Relating Lake Circulation Patterns to Sediment, Nutrient, and Water Hyacinth Distribution in a Shallow Tropical Highland Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Collection
2.2.1. Meteorological Data
2.2.2. Inflow and Outflow Data
2.2.3. Lake Level and Bathymetry Data
2.2.4. Suspended Sediment Concentration Data
2.3. Modeling Approach
2.3.1. Running the Model
2.3.2. Model Testing
2.3.3. Statistical Analysis
3. Results
3.1. Model Validation
3.2. Distribution of Observed Suspended Sediments of Lake Tana
3.3. Tracer Distribution
4. Discussion
4.1. The Flow Pattern of Lake Tana
4.2. Implication on Sediment and Nutrient Dynamics of Lake Tana
4.3. Distribution of Water Hyacinth in Lake Tana
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Tsanis, I.K. Environmental Hydraulics: Hydrodynamic and Pollutant Transport Modeling of Lakes and Coastal Waters; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Fink, G.; Alcamo, J.; Flörke, M.; Reder, K. Phosphorus loadings to the world’s largest lakes: Sources and trends. Glob. Biogeochem. Cycles 2018, 32, 617–634. [Google Scholar] [CrossRef]
- Sheela, A.M.; Letha, J.; Joseph, S.; Ramachandran, K.K.; Sanalkumar, S. Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environ. Monit. Assess. 2011, 177, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Syvitski, J.P.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Bingxue, H. Eutrophication Assessment in Songbei Wetlands: A Comparative Methods. In Computing and Intelligent Systems, Proceedings of the International Conference, ICCIC 2011, Wuhan, China, 17–18 September 2011; Proceedings, Part IV; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.A.; Frisvold, G.B. Fertilizers to support agricultural development in sub-Saharan Africa: What is needed and why. Food Policy 1996, 21, 509–525. [Google Scholar] [CrossRef]
- Olsen, R. Effects of intensive fertilizer use on the human environment: A summary review. FAO Soils Bull. 1978, 116, 15–33. [Google Scholar]
- Konstantinou, I.K.; Hela, D.G.; Albanis, T.A. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ. Pollut. 2006, 141, 555–570. [Google Scholar] [CrossRef]
- Rask, M.; Olin, M.; Ruuhijärvi, J. Fish-based assessment of ecological status of Finnish lakes loaded by diffuse nutrient pollution from agriculture. Fish. Manag. Ecol. 2010, 17, 126–133. [Google Scholar] [CrossRef]
- Kobayashi, J.T.; Thomaz, S.M.; Pelicice, F.M. Phosphorus as a limiting factor for Eichhornia crassipes growth in the upper Paraná River floodplain. Wetlands 2008, 28, 905–913. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Q.; Pang, Y.; Hu, K. Research on nutrient pollution load in Lake Taihu, China. Environ. Sci. Pollut. Res. 2017, 24, 17829–17838. [Google Scholar] [CrossRef]
- Phiri, G.; Navarro, L. Water Hyacinth in Africa and the Middle East: A Survey of Problems and Solutions; International Development Research Centre: Ottawa, ON, Canada, 2000. [Google Scholar]
- Odada, E.O.; Olago, D.O.; Olaka, L.A. An East African perspective of the Anthropocene. Sci. Afr. 2020, 10, e00553. [Google Scholar] [CrossRef]
- Dersseh, M.G.; Melesse, A.M.; Tilahun, S.A.; Abate, M.; Dagnew, D.C. Water hyacinth: Review of its impacts on hydrology and ecosystem services—Lessons for management of Lake Tana. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–251. [Google Scholar]
- Asmare, G.; Abate, M. Morphological changes in the lower reach of Megech River, Lake Tana basin, Ethiopia. In Advances of Science and Technology, Proceedings of the 6th EAI International Conference, ICAST 2018, Bahir Dar, Ethiopia, 5–7 October 2018; Proceedings 6; Springer: Berlin/Heidelberg, Germany, 2019; pp. 32–49. [Google Scholar]
- Dersseh, M.G.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Abebe, W.B.; Mhiret, D.A.; Melesse, A.M. Spatial and temporal dynamics of water hyacinth and its linkage with lake-level fluctuation: Lake Tana, a sub-humid region of the Ethiopian highlands. Water 2020, 12, 1435. [Google Scholar] [CrossRef]
- Dersseh, M.G.; Steenhuis, T.S.; Kibret, A.A.; Eneyew, B.M.; Kebedew, M.G.; Zimale, F.A.; Worqlul, A.W.; Moges, M.A.; Abebe, W.B.; Mhiret, D.A. Water quality characteristics of a water hyacinth infested tropical highland lake: Lake Tana, Ethiopia. Front. Water 2022, 4, 774710. [Google Scholar] [CrossRef]
- Kaba, E.; Philpot, W.; Steenhuis, T. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 286–297. [Google Scholar] [CrossRef]
- Siev, S.; Yang, H.; Sok, T.; Uk, S.; Song, L.; Kodikara, D.; Oeurng, C.; Hul, S.; Yoshimura, C. Sediment dynamics in a large shallow lake characterized by seasonal flood pulse in Southeast Asia. Sci. Total Environ. 2018, 631, 597–607. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Q.; Wang, X.; Hu, X.; Wang, C.; Pang, Y.; Hu, Y.; Zhao, Y.; Zhao, X. Spatiotemporal distribution of eutrophication in Lake Tai as affected by wind. Water 2017, 9, 200. [Google Scholar] [CrossRef]
- Liu, S.; Ye, Q.; Wu, S.; Stive, M.J. Horizontal circulation patterns in a large shallow lake: Taihu Lake, China. Water 2018, 10, 792. [Google Scholar] [CrossRef]
- You, B.-S.; Zhong, J.-C.; Fan, C.-X.; Wang, T.-C.; Zhang, L.; Ding, S.-M. Effects of hydrodynamics processes on phosphorus fluxes from sediment in large, shallow Taihu Lake. J. Environ. Sci. 2007, 19, 1055–1060. [Google Scholar] [CrossRef]
- Blottiere, L. The Effects of Wind-Induced Mixing on the Structure and Functioning of Shallow Freshwater Lakes in a Context of Global Change; Université Paris Saclay (COmUE): Paris, France, 2015. [Google Scholar]
- Kebedew, M.G.; Tilahun, S.A.; Zimale, F.A.; Steenhuis, T.S. Bottom sediment characteristics of a tropical lake: Lake Tana, Ethiopia. Hydrology 2020, 7, 18. [Google Scholar] [CrossRef]
- Scheffer, M. Ecology of Shallow Lakes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Lemma, H.; Admasu, T.; Dessie, M.; Fentie, D.; Deckers, J.; Frankl, A.; Poesen, J.; Adgo, E.; Nyssen, J. Revisiting lake sediment budgets: How the calculation of lake lifetime is strongly data and method dependent. Earth Surf. Process. Landf. 2018, 43, 593–607. [Google Scholar] [CrossRef]
- Aga, A.O.; Melesse, A.M.; Chane, B. Estimating the sediment flux and budget for a data limited rift valley lake in Ethiopia. Hydrology 2018, 6, 1. [Google Scholar] [CrossRef]
- Xu, M.; Dong, X.; Yang, X.; Chen, X.; Zhang, Q.; Liu, Q.; Wang, R.; Yao, M.; Davidson, T.A.; Jeppesen, E. Recent sedimentation rates of shallow lakes in the middle and lower reaches of the Yangtze River: Patterns, controlling factors and implications for lake management. Water 2017, 9, 617. [Google Scholar] [CrossRef]
- Dargahi, B.; Setegn, S.G. Combined 3D hydrodynamic and watershed modelling of Lake Tana, Ethiopia. J. Hydrol. 2011, 398, 44–64. [Google Scholar] [CrossRef]
- Ssebuggwawo, V.; Kitamirike, J.; Khisa, P.; Njuguna, H.; Myanza, O.; Hecky, R.; Mwanuzi, F. Hydraulic/Hydrodynamic Conditions of Lake Victoria; Lake Victoria Environmental Management Project (LVEMP): Entebbe, Uganda, 2005. [Google Scholar]
- Ndungu, J.N.; Chen, W.; Augustijn, D.C.; Hulscher, S.J. Analysis of the driving force of hydrodynamics in Lake Naivasha, Kenya. Open J. Mod. Hydrol. 2015, 5, 95–104. [Google Scholar] [CrossRef]
- El-Arab, N.B. Coupled hydrodynamic-water quality model for pollution control scenarios in El-Burullus Lake (Nile delta, Egypt). Austrian J. Earth Sci. 2014, 8, 53. [Google Scholar]
- Ouni, H.; Sousa, M.; Ribeiro, A.; Pinheiro, J.; M’Barek, N.B.; Tarhouni, J.; Tlatli-Hariga, N.; Dias, J. Numerical modeling of hydrodynamic circulation in Ichkeul Lake-Tunisia. Energy Rep. 2020, 6, 208–213. [Google Scholar] [CrossRef]
- Razmi, A.M.; Barry, D.A.; Bakhtyar, R.; Le Dantec, N.; Dastgheib, A.; Lemmin, U.; Wüest, A. Current variability in a wide and open lacustrine embayment in Lake Geneva (Switzerland). J. Great Lakes Res. 2013, 39, 455–465. [Google Scholar] [CrossRef]
- Vijverberg, T.; Winterwerp, J.C.; Aarninkhof, S.G.J.; Drost, H. Fine sediment dynamics in a shallow lake and implication for design of hydraulic works. Ocean Dyn. 2011, 61, 187–202. [Google Scholar] [CrossRef]
- Abate, M.; Nyssen, J.; Moges, M.M.; Enku, T.; Zimale, F.A.; Tilahun, S.A.; Adgo, E.; Steenhuis, T.S. Long-term landscape changes in the Lake Tana Basin as evidenced by delta development and floodplain aggradation in Ethiopia. Land Degrad. Dev. 2017, 28, 1820–1830. [Google Scholar] [CrossRef]
- Alemu, M.L.; Geset, M.; Mosa, H.M.; Zemale, F.A.; Moges, M.A.; Giri, S.K.; Tillahun, S.A.; Melesse, A.M.; Ayana, E.K.; Steenhuis, T.S. Spatial and temporal trends of recent dissolved phosphorus concentrations in Lake Tana and its four main tributaries. Land Degrad. Dev. 2017, 28, 1742–1751. [Google Scholar] [CrossRef]
- Gezie, A.; Assefa, W.W.; Getnet, B.; Anteneh, W.; Dejen, E.; Mereta, S.T. Potential impacts of water hyacinth invasion and management on water quality and human health in Lake Tana watershed, Northwest Ethiopia. Biol. Invasions 2018, 20, 2517–2534. [Google Scholar] [CrossRef]
- Alemu, M.L.; Worqlul, A.W.; Zimale, F.A.; Tilahun, S.A.; Steenhuis, T.S. Water balance for a tropical lake in the volcanic highlands: Lake Tana, Ethiopia. Water 2020, 12, 2737. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Pauwels, V.R.N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J. Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia. Hydrol. Earth Syst. Sci. 2014, 18, 5149–5167. [Google Scholar] [CrossRef]
- Chebud, Y.A.; Melesse, A.M. Modelling lake stage and water balance of Lake Tana, Ethiopia. Hydrol. Process. Int. J. 2009, 23, 3534–3544. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Alemayehu, T.; Marc, V. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J. Hydrol. 2006, 316, 233–247. [Google Scholar] [CrossRef]
- Zimale, F.A.; Moges, M.A.; Alemu, M.L.; Ayana, E.K.; Demissie, S.S.; Tilahun, S.A.; Steenhuis, T.S. Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: The Lake Tana basin. J. Hydrol. Hydromech. 2018, 66, 65–78. [Google Scholar] [CrossRef]
- Kebedew, M.G.; Tilahun, S.A.; Belete, M.A.; Zimale, F.A.; Steenhuis, T.S. Sediment deposition (1940–2017) in a historically pristine lake in a rapidly developing tropical highland region in Ethiopia. Earth Surf. Process. Landf. 2021, 46, 1521–1535. [Google Scholar] [CrossRef]
- Goshu, G.; Koelmans, A.; de Klein, J. Water quality of Lake Tana basin, Upper Blue Nile, Ethiopia. A review of available data. In Social and Ecological System Dynamics: Characteristics, Trends, and Integration in the Lake Tana Basin, Ethiopia; Springer: Berlin/Heidelberg, Germany, 2017; pp. 127–141. [Google Scholar]
- Wondie, A.; Mengistu, S.; Vijverberg, J.; Dejen, E. Seasonal variation in primary production of a large high altitude tropical lake (Lake Tana, Ethiopia): Effects of nutrient availability and water transparency. Aquat. Ecol. 2007, 41, 195–207. [Google Scholar] [CrossRef]
- Kebedew, M.G.; Kibret, A.A.; Tilahun, S.A.; Belete, M.A.; Zimale, F.A.; Steenhuis, T.S. The relationship of lake morphometry and phosphorus dynamics of a tropical Highland Lake: Lake Tana, Ethiopia. Water 2020, 12, 2243. [Google Scholar] [CrossRef]
- Asmare, T.; Demissie, B.; Nigusse, A.G.; GebreKidan, A. Detecting spatiotemporal expansion of water hyacinth (Eichhornia crassipes) in Lake Tana, Northern Ethiopia. J. Indian Soc. Remote Sens. 2020, 48, 751–764. [Google Scholar] [CrossRef]
- Tewabe, D. Preliminary survey of water hyacinth in Lake Tana, Ethiopia. Glob. J. Allergy 2015, 1, 013–018. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Ayana, E.K.; Dile, Y.T.; Moges, M.A.; Dersseh, M.G.; Tegegne, G.; Kibret, S. Spatiotemporal dynamics and environmental controlling factors of the Lake Tana water hyacinth in Ethiopia. Remote Sens. 2020, 12, 2706. [Google Scholar] [CrossRef]
- Admas, A.; Sahile, S.; Agidie, A.; Menale, H.; Gedefaw, T.; Teshome, M. Controlling water hyacinth infestation in Lake Tana using Fungal pathogen from Laboratory level upto pilot scale. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wondim, Y.K.; Mosa, H.M. Spatial variation of sediment physicochemical characteristics of Lake Tana, Ethiopia. J. Environ. Earth Sci. 2015, 5, 95–109. [Google Scholar]
- Vijverberg, J.; Sibbing, F.A.; Dejen, E. Lake Tana: Source of the blue nile. In The Nile: Origin, Environments, Limnology and Human Use; Springer: Berlin/Heidelberg, Germany, 2009; pp. 163–192. [Google Scholar]
- McCartney, M.; Alemayehu, T.; Shiferaw, A.; Awulachew, S. Evaluation of Current and Future Water Resources Development in the Lake Tana Basin, Ethiopia; IWMI: Colombo, Sri Lanka, 2010; Volume 134. [Google Scholar]
- Ethiopia, T. Water Quality Assessment by Measuring and Using Landsat 7 ETM+ Images for the Current and Previous Trend Perspective: Lake. J. Water Resour. Prot. 2017, 9, 1564–1585. [Google Scholar]
- Anteneh, W.; Dereje, T.; Addisalem, A.; Abebaw, Z.; Befta, T. Water Hyacinth Coverage Survey Report on Lake Tana; Bahir Dar University: Bahir Dar, Ethiopia, 2015. [Google Scholar]
- IP SMEC. Hydrological study of the Tana-Beles sub-basins. In Surface Water Investigation; MOWR: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Stanhill, G. The CIMO International Evaporimeter Comparisons; Secretariat of the WMO: Geneva, Switzerland, 1976. [Google Scholar]
- Manual, D. 3D/2D Modelling Suite for Integral Water Solutions; Deltares: Delft, The Netherlands, 2014. [Google Scholar]
- Falconer, R.; George, D.; Hall, P. Three-dimensional numerical modelling of wind-driven circulation in a shallow homogeneous lake. J. Hydrol. 1991, 124, 59–79. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, Y.; Zhou, J.; Wu, Y. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen. KSCE J. Civ. Eng. 2014, 18, 323–329. [Google Scholar] [CrossRef]
June | July | August | September | December | March | ||
---|---|---|---|---|---|---|---|
SSC, mg L−1 | Maximum | 280 | 1926 | 1567 | 567 | 372 | 287 |
Minimum | 13 | 13 | 16 | 92 | 44 | 22 | |
Mean | 99 | 300 | 352 | 222 | 142 | 111 | |
St. deviation | 94 | 524 | 477 | 161 | 101 | 83 | |
Secchi depth, cm | Maximum | 94 | 95 | 70 | 48 | 91 | 120 |
Minimum | 15 | 5 | 3 | 10 | 46 | 38 | |
Mean | 49 | 43 | 30 | 30 | 69 | 82 | |
St. deviation | 23.3 | 29.1 | 19.6 | 11.0 | 14.2 | 29.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kebedew, M.G.; Tilahun, S.A.; Zimale, F.A.; Belete, M.A.; Wosenie, M.D.; Steenhuis, T.S. Relating Lake Circulation Patterns to Sediment, Nutrient, and Water Hyacinth Distribution in a Shallow Tropical Highland Lake. Hydrology 2023, 10, 181. https://doi.org/10.3390/hydrology10090181
Kebedew MG, Tilahun SA, Zimale FA, Belete MA, Wosenie MD, Steenhuis TS. Relating Lake Circulation Patterns to Sediment, Nutrient, and Water Hyacinth Distribution in a Shallow Tropical Highland Lake. Hydrology. 2023; 10(9):181. https://doi.org/10.3390/hydrology10090181
Chicago/Turabian StyleKebedew, Mebrahtom G., Seifu A. Tilahun, Fasikaw A. Zimale, Mulugeta A. Belete, Mekete D. Wosenie, and Tammo S. Steenhuis. 2023. "Relating Lake Circulation Patterns to Sediment, Nutrient, and Water Hyacinth Distribution in a Shallow Tropical Highland Lake" Hydrology 10, no. 9: 181. https://doi.org/10.3390/hydrology10090181
APA StyleKebedew, M. G., Tilahun, S. A., Zimale, F. A., Belete, M. A., Wosenie, M. D., & Steenhuis, T. S. (2023). Relating Lake Circulation Patterns to Sediment, Nutrient, and Water Hyacinth Distribution in a Shallow Tropical Highland Lake. Hydrology, 10(9), 181. https://doi.org/10.3390/hydrology10090181