IWRM Incorporating Water Use and Productivity Indicators of Economic Clusters Using a Hydro-Economic SDSS
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Hotspot Analysis, Water Use and Productivity Indicators and the Cluster Ranking Index
2.3. Network-Based Hydro-Economic Optimization Model for Water Allocation
2.4. Water Allocation Scenarios
3. Results
3.1. Job Hotspots Characterization and Ranking
3.2. Water Allocation Results
3.2.1. Water Allocation per Development Region and Aggregated Economic Sector
3.2.2. Scenario Comparison: Hydrological and Economic Tradeoffs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. High and Dry: Climate Change, Water, and the Economy; The World Bank: Washington, DC, USA, 2016; Volume 1. [Google Scholar]
- Allan, T. IWRM/IWRAM: A New Sanctioned Discourse? Occasional Paper 50; School of Oriental and African Studies/King’s College: London, UK, 2003; pp. 1–27. [Google Scholar]
- Mayer, A.; Muñoz-Hernandez, A. Integrated Water Resources Optimization Models: An Assessment of a Multidisciplinary Tool for Sustainable Water Resources Management Strategies. Geogr Compass 2009, 3, 1176–1195. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-Economic Models: Concepts, Design, Applications, and Future Prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef] [Green Version]
- Candido, L.A.; Coêlho, G.A.G.; de Moraes, M.M.G.A.; Florêncio, L. Review of Decision Support Systems and Allocation Models for Integrated Water Resources Management Focusing on Joint Water Quantity-Quality. J. Water Resour. Plan. Manag. 2022, 148, 03121001. [Google Scholar] [CrossRef]
- Souza da Silva, G.N.; Alcoforado de Moraes, M.M.G. Decision Support for the (Inter-) Basin Management of Water Resources Using Integrated Hydro-Economic Modeling. Hydrology 2021, 8, 42. [Google Scholar] [CrossRef]
- Crocco, M.A.; Galinari, R.; Santos, F.; Lemos, M.B.; Simões, R. Metodologia de Identificação de Aglomerações Produtivas Locais. Nova Econ. 2006, 16, 211–241. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- FAO. GEMI-Integrated Monitoring Initiative for SDG 6—Step-by-Step Monitoring Methodology for Indicator 6.4.2; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- FAO. Progress on Water Use Efficiency—Global Baseline for SDG 6 Indicator 6.4.1; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 9789251309889. [Google Scholar]
- OECD. OECD Productivity Statistics Database Methodological Notes; The Organization for Economic Cooperation and Development: Paris, France, 2021. [Google Scholar]
- Mayer, A.; Vivoni, E.R.; Kossak, D.; Halvorsen, K.E.; Morua, A.R. Participatory Modeling Workshops in a Water-Stressed Basin Result in Gains in Modeling Capacity but Reveal Disparity in Water Resources Management Priorities. Water Resour. Manag. 2017, 31, 4731–4744. [Google Scholar] [CrossRef]
- Brasil. Lei No 9.433 de 8 de Janeiro de 1997—Política Nacional de Recursos Hídricos; Presidência da República: Brasília, Brazil, 1997; p. 20. [Google Scholar]
- Silva, A.D.L. Otimização Multiobjetivo de Precificação Para Sistemas de Abastecimento de Água Urbanos. Ph.D. Thesis, Universidade Federal de Pernambuco, Recife, Brazil, 2022. [Google Scholar]
- Paulo, V. Seca de 5 Anos Atrapalhou Economia de Pernambuco. J. Do Comércio 2017. Available online: https://jc.ne10.uol.com.br/canal/politica/pernambuco/noticia/2017/01/19/seca-de-5-anos-atrapalhou-economia-de-pernambuco-267341.php (accessed on 16 February 2023).
- Proteção e Defesa Civil/CNM. Estudo: Prejuízos Causados Pela Seca 2012 Ao 1o Semestre 2017; Confederação Nacional de Municípios: Brasília, Brazil, 2018. [Google Scholar]
- Alcoforado de Moraes, M.M.G.; Souza da Silva, G.N.; Cunha, M.P.d.; Dias, N.B.M.; Cardoso, T.F.; Guilhoto, J.J.M.; Candido, L.A.; Santos, R.R.S. Integration of a Network-Based and an Economy-Wide Water Model to Support Decision Making on Water Resources Planning and Management in Northeastern Brazil. Front. Water 2021, 3, 1–22. [Google Scholar] [CrossRef]
- Pernambuco. LEI No 12.427, de 25 de Setembro de 2003; Assembleia Legislativa do Estado de Pernambuco: Recife, Brazil, 2003. [Google Scholar]
- IBGE. Censo Demográfico 2010; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Agência CONDEPE/FIDEM/DEPE/DEPS/GEEC. Anuário Estatístico de Pernambuco; CONDEPE/FIDEM/DEPE/DEPS/GEEC: Recife, Brazil, 2016. [Google Scholar]
- Montoya, M.A.; Finamore, E.B. Os Recursos Hídricos No Agronegócio Brasileiro: Uma Análise Insumo-Produto Do Uso, Consumo, Eficiência e Intensidade. Rev. Bras. De Econ. 2020, 74, 441–464. [Google Scholar] [CrossRef]
- Wurbs, R.A. Comparative Evaluation of Generalized River/Reservoir System Models; Texas Water Resources Institute: College Station, TX, USA, 2005. [Google Scholar]
- Rouillard, J.; Babbitt, C.; Challies, E.; Rinaudo, J.-D. Water Resources Allocation and Agriculture: Transitioning from Open to Regulated Access; The International Water Association Publishing: London, UK, 2022; ISBN 9781789062779. [Google Scholar]
- Baccour, S.; Ward, F.A.; Albiac, J. Climate Adaptation Guidance: New Roles for Hydroeconomic Analysis. Sci. Total Environ. 2022, 835, 155518. [Google Scholar] [CrossRef] [PubMed]
- Kudryavtseva, T.; Skhvediani, A.; Iakovleva, V.; Cherkas, A. Algorithm for Defining Clusters Based on Input–Output Tables: Case of Construction Cluster of Russia. Int. J. Technol. 2021, 12, 1379–1386. [Google Scholar] [CrossRef]
- Cao, W.; Dong, L.; Cheng, Y.; Wu, L.; Guo, Q.; Liu, Y. Constructing Multi-Level Urban Clusters Based on Population Distributions and Interactions. Comput. Environ. Urban Syst. 2023, 99, 101897. [Google Scholar] [CrossRef]
- GWP Catalyzing Change: A Handbook for Developing Integrated Water Resources Management (IWRM) and Water Efficiency Strategies Produced by the Global Water Partnership (GWP) Technical Committee with Support from Norway’s Ministry of Foreign Affairs; Global Water Partnership: Stockholm, Sweden, 2004; ISBN 91-974559-9-7.
- Merrey, D.J. Is Normative Integrated Water Resources Management Implementable? Charting a Practical Course with Lessons from Southern Africa. Phys. Chem. Earth 2008, 33, 899–905. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Binswanger, H.P. Markets in Tradable Water Rights: Potential for Efficiency Gains in Developing Country Water Resource Allocation. World Dev. 1994, 22, 1613–1625. [Google Scholar] [CrossRef]
- Acemoglu, D.; Laibson, D.; List, J. Economics; Pearson: London, UK, 2015; ISBN 1292079207. [Google Scholar]
- Young, R.A.; Loomis, J.B. Determining the Economic Value of Water: Concepts and Methods, 2nd ed.; Routledge: Oxfordshire, UK, 2014; ISBN 978-0415838504. [Google Scholar]
- International Conference on Water and the Environment The Dublin Statement on Water and Sustainable Development. Available online: http://www.un-documents.net/h2o-dub.htm (accessed on 9 February 2023).
- Bhatia, R.; Briscoe, J.; Malik, R.P.S.; Miller, L.; Misra, S.; Palainisami, K.; Harshadeep, N. Water in the Economy of Tamil Nadu, India: More Flexible Water Allocation Policies Offer a Possible Way out of Water-Induced Economic Stagnation and Will Be Good for the Environment and the Poor. Water Policy 2006, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
User | Indicators | wd | |||||
---|---|---|---|---|---|---|---|
Development Region | City | Sector | ULC | LP | WUE | (1-WI) | |
Agreste Central | Agrestina | Dairy products and other food products (Service) | 0.741 | 0.196 | 0.328 | 0.874 | 0.508 |
Manufacture of glass and glass products and other non-metallic mineral products (MIMEC) | 0.680 | 0.261 | 0.059 | 0.297 | 0.383 | ||
Caruaru | Manufacture of footwear and leather goods (Service) | 0.818 | 0.177 | 0.856 | 0.952 | 0.62 | |
Manufacture of wood products (Service) | 0.714 | 0.151 | 0.086 | 0.521 | 0.394 | ||
Agreste Setentrional | Limoeiro | Livestock (Service) | 0.345 | 0.072 | 0.05 | 0.171 | 0.179 |
Textile product manufacturing (MIMEC) | 0.809 | 0.156 | 0.249 | 0.835 | 0.500 | ||
Mata Sul | Barreiros | Sugarcane cultivation (Agriculture) | 0.342 | 0.239 | 0.001 | 0.000 | 0.203 |
Maraial | Alcohol manufacturing—Ethanol (MIMEC) | 0.761 | 0.353 | 0.000 | 0.000 | 0.390 | |
Mata Norte | Lagoa de Itaenga | Manufacturing and refining of sugar (MIMEC) | 0.736 | 0.379 | 0.000 | 0.000 | 0.390 |
Carpina | Sugarcane cultivation (Agriculture) | 0.342 | 0.239 | 0.000 | 0.000 | 0.203 |
Development Region Water Allocation Differences in Thousand Mm3 | ||||||
---|---|---|---|---|---|---|
Sector | Agreste Central | Agreste Meridional | Agreste Setentrional | Mata Norte | Mata Sul | Metropolitana |
Sugar cane cultivation | −59 | 0 | 0 | −121,100 | −1473 | −1995 |
Other fruit growing | 622 | 0 | 0 | −17 | 69 | 0 |
Cultivation of crop plants not previously specified | 512 | 0 | 2 | 0 | 326 | 0 |
Livestock | −156 | 0 | 2 | 0 | 4 | 0 |
Fishing and Aquaculture | 0 | 0 | 0 | 0 | 0 | 0 |
‘ParWS’—‘Ref’ | ‘ParWS+Eco’—‘Ref’ | ‘ParWS+Eco’—‘ParWS’ | |
---|---|---|---|
Agriculture | 0.80% | −3.62% | −4.42% |
MIMEC | 1.76% | −3.70% | −5.46% |
Services | −2.56% | 7.32% | 9.87% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza da Silva, G.N.; Alcoforado de Moraes, M.M.G.; Candido, L.A.; de Amorim Filho, C.A.G.; Dias, N.B.M.; Pereira da Cunha, M.; Florêncio, L. IWRM Incorporating Water Use and Productivity Indicators of Economic Clusters Using a Hydro-Economic SDSS. Hydrology 2023, 10, 72. https://doi.org/10.3390/hydrology10030072
Souza da Silva GN, Alcoforado de Moraes MMG, Candido LA, de Amorim Filho CAG, Dias NBM, Pereira da Cunha M, Florêncio L. IWRM Incorporating Water Use and Productivity Indicators of Economic Clusters Using a Hydro-Economic SDSS. Hydrology. 2023; 10(3):72. https://doi.org/10.3390/hydrology10030072
Chicago/Turabian StyleSouza da Silva, Gerald Norbert, Márcia M. G. Alcoforado de Moraes, Laíse Alves Candido, Carlos Alberto G. de Amorim Filho, Nilena B. M. Dias, Marcelo Pereira da Cunha, and Lourdinha Florêncio. 2023. "IWRM Incorporating Water Use and Productivity Indicators of Economic Clusters Using a Hydro-Economic SDSS" Hydrology 10, no. 3: 72. https://doi.org/10.3390/hydrology10030072
APA StyleSouza da Silva, G. N., Alcoforado de Moraes, M. M. G., Candido, L. A., de Amorim Filho, C. A. G., Dias, N. B. M., Pereira da Cunha, M., & Florêncio, L. (2023). IWRM Incorporating Water Use and Productivity Indicators of Economic Clusters Using a Hydro-Economic SDSS. Hydrology, 10(3), 72. https://doi.org/10.3390/hydrology10030072