Machine Learning for Surrogate Groundwater Modelling of a Small Carbonate Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Geology and Hydrogeology
2.2. Physics-Based Numerical Model Development Using FEFLOW
2.2.1. Groundwater Model Setup
- Flow is three-dimensional and the unconfined limestone aquifer can be represented as a single continuum.
- The underlying aquitard has a sufficiently low permeability to ignore fluxes across the interface between the base of the limestone and underlying aquitard.
- The entire model domain is completely saturated and there are no variable density considerations.
- The northeastern portion (Scotland District) of the island is comprised of impervious geologic formations and the permeability of these lithologies is negligible.
2.2.2. Physics-Based Groundwater Model Calibration
2.3. Machine Learning for Surrogate Groundwater Modelling
2.3.1. Deep Neural Networks for Surrogate Modelling
2.3.2. Elastic-Net Regression for Surrogate Modelling
2.3.3. Generative Adversarial Neural Networks (GANs) for Surrogate Modelling
3. Results and Discussion
3.1. Physics-Based Simulations of Island-Scale Groundwater Flow
3.2. Performance of DNNs for Surrogate Modelling
3.3. Performance of Elastic Nets for Surrogate Modelling
3.4. Performance of GANs for Surrogate Modelling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cashman, A. Water Security and Services in the Caribbean. Water 2014, 6, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-Scale Water Scarcity Requires Micro-Scale Approaches. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.C.; Banner, J.L. Hydrogeologic and Climatic Influences on Spatial and Interannual Variation of Recharge to a Tropical Karst Island Aquifer. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Senn, A. Report of the British Union Oil Company Limited on Geological Investigations of the Ground-Water Resources of Barbados, B.W.I., Report; Br. Union Oil Co. Ltd.: Santa Paula, CA, USA, 1946; 118p. [Google Scholar]
- Tullstrom, H. Report on the Water Supply of Barbados; United Nations Program of Technical Assistance: New York, NY, USA, 1964; 219p. [Google Scholar]
- Jones, I.C.; Banner, J.L.; Humphrey, J.D. Estimating Recharge in a Tropical Karst Aquifer. Water Resour. Res. 2000, 36, 1289–1299. [Google Scholar] [CrossRef]
- Jones, I.C.; Banner, J.L. Estimating Recharge Thresholds in Tropical Karst Island Aquifers: Barbados, Puerto Rico and Guam. J. Hydrol. 2003, 278, 131–143. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005; Volume 6.
- Diersch, H.-J.G. FEFLOW; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Brunner, P.; Simmons, C.T. HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model. Ground Water 2012, 50, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Mace, R.E.; Barrett, M.E.; Smith, B. Can We Simulate Regional Groundwater Flow in a Karst System Using Equivalent Porous Media Models? Case Study, Barton Springs Edwards Aquifer, USA. J. Hydrol. 2003, 276, 137–158. [Google Scholar] [CrossRef]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Review: Groundwater Flow and Transport Modeling of Karst Aquifers, with Particular Reference to the North Coast Limestone Aquifer System of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [Green Version]
- Canul-Macario, C.; Salles, P.; Hernández-Espriú, A.; Pacheco-Castro, R. Numerical Modelling of the Saline Interface in Coastal Karstic Aquifers within a Conceptual Model Uncertainty Framework. Hydrogeol. J. 2021, 29, 2347–2362. [Google Scholar] [CrossRef]
- Boutt, D.F.; Allen, M.; Settembrino, M.; Bonarigo, A.; Ingari, J.; Demars, R.; Munk, L.A. Groundwater Recharge to a Structurally Complex Aquifer System on the Island of Tobago (Republic of Trinidad and Tobago). Hydrogeol. J. 2021, 29, 799–818. [Google Scholar] [CrossRef]
- Huang, P.-S.; Chiu, Y.-C. A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan. Water 2018, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Lal, A.; Datta, B. Multi-Objective Groundwater Management Strategy under Uncertainties for Sustainable Control of Saltwater Intrusion: Solution for an Island Country in the South Pacific. J. Environ. Manag. 2019, 234, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Ghadimi, S.; Ketabchi, H. Possibility of Cooperative Management in Groundwater Resources Using an Evolutionary Hydro-Economic Simulation-Optimization Model. J. Hydrol. 2019, 578, 124094. [Google Scholar] [CrossRef]
- Majumder, P.; Eldho, T.I. Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation. Water Resour. Manag. 2020, 34, 763–783. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, W.; Miao, T.; Li, J.; Lin, J. Multiobjective Optimization of the Groundwater Exploitation Layout in Coastal Areas Based on Multiple Surrogate Models. Environ. Sci. Pollut. Res. 2020, 27, 19561–19576. [Google Scholar] [CrossRef] [PubMed]
- Mallios, Z.; Siarkos, I.; Karagiannopoulos, P.; Tsiarapas, A. Pumping Energy Consumption Minimization through Simulation-Optimization Modelling. J. Hydrol. 2022, 612, 128062. [Google Scholar] [CrossRef]
- Asher, M.J.; Croke, B.F.W.; Jakeman, A.J.; Peeters, L.J.M. A Review of Surrogate Models and Their Application to Groundwater Modeling. Water Resour. Res. 2015, 51, 5957–5973. [Google Scholar] [CrossRef] [Green Version]
- Vadiati, M.; Rajabi Yami, Z.; Eskandari, E.; Nakhaei, M.; Kisi, O. Application of artificial intelligence models for prediction of groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environ. Monit. Assess. 2022, 194, 619. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, A.; Liesch, T.; Broda, S. Groundwater Level Forecasting with Artificial Neural Networks: A Comparison of Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and Non-Linear Autoregressive Networks with Exogenous Input (NARX). Hydrol. Earth Syst. Sci. 2021, 25, 1671–1687. [Google Scholar] [CrossRef]
- Zeng, T.; Yin, K.; Jiang, H.; Liu, X.; Guo, Z.; Peduto, D. Groundwater level prediction based on a combined intelligence method for the Sifangbei landslide in the Three Gorges Reservoir Area. Sci. Rep. 2022, 12, 11108. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Hasti, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Humphrey, J.D. Geology and Hydrogeology of Barbados. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 54, pp. 381–406. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Doherty, J.E.; Hunt, R.J. Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-Model Calibration; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2010.
- Fetter, C.W. Applied Hydrogeology; Waveland Press: Long Grove, IL, USA, 2018. [Google Scholar]
- Hugman, R.; Lotti, F.; Doherty, J. Probabilistic Contaminant Source Assessment—Getting the Most Out of Field Measurements. Groundwater 2022. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, D.; Karniadakis, G. Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations. SIAM J. Sci. Comput. 2020, 42, A292–A317. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning frame work for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
Sinkhole Zone | Description | K (m/day) |
---|---|---|
SZ 1 | Medium-density zone | 426 |
SZ 2 | Low-density zone | 10 |
SZ 3 | High-density zone | 1500 |
SZ 4 | High-density zone | 1500 |
ML Surrogate | RMSE (m) | MAE (m) | R-Squared |
---|---|---|---|
DNN-1 (6-6-5-1) | 2.62 | 2.2 | 0.96 |
DNN-2 (6-2-15-1) | 2.75 | 2.26 | 0.95 |
DNN-3 (6-2-20-1) | 2.81 | 2.44 | 0.95 |
DNN-4 (6-4-10-1) | 2.83 | 2.42 | 0.95 |
A | λ | RMSE (m) | MAE (m) | R-Squared |
---|---|---|---|---|
0.10 | 0.0258 | 2.74 | 2.25 | 0.95 |
0.10 | 0.258 | 2.75 | 2.25 | 0.95 |
0.10 | 2.58 | 3.54 | 2.82 | 0.95 |
0.55 | 0.0258 | 2.74 | 2.26 | 0.95 |
0.55 | 0.258 | 2.76 | 2.27 | 0.95 |
0.55 | 2.58 | 3.71 | 2.97 | 0.95 |
1.00 | 0.0258 | 2.74 | 2.26 | 0.95 |
1.00 | 0.258 | 2.77 | 2.27 | 0.95 |
1.00 | 2.58 | 3.87 | 3.11 | 0.95 |
Variable | Significance |
---|---|
well 1 | −3.89 × 10−5 |
well 2 | 6.79 × 10−5 |
well 3 | 1.21 × 10−4 |
well 4 | 1.067 × 10−4 |
well 5 | −3.32 × 10−4 |
recharge | 4.42 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Payne, K.; Chami, P.; Odle, I.; Yawson, D.O.; Paul, J.; Maharaj-Jagdip, A.; Cashman, A. Machine Learning for Surrogate Groundwater Modelling of a Small Carbonate Island. Hydrology 2023, 10, 2. https://doi.org/10.3390/hydrology10010002
Payne K, Chami P, Odle I, Yawson DO, Paul J, Maharaj-Jagdip A, Cashman A. Machine Learning for Surrogate Groundwater Modelling of a Small Carbonate Island. Hydrology. 2023; 10(1):2. https://doi.org/10.3390/hydrology10010002
Chicago/Turabian StylePayne, Karl, Peter Chami, Ivanna Odle, David Oscar Yawson, Jaime Paul, Anuradha Maharaj-Jagdip, and Adrian Cashman. 2023. "Machine Learning for Surrogate Groundwater Modelling of a Small Carbonate Island" Hydrology 10, no. 1: 2. https://doi.org/10.3390/hydrology10010002
APA StylePayne, K., Chami, P., Odle, I., Yawson, D. O., Paul, J., Maharaj-Jagdip, A., & Cashman, A. (2023). Machine Learning for Surrogate Groundwater Modelling of a Small Carbonate Island. Hydrology, 10(1), 2. https://doi.org/10.3390/hydrology10010002