 93. https://doi.org/10.3390/chemengineering9050093
Tavares J, Rai A, de Paiva T, da Silva F. Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment. ChemEngineering. 2025; 9(5):93. https://doi.org/10.3390/chemengineering9050093
Chicago/Turabian StyleTavares, João, Abdelwahab Rai, Teresa de Paiva, and Flávio da Silva. 2025. "Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment" ChemEngineering 9, no. 5: 93. https://doi.org/10.3390/chemengineering9050093
APA StyleTavares, J., Rai, A., de Paiva, T., & da Silva, F. (2025). Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment. ChemEngineering, 9(5), 93. https://doi.org/10.3390/chemengineering9050093