A Review on Storage Process Models for Improving Water Quality Modeling in Rivers
Abstract
:1. Introduction
- Summarize the key physical and chemical processes influencing solute transport in rivers, with particular attention to storage mechanisms and hyporheic exchange.
- Review and compare the current mathematical models used to simulate solute transport, highlighting how they incorporate storage processes.
- Identify gaps in existing research, particularly in the role of storage processes in ecosystem functions, and propose future directions for enhancing water quality modeling.
2. Advection–Dispersion Equation
3. Solute Breakthrough Curves and Storage Process
- Power-law RTDs are commonly found in small alluvial streams, where there is a wide range of travel times due to complex flow paths and interactions with sediment and vegetation [62,63,64]. These streams often contain numerous transient storage zones, such as hyporheic exchange, eddies, and backwater regions, resulting in long solute retention times and extended tails in breakthrough curves.
- Exponential RTDs are frequently observed in stream reaches characterized by bedrock or significant pools that act as in-channel storage zones. This distribution indicates a relatively uniform flow path, where water is stored and released at a more consistent rate [65,66,67]. Streams dominated by such storage zones typically exhibit rapid solute turnover without prolonged tailing.
- Log-normal RTDs typically occur in larger or moderately sized rivers, reflecting the influence of multiple storage mechanisms. These include varying flow velocities, channel complexity, and a mix of surface and subsurface storage, resulting in intermediate solute retention times [68]. The log-normal distribution suggests a greater variety of retention times compared to more uniform flow systems.
- Upward RTDs have been documented in small flows, where water may experience prolonged residence times because of localized storage effects or slow-moving stream sections [69]. This distribution is often seen in low-gradient systems where backwaters, floodplains, or riparian vegetation flow slowly.
RTD Type | Late Portion Shape | Stream Condition | Reference |
---|---|---|---|
RTD+U | Upward | some small streams | [69] |
RTD0U | Upward | small streams | |
RTD0E | Exponential | reaches with bedrock and/or significant pools (in-channel storage zones), small streams | [72] |
RTD-P | Power-law | small alluvial streams, moderate-sized rivers | [73] |
RTD-L | Log-normal | moderate- to large-size rivers | [74] |
4. Mechanisms of Storage and Hyporheic Zones
5. Mathematical Models for In-Stream Pollutant Transport
5.1. Fractional Advection–Dispersion Equations
5.2. Transient Storage Model
5.3. Modified Advection–Dispersion Equation
5.4. Multirate Mass Transfer Model
5.5. Averaging Advective Storage Path Model
5.6. River Solute Transport Model
5.7. Continuous-Time Random Walk Model
5.8. The Variable Residence Time Model
6. Future Directions and Challenges
6.1. Incorporating System Complexity
6.2. Improving Scale Transferability
6.3. Novel Research Methodologies
6.4. Standardization
6.5. Innovative Modeling Approaches
6.6. Integrating In-Stream Storage Zones in Watershed Models
6.7. Interdisciplinary Collaborations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emami, S.K.; Saadat, A.M.; Hamidifar, H. Microplastic Pollution: Analytical Techniques, Policy Landscape, and Integrated Strategies for Sustainable Environmental Stewardship. In Water Crises and Sustainable Management in the Global South; Springer: Berlin/Heidelberg, Germany, 2024; pp. 341–369. [Google Scholar]
- Wu, L.; Gomez-Velez, J.D.; Krause, S.; Singh, T.; Wörman, A.; Lewandowski, J. Impact of flow alteration and tem-perature variability on hyporheic exchange. Water Resour. Res. 2020, 56, e2019WR026225. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, J.; Wu, F.; Xu, S.; Liu, J.; Chen, J. Extensive abundances and characteristics of microplastic pollution in the karst hyporheic zones of urban rivers. Sci. Total. Environ. 2023, 857, 159616. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.C.; Doretto, A.; Boano, F.; Ridolfi, L.; Fenoglio, S. Role of the Hyporheic Zone in Increasing the Resilience of Mountain Streams Facing Intermittency. Water 2020, 12, 2034. [Google Scholar] [CrossRef]
- Deleu, R.; Frazao, S.S.; Poulain, A.; Rochez, G.; Hallet, V. Tracer Dispersion through Karst Conduit: Assessment of Small-Scale Heterogeneity by Multi-Point Tracer Test and CFD Modeling. Hydrology 2021, 8, 168. [Google Scholar] [CrossRef]
- Farzadkhoo, M.; Keshavarzi, A.; Hamidifar, H.; Ball, J. Flow and longitudinal dispersion in channel with partly rigid floodplain vegetation. Proc. Inst. Civ. Eng. Water Manag. 2019, 172, 229–240. [Google Scholar] [CrossRef]
- Painter, S.L. Multiscale framework for modeling multicomponent reactive transport in stream corridors. Water Resour. Res. 2018, 54, 7216–7230. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, P.K.; Gaur, S. Engineered hyporheic zones: Design and applications in stream health restoration—A review. Water Supply 2021, 22, 2179–2193. [Google Scholar] [CrossRef]
- van Genuchten, M.T.; Leij, F.J.; Skaggs, T.H.; Toride, N.; Bradford, S.A.; Pontedeiro, E.M. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. J. Hydrol. Hydromech. 2013, 61, 146. [Google Scholar] [CrossRef]
- Ramezani, M.; Noori, R.; Hooshyaripor, F.; Deng, Z.; Sarang, A. Numerical modelling-based comparison of longi-tudinal dispersion coefficient formulas for solute transport in rivers. Hydrol. Sci. J. 2019, 64, 808–819. [Google Scholar] [CrossRef]
- Lewandowski, J.; Arnon, S.; Banks, E.; Batelaan, O.; Betterle, A.; Broecker, T.; Coll, C.; Drummond, J.D.; Gaona Garcia, J.; Galloway, J. Is the hyporheic zone relevant beyond the scientific community? Water 2019, 11, 2230. [Google Scholar] [CrossRef]
- Singh, S.K. Comparing Three Models for Treatment of Stagnant Zones in Riverine Transport. J. Irrig. Drain. Eng. 2008, 134, 853–856. [Google Scholar] [CrossRef]
- Chabokpour, J. Study of pollution transport through the rivers using aggregated dead zone and hybrid cells in series models. Int. J. Environ. Sci. Technol. 2020, 17, 4313–4330. [Google Scholar] [CrossRef]
- Drummond, J.D.; Nel, H.A.; Packman, A.I.; Krause, S. Significance of Hyporheic Exchange for Predicting Microplastic Fate in Rivers. Environ. Sci. Technol. Lett. 2020, 7, 727–732. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, H.; Rezanezhad, F.; Krause, S. Advancement and perspectives of hyporheic zone hydrology: Technology, theory and environmental implication. J. Hydrol. 2024, 630, 130721. [Google Scholar] [CrossRef]
- Rathore, S.S.; Jan, A.; Coon, E.T.; Painter, S.L. On the Reliability of Parameter Inferences in a Multiscale Model for Transport in Stream Corridors. Water Resour. Res. 2021, 57, e2020WR028908. [Google Scholar] [CrossRef]
- Choi, J.; Harvey, J.W.; Conklin, M.H. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams. Water Resour. Res. 2000, 36, 1511–1518. [Google Scholar] [CrossRef]
- Li, S.; Li, B.; Liu, H.; Qi, W.; Yang, Y.; Yu, G.; Qu, J. The biogeochemical responses of hyporheic groundwater to the long-run managed aquifer recharge: Linking microbial communities to hydrochemistry and micropollutants. J. Hazard. Mater. 2022, 431, 128587. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Shang, J.; Wang, L.; Li, Y.; Wang, Z.; Zou, Y.; Cai, W.; Wang, L. Redox gradients drive microbial community assembly patterns and molecular ecological networks in the hyporheic zone of effluent-dominated rivers. Water Res. 2024, 248, 120900. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Sun, X.; Yang, L. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. Sci. Total. Environ. 2021, 762, 144168. [Google Scholar] [CrossRef]
- Morén, I.; Riml, J.; Wörman, A. Cross-Validating Hydromechanical Models and Tracer Test Assessments of Hyporheic Exchange Flow in Streams with Different Hydromorphological Characteristics. Water Resour. Res. 2021, 57, e2021WR030248. [Google Scholar] [CrossRef]
- Krause, S.; Abbott, B.W.; Baranov, V.; Bernal, S.; Blaen, P.; Datry, T.; Drummond, J.; Fleckenstein, J.H.; Velez, J.G.; Hannah, D.M.; et al. Organizational principles of hyporheic exchange flow and biogeochemical cycling in river networks across scales. Water Resour. Res. 2022, 58, e2021WR029771. [Google Scholar] [CrossRef]
- Boano, F.; Harvey, J.W.; Marion, A.; Packman, A.I.; Revelli, R.; Ridolfi, L.; Wörman, A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef]
- Saadat, A.M.; Mazaheri, M. Forward and inverse river contaminant transport modeling using group preserving scheme. Phys. Fluids 2024, 36, 094102. [Google Scholar] [CrossRef]
- Shilsar, M.J.F.; Mazaheri, M.; Samani, J.M.V. A semi-analytical solution for one-dimensional pollutant transport equation in different types of river networks. J. Hydrol. 2023, 619, 129287. [Google Scholar] [CrossRef]
- Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater-surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv. Water Resour. 2010, 33, 1291–1295. [Google Scholar] [CrossRef]
- Permanoon, E.; Mazaheri, M.; Amiri, S. An analytical solution for the advection-dispersion equation inversely in time for pollution source identification. Phys. Chem. Earth Parts A/B/C 2022, 128, 103255. [Google Scholar] [CrossRef]
- Kim, S.; Kavvas, M.L. Generalized Fick’s Law and Fractional ADE for Pollution Transport in a River: Detailed Derivation. J. Hydrol. Eng. 2006, 11, 80–83. [Google Scholar] [CrossRef]
- Najafzadeh, M.; Noori, R.; Afroozi, D.; Ghiasi, B.; Hosseini-Moghari, S.-M.; Mirchi, A.; Haghighi, A.T.; Kløve, B. A comprehensive uncertainty analysis of model-estimated longitudinal and lateral dispersion coefficients in open channels. J. Hydrol. 2021, 603, 126850. [Google Scholar] [CrossRef]
- Faraji, M.; Mazaheri, M. Mathematical model of solute transport in rivers with storage zones using nonlinear dispersion flux approach. Hydrol. Sci. J. 2022, 67, 1656–1668. [Google Scholar] [CrossRef]
- Bahadur, R.; Monteith, M.C.; Samuels, W.B. Comparative Review of Longitudinal Dispersion Coefficient Equations in Rivers. J. Environ. Eng. 2021, 147, 04021030. [Google Scholar] [CrossRef]
- Deng, Z.-Q.; Bengtsson, L.; Singh, V.P.; Adrian, D.D. Longitudinal Dispersion Coefficient in Single-Channel Streams. J. Hydraul. Eng. 2002, 128, 901–916. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z.; Georgiou, P.E.; Antonopoulos, Z.V. Dispersion Coefficient Prediction Using Empirical Models and ANNs. Environ. Process. 2015, 2, 379–394. [Google Scholar] [CrossRef]
- Gritti, F.; Fogwill, M. Molecular dispersion in pre-turbulent and sustained turbulent flow of carbon dioxide. J. Chromatogr. A 2018, 1564, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Roduner, E.; Tregenna-Piggott, P.L.W.; Dilger, H.; Senba, M.; Ehrensberger, K. Effect of mass on particle diffusion in liquids studied by electron spin exchange and chemical reaction of muonium with oxygen in aqueous solution. J. Chem. Soc. Faraday Trans. 1995, 91, 1935–1940. [Google Scholar] [CrossRef]
- Zeng, Y.; Huai, W. Estimation of longitudinal dispersion coefficient in rivers. J. Hydro-Environ. Res. 2014, 8, 2–8. [Google Scholar] [CrossRef]
- Ghane, A.; Mazaheri, M.; Samani, J.M.V. Location and release time identification of pollution point source in river networks based on the Backward Probability Method. J. Environ. Manag. 2016, 180, 164–171. [Google Scholar] [CrossRef]
- Farzadkhoo, M.; Keshavarzi, A.; Hamidifar, H.; Javan, M. A comparative study of longitudinal dispersion models in rigid vegetated compound meandering channels. J. Environ. Manag. 2018, 217, 78–89. [Google Scholar] [CrossRef]
- Hamidifar, H.; Omid, M.H.; Keshavarzi, A. Longitudinal dispersion in waterways with vegetated floodplain. Ecol. Eng. 2015, 84, 398–407. [Google Scholar] [CrossRef]
- Tenebe, I.T.; Ogbiye, A.S.; Omole, D.O.; Emenike, P.C. Estimation of longitudinal dispersion co-efficient: A review. Cogent Eng. 2016, 3, 1216244. [Google Scholar] [CrossRef]
- Cheme, E.K.; Mazaheri, M.; Karami Cheme, E.; Mazaheri, M. The effect of neglecting spatial variations of the pa-rameters in pollutant transport modeling in rivers. Environ. Fluid Mech. 2021, 21, 587–603. [Google Scholar] [CrossRef]
- Ghiasi, B.; Noori, R.; Sheikhian, H.; Zeynolabedin, A.; Sun, Y.; Jun, C.; Hamouda, M.; Bateni, S.M.; Abolfathi, S. Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams. Sci. Rep. 2022, 12, 4610. [Google Scholar] [CrossRef] [PubMed]
- Jacob, E.; Perrillat-Mercerot, A.; Palgen, J.-L.; L’hostis, A.; Ceres, N.; Boissel, J.-P.; Bosley, J.; Monteiro, C.; Kahoul, R. Empirical methods for the validation of time-to-event mathematical models taking into account uncertainty and variability: Application to EGFR + lung adenocarcinoma. BMC Bioinform. 2023, 24, 331. [Google Scholar] [CrossRef] [PubMed]
- Kargar, K.; Samadianfard, S.; Parsa, J.; Nabipour, N.; Shamshirband, S.; Mosavi, A.; Chau, K.-W. Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms. Eng. Appl. Comput. Fluid Mech. 2020, 14, 311–322. [Google Scholar] [CrossRef]
- Kwon, S.; Noh, H.; Seo, I.W.; Jung, S.H.; Baek, D. Identification framework of contaminant spill in rivers using machine learning with breakthrough curve analysis. Int. J. Environ. Res. Public Health 2021, 18, 1023. [Google Scholar] [CrossRef]
- Poulsen, D.L.; Cook, P.G.; Simmons, C.T.; McCallum, J.M.; Noorduijn, S.L.; Dogramaci, S. A constant rate salt tracer injection method to quantify pumped flows in long-screened or open borehole wells. J. Hydrol. 2019, 574, 408–420. [Google Scholar] [CrossRef]
- Seo, I.W.; Choi, H.J.; Kim, Y.D.; Han, E.J. Analysis of Two-Dimensional Mixing in Natural Streams Based on Transient Tracer Tests. J. Hydraul. Eng. 2016, 142, 04016020. [Google Scholar] [CrossRef]
- Zięba, D.; Wachniew, P. Phosphorus transport in a lowland stream derived from a tracer test with 32P. Water 2021, 13, 1030. [Google Scholar] [CrossRef]
- Zaramella, M.; Marion, A.; Lewandowski, J.; Nützmann, G. Assessment of transient storage exchange and advection–dispersion mechanisms from concentration signatures along breakthrough curves. J. Hydrol. 2016, 538, 794–801. [Google Scholar] [CrossRef]
- Skjolding, L.M.; Dyhr, K.S.; Köppl, C.J.; McKnight, U.S.; Bauer-Gottwein, P.; Mayer, P.; Bjerg, P.; Baun, A. Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Res. 2021, 197, 117109. [Google Scholar] [CrossRef]
- Ward, A.S.; Packman, A.I. Advancing our predictive understanding of river corridor exchange. WIREs Water 2019, 6, e1327. [Google Scholar] [CrossRef]
- Gooseff, M.N.; Briggs, M.A.; Bencala, K.E.; McGlynn, B.L.; Scott, D.T. Do transient storage parameters directly scale in longer, combined stream reaches? Reach length dependence of transient storage interpretations. J. Hydrol. 2013, 483, 16–25. [Google Scholar] [CrossRef]
- Jackman, A.P.; Walters, R.A.; Kennedy, V.C. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, USA: 2. Mathematical modeling. J. Hydrol. 1984, 75, 111–141. [Google Scholar] [CrossRef]
- Phanikumar, M.S.; Aslam, I.; Shen, C.; Long, D.T.; Voice, T.C. Separating surface storage from hyporheic retention in natural streams using wavelet decomposition of acoustic Doppler current profiles. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Moghaddam, M.B.; Mazaheri, M.; Samani, J.M. A comprehensive one-dimensional numerical model for solute transport in rivers. Hydrol. Earth Syst. Sci. 2017, 21, 99–116. [Google Scholar] [CrossRef]
- Mueller Price, J.; Bledsoe, B.P.; Baker, D.W. Influences of sudden changes in discharge and physical stream char-acteristics on transient storage and nitrate uptake in an urban stream. Hydrol. Process. 2015, 29, 1466–1479. [Google Scholar] [CrossRef]
- Kelleher, C.; Wagener, T.; McGlynn, B.; Ward, A.S.; Gooseff, M.N.; Payn, R.A. Identifiability of transient storage model parameters along a mountain stream. Water Resour. Res. 2013, 49, 5290–5306. [Google Scholar] [CrossRef]
- De Smedt, F. Analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic zone. J. Hydrol. 2007, 339, 29–38. [Google Scholar] [CrossRef]
- Jin, L.; Siegel, D.I.; Lautz, L.K.; Otz, M.H. Transient storage and downstream solute transport in nested stream reaches affected by beaver dams. Hydrol. Process. 2009, 23, 2438–2449. [Google Scholar] [CrossRef]
- Aubeneau, A.F.; Drummond, J.D.; Schumer, R.; Bolster, D.; Tank, J.L.; Packman, A.I. Effects of benthic and hyporheic reactive transport on breakthrough curves. Freshw. Sci. 2015, 34, 301–315. [Google Scholar] [CrossRef]
- Tong, Y.; Deng, Z. Moment-based method for identification of pollution source in rivers. J. Environ. Eng. 2015, 141, 4015026. [Google Scholar] [CrossRef]
- Haggerty, R.; Wondzell, S.M.; Johnson, M.A. Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream. Geophys. Res. Lett. 2002, 29, 11–18. [Google Scholar] [CrossRef]
- Gooseff, M.N.; Hal, R.O., Jr.; Tank, J.L. Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Harnischmacher, S. Thresholds in small rivers? Hypotheses developed from fluvial morphological research in western Germany. Geomorphology 2007, 92, 119–133. [Google Scholar] [CrossRef]
- Bencala, K.E.; Walters, R.A. Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model. Water Resour. Res. 1983, 19, 718–724. [Google Scholar] [CrossRef]
- Wörman, A.; Packman, A.I.; Johansson, H.; Jonsson, K. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resour. Res. 2002, 38, 2-1–2-15. [Google Scholar] [CrossRef]
- Hood, E.; Gooseff, M.N.; Johnson, S.L. Changes in the character of stream water dissolved organic carbon during flushing in three small watersheds, Oregon. J. Geophys. Res. Biogeosci. 2006, 111, G1. [Google Scholar] [CrossRef]
- Wörman, A. Comparison of models for transient storage of solutes in small streams. Water Resour. Res. 2000, 36, 455–468. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Y.; Wu, C.; Ding, Y.; Jin, Y. Eulerian–Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer. Particuology 2010, 8, 44–50. [Google Scholar] [CrossRef]
- de Abreu, C.H.M.; Barros, M.d.L.C.; Brito, D.C.; Teixeira, M.R.; da Cunha, A.C. Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River. Water 2020, 12, 660. [Google Scholar] [CrossRef]
- Deng, Z.; Jung, H. Variable residence time-based model for solute transport in streams. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Gooseff, M.N.; Benson, D.A.; Briggs, M.A.; Weaver, M.; Wollheim, W.; Peterson, B.; Hopkinson, C.S. Residence time distributions in surface transient storage zones in streams: Estimation via signal deconvolution. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, D.M. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments. Adv. Water Resour. 2005, 28, 479–492. [Google Scholar] [CrossRef]
- Salehin, M.; Packman, A.I.; Wörman, A. Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Adv. Water Resour. 2003, 26, 951–964. [Google Scholar] [CrossRef]
- Gooseff, M.N. Defining Hyporheic Zones—Advancing Our Conceptual and Operational Definitions of Where Stream Water and Groundwater Meet. Geogr. Compass 2010, 4, 945–955. [Google Scholar] [CrossRef]
- Movahedi, N.; Dehghani, A.A.; Schmidt, C.; Trauth, N.; Pasternack, G.B.; Stewardson, M.J.; Halghi, M.M. Hyporheic exchanges due to channel bed and width undulations. Adv. Water Resour. 2021, 149, 103857. [Google Scholar] [CrossRef]
- Sawyer, A.H.; Cardenas, M.B.; Buttles, J. Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Liu, Y.; Wallace, C.D.; Zhou, Y.; Ershadnia, R.; Behzadi, F.; Dwivedi, D.; Xue, L.; Soltanian, M.R. Influence of Streambed Heterogeneity on Hyporheic Flow and Sorptive Solute Transport. Water 2020, 12, 1547. [Google Scholar] [CrossRef]
- Dudunake, T.; Tonina, D.; Reeder, W.J.; Monsalve, A. Local and reach-scale hyporheic flow response from boulder-induced geomorphic changes. Water Resour. Res. 2020, 56, e2020WR027719. [Google Scholar] [CrossRef]
- Adams, J.E.; Brown, R.S.; Hodson, P.V. The bioavailability of oil droplets trapped in river gravel by hyporheic flows. Environ. Pollut. 2021, 269, 116110. [Google Scholar] [CrossRef]
- Huang, S.H.; Yang, J.Q. Impacts of Channel-Spanning Log Jams on Hyporheic Flow. Water Resour. Res. 2023, 59, e2023WR035217. [Google Scholar] [CrossRef]
- Shrivastava, S.; Stewardson, M.J.; Arora, M. Sediment reworking in streambeds with fine sediment deposits and its influence on hyporheic flow regime. Water Resour. Res. 2021, 57, e2021WR030360. [Google Scholar] [CrossRef]
- Lanzoni, S.; Ferdousi, A.; Tambroni, N. River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers. Adv. Water Resour. 2018, 113, 55–72. [Google Scholar] [CrossRef]
- Dralle, D.N.; Lapides, D.A.; Rempe, D.M.; Hahm, W.J. Mapping surface water presence and hyporheic flow properties of headwater stream networks with multispectral satellite imagery. Water Resour. Res. 2023, 59, e2022WR034169. [Google Scholar] [CrossRef]
- Reith, C.J.; Spahr, S.; Putschew, A.; Lewandowski, J. Attenuation of trace organic compounds along hyporheic flow paths in a lowland sandbed stream. J. Hydrol. 2023, 624, 129905. [Google Scholar] [CrossRef]
- Tonina, D.; Buffington, J.M. Hyporheic Exchange in Mountain Rivers I: Mechanics and Environmental Effects. Geogr. Compass 2009, 3, 1063–1086. [Google Scholar] [CrossRef]
- Marzadri, A.; Ciriello, V.; de Barros, F.P.J. Hyporheic flows in stratified sediments: Implications on residence time distributions. Water Resour. Res. 2024, 60, e2023WR035625. [Google Scholar] [CrossRef]
- Talling, P.J. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Mar. Geol. 2014, 352, 155–182. [Google Scholar] [CrossRef]
- Wilkes, M.A.; Gittins, J.R.; Mathers, K.L.; Mason, R.; Casas-Mulet, R.; Vanzo, D.; Mckenzie, M.; Murray-Bligh, J.; England, J.; Gurnell, A.; et al. Physical and biological controls on fine sediment transport and storage in rivers. WIREs Water 2019, 6, e1331. [Google Scholar] [CrossRef]
- Gomez-Velez, J.D.; Wilson, J.L.; Cardenas, M.B.; Harvey, J.W. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resour. Res. 2017, 53, 8572–8595. [Google Scholar] [CrossRef]
- Musial, C.T.; Sawyer, A.H.; Barnes, R.T.; Bray, S.; Knights, D. Surface water–groundwater exchange dynamics in a tidal freshwater zone. Hydrol. Process. 2016, 30, 739–750. [Google Scholar] [CrossRef]
- Yang, J.; Graf, T.; Herold, M.; Ptak, T. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface–subsurface approach. J. Contam. Hydrol. 2013, 149, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cirpka, O.A. Surface Transient Storage Under Low-Flow Conditions in Streams with Rough Bathymetry. Water Resour. Res. 2021, 57, e2021WR029899. [Google Scholar] [CrossRef]
- Levine, R.; Meyer, G.A. Beaver dams and channel sediment dynamics on Odell Creek, Centennial Valley, Montana, USA. Geomorphology 2014, 205, 51–64. [Google Scholar] [CrossRef]
- Puttock, A.; Graham, H.A.; Carless, D.; Brazier, R.E. Sediment and nutrient storage in a beaver engineered wetland. Earth Surf. Process. Landf. 2018, 43, 2358–2370. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Tonina, D.; Buxton, T.H. Does small-bodied salmon spawning activity enhance streambed mobility? Water Resour. Res. 2015, 51, 7467–7484. [Google Scholar] [CrossRef]
- Marttila, H.; Dudley, B.; Graham, S.; Srinivasan, M. Does transpiration from invasive stream side willows dominate low-flow conditions? An investigation using hydrometric and isotopic methods in a headwater catchment. Ecohydrology 2018, 11, e1930. [Google Scholar] [CrossRef]
- Xie, M.; Wang, N.; Gaillard, J.-F.; Packman, A.I. Interplay between flow and bioturbation enhances metal efflux from low-permeability sediments. J. Hazard. Mater. 2018, 341, 304–312. [Google Scholar] [CrossRef]
- Nikolakopoulou, M.; Argerich, A.; Drummond, J.D.; Gacia, E.; Martí, E.; Sorolla, A.; Sabater, F. Emergent Macrophyte Root Architecture Controls Subsurface Solute Transport. Water Resour. Res. 2018, 54, 5958–5972. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Hamidifar, H. Kinetic energy and momentum correction coefficients in compound open channels. Nat. Hazards 2018, 92, 1859–1869. [Google Scholar] [CrossRef]
- Keshtkar, A.; Ahmadi, M.; Naseri, H.; Atashi, H.; Hamidifar, H.; Razavi, S.; Yazdanpanah, A.; Reihan, M.K.; Moazami, N. Application of a vetiver system for unconventional water treatment. Desalination Water Treat. 2016, 57, 25474–25483. [Google Scholar] [CrossRef]
- Liu, Y.; Reible, D.; Hussain, F.; Fang, H. Role of Bioroughness, Bioirrigation, and Turbulence on Oxygen Dynamics at the Sediment-Water Interface. Water Resour. Res. 2019, 55, 8061–8075. [Google Scholar] [CrossRef]
- Mendoza-Lera, C.; Federlein, L.L.; Knie, M.; Mutz, M. The algal lift: Buoyancy-mediated sediment transport. Water Resour. Res. 2016, 52, 108–118. [Google Scholar] [CrossRef]
- Shrivastava, S.; Stewardson, M.J.; Arora, M. Influence of Bioturbation on Hyporheic Exchange in Streams: Conceptual Model and Insights from Laboratory Experiments. Water Resour. Res. 2021, 57, e2020WR028468. [Google Scholar] [CrossRef]
- Trévisan, D.; Periáñez, R. Coupling catchment hydrology and transient storage to model the fate of solutes during low-flow conditions of an upland river. J. Hydrol. 2016, 534, 317–325. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A. Modeling the Effect of Hyporheic Mixing on Stream Solute Transport. Water Resour Res 2019, 55, 9995–10011. [Google Scholar] [CrossRef]
- Painter, S.L. On the Representation of Hyporheic Exchange in Models for Reactive Transport in Stream and River Corridors. Front. Water 2021, 2, 595538. [Google Scholar] [CrossRef]
- Chawla, R.; Deswal, K.; Kumar, D.; Baleanu, D. A novel finite difference based numerical approach for Modified Atan-gana-Baleanu Caputo derivative. AIMS Math. 2022, 7, 17252–17268. [Google Scholar] [CrossRef]
- Allwright, A.; Atangana, A.; Mekkaoui, T. Fractional and fractal advection-dispersion model. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 2055–2074. [Google Scholar] [CrossRef]
- Deng, Z.-Q.; Singh, V.P.; Bengtsson, L. Numerical Solution of Fractional Advection-Dispersion Equation. J. Hydraul. Eng. 2004, 130, 422–431. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M.M.; Neupauer, R.M. Backward fractional advection dispersion model for contaminant source prediction. Water Resour. Res. 2016, 52, 2462–2473. [Google Scholar] [CrossRef]
- Garrard, R.M.; Zhang, Y.; Wei, S.; Sun, H.; Qian, J. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils? Groundwater 2017, 55, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Rucker, D.F.; Brooks, S.C.; Ginn, T.; Carroll, K.C. Transient Storage Model Parameter Optimization Using the Simulated Annealing Method. Water Resour. Res. 2022, 58, e2022WR032018. [Google Scholar] [CrossRef]
- Knapp, J.L.; Kelleher, C. A Perspective on the future of transient storage modeling: Let’s stop chasing our tails. Water Resour. Res. 2020, 56, e2019WR026257. [Google Scholar] [CrossRef]
- Ward, A.S.; Kelleher, C.A.; Mason, S.J.K.; Wagener, T.; McIntyre, N.; McGlynn, B.; Runkel, R.L.; Payn, R.A. A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations. Freshw. Sci. 2017, 36, 195–217. [Google Scholar] [CrossRef]
- Singh, S.K. Discussion of “Moment-based calculation of parameters for the storage zone model for river dispersion” by II Won Seo and Tae Sung Cheong. J. Hydraul. Eng. 2002, 128, 1032–1033. [Google Scholar] [CrossRef]
- Singh, S.K. Treatment of Stagnant Zones in Riverine Advection-Dispersion. J. Hydraul. Eng. 2003, 129, 470–473. [Google Scholar] [CrossRef]
- Babey, T.; de Dreuzy, J.-R.; Casenave, C. Multi-Rate Mass Transfer (MRMT) models for general diffusive porosity structures. Adv. Water Resour. 2015, 76, 146–156. [Google Scholar] [CrossRef]
- Guo, Z.; Fogg, G.E.; Henri, C.V. Upscaling of Regional Scale Transport Under Transient Conditions: Evaluation of the Multirate Mass Transfer Model. Water Resour. Res. 2019, 55, 5301–5320. [Google Scholar] [CrossRef]
- Gooseff, M.N.; Wondzell, S.M.; Haggerty, R.; Anderson, J. Comparing transient storage modeling and residence time distribution (RTD) analysis in geomorphically varied reaches in the Lookout Creek basin, Oregon, USA. Adv. Water Resour. 2003, 26, 925–937. [Google Scholar] [CrossRef]
- Guo, Z.; Henri, C.V.; Fogg, G.E.; Zhang, Y.; Zheng, C. Adaptive Multirate Mass Transfer (aMMT) Model: A New Approach to Upscale Regional-Scale Transport Under Transient Flow Conditions. Water Resour. Res. 2020, 56, e2019WR026000. [Google Scholar] [CrossRef]
- Emami, S.K.; Mazaheri, M. A comprehensive assessment and comparison of the impacts of storage parameters on solute transport in streams using a novel framework. J. Hydrol. 2024, 633, 130873. [Google Scholar] [CrossRef]
- Stonedahl, S.H.; Harvey, J.W.; Packman, A.I. Interactions between hyporheic flow produced by stream meanders, bars, and dunes. Water Resour. Res. 2013, 49, 5450–5461. [Google Scholar] [CrossRef]
- Marion, A.; Zaramella, M.; Bottacin-Busolin, A. Solute transport in rivers with multiple storage zones: The STIR model. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Runkel, R.L. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage. Water Resour. Res. 2015, 51, 6125–6142. [Google Scholar] [CrossRef]
- Boano, F.; Packman, A.I.; Cortis, A.; Revelli, R.; Ridolfi, L. A continuous time random walk approach to the stream transport of solutes. Water Resour. Res. 2007, 43, 10. [Google Scholar] [CrossRef]
- Umarov, S. Continuous time random walk models associated with distributed order diffusion equations. Fract. Calc. Appl. Anal. 2015, 18, 821–837. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Straka, P. Semi-Markov approach to continuous time random walk limit processes. Ann. Probab. 2014, 42, 1699–1723. [Google Scholar] [CrossRef]
- Liu, J.; Bao, J.-D. Continuous time random walk with jump length correlated with waiting time. Phys. A Stat. Mech. Its Appl. 2013, 392, 612–617. [Google Scholar] [CrossRef]
- Deng, Z.-Q.; Jung, H.-S. Scaling dispersion model for pollutant transport in rivers. Environ. Model. Softw. 2009, 24, 627–631. [Google Scholar] [CrossRef]
- Deng, Z.-Q.; Jung, H.-S.; Ghimire, B. Effect of channel size on solute residence time distributions in rivers. Adv. Water Resour. 2010, 33, 1118–1127. [Google Scholar] [CrossRef]
- Berezhkovskii, A.M.; Skvortsov, A.T. Aris-Taylor dispersion with drift and diffusion of particles on the tube wall. J. Chem. Phys. 2013, 139, 084101. [Google Scholar] [CrossRef] [PubMed]
- Guggenberger, T.; Pagnini, G.; Vojta, T.; Metzler, R. Fractional Brownian motion in a finite interval: Correlations effect depletion or accretion zones of particles near boundaries. New J. Phys. 2019, 21, 022002. [Google Scholar] [CrossRef]
- Kuppel, S.; Tetzlaff, D.; Maneta, M.P.; Soulsby, C. Critical Zone Storage Controls on the Water Ages of Ecohydrological Outputs. Geophys. Res. Lett. 2020, 47, e2020GL088897. [Google Scholar] [CrossRef]
- Ward, A.S. The evolution and state of interdisciplinary hyporheic research. WIREs Water 2016, 3, 83–103. [Google Scholar] [CrossRef]
- Singh, T.; Wu, L.; Gomez-Velez, J.D.; Lewandowski, J.; Hannah, D.M.; Krause, S. Dynamic hyporheic zones: Ex-ploring the role of peak flow events on bedform-induced hyporheic exchange. Water Resour. Res. 2019, 55, 218–235. [Google Scholar] [CrossRef]
- Saup, C.M.; Bryant, S.R.; Nelson, A.R.; Harris, K.D.; Sawyer, A.H.; Christensen, J.N.; Tfaily, M.M.; Williams, K.H.; Wilkins, M.J. Hyporheic Zone Microbiome Assembly Is Linked to Dynamic Water Mixing Patterns in Snowmelt-Dominated Headwater Catchments. J. Geophys. Res. Biogeosci. 2019, 124, 3269–3280. [Google Scholar] [CrossRef]
- Peralta-Maraver, I.; Reiss, J.; Robertson, A.L. Interplay of hydrology, community ecology and pollutant attenuation in the hyporheic zone. Sci. Total Environ. 2018, 610–611, 267–275. [Google Scholar] [CrossRef]
- Ghorbani, M.K.; Afshar, A.; Hamidifar, H. River water quality management using a fuzzy optimization model and the NSFWQI Index. Water SA 2021, 47, 45–53. [Google Scholar] [CrossRef]
- Ghorbani, M.K.; Afshar, A.; Hamidifar, H.; Reddy, M.J. A fuzzy multi-objective multiple-pollutant model for rivers using an ant colony algorithm. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Magliozzi, C.; Coro, G.; Grabowski, R.C.; Packman, A.I.; Krause, S. A multiscale statistical method to identify potential areas of hyporheic exchange for river restoration planning. Environ. Model. Softw. 2019, 111, 311–323. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A.; Dallan, E.; Marion, A. STIR-RST: A Software tool for reactive smart tracer studies. Environ. Model. Softw. 2021, 135, 104894. [Google Scholar] [CrossRef]
- Kelleher, C.; Ward, A.; Knapp, J.L.A.; Blaen, P.J.; Kurz, M.J.; Drummond, J.D.; Zarnetske, J.P.; Hannah, D.M.; Mendoza-Lera, C.; Schmadel, N.M.; et al. Exploring Tracer Information and Model Framework Trade-Offs to Improve Estimation of Stream Transient Storage Processes. Water Resour. Res. 2019, 55, 3481–3501. [Google Scholar] [CrossRef]
- Bonanno, E.; Blöschl, G.; Klaus, J. Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models. Hydrol. Earth Syst. Sci. 2022, 26, 6003–6028. [Google Scholar] [CrossRef]
- Schaper, J.L.; Posselt, M.; McCallum, J.L.; Banks, E.W.; Hoehne, A.; Meinikmann, K.; Shanafield, M.A.; Batelaan, O.; Lewandowski, J. Hyporheic Exchange Controls Fate of Trace Organic Compounds in an Urban Stream. Environ. Sci. Technol. 2018, 52, 12285–12294. [Google Scholar] [CrossRef]
- Haggerty, R.; Argerich, A.; Martí, E. Development of a “smart” tracer for the assessment of microbiological activity and sediment-water interaction in natural waters: The resazurin-resorufin system. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Rathore, S.S.; Ward, A.S.; Painter, S.L. Numerical evaluation of photosensitive tracers as a strategy for separating surface and subsurface transient storage in streams. J. Hydrol. 2023, 624, 129931. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, X.; Gomez Velez, J.; Zhang, X.; Duan, Z.; Hammond, G.E.; Goldman, A.E.; Garayburu-Caruso, V.A.; Graham, E.B. A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes be-tween surface water and hyporheic zones (SWAT-MRMT-R 1.0). Geosci. Model Dev. 2020, 13, 3553–3569. [Google Scholar] [CrossRef]
- Ye, S.; Sivapalan, M.; Ran, Q. Synergistic impacts of rainfall variability and land use heterogeneity on nitrate retention in river networks: Exacerbation or compensation? Water Resour. Res. 2020, 56, e2018WR024226. [Google Scholar] [CrossRef]
- Sandoval, J.; Mignot, E.; Mao, L.; Pastén, P.; Bolster, D.; Escauriaza, C. Field and numerical investigation of transport mechanisms in a surface storage zone. J. Geophys. Res. Earth Surf. 2019, 124, 938–959. [Google Scholar] [CrossRef]
- Drummond, J.D.; Bernal, S.; von Schiller, D.; Martí, E. Linking in-stream nutrient uptake to hydrologic retention in two headwater streams. Freshw. Sci. 2016, 35, 1176–1188. [Google Scholar] [CrossRef]
- Marttila, H.; Turunen, J.; Aroviita, J.; Tammela, S.; Luhta, P.; Muotka, T.; Kløve, B. Restoration increases transient storages in boreal headwater streams. River Res. Appl. 2018, 34, 1278–1285. [Google Scholar] [CrossRef]
- Harvey, G.L.; Henshaw, A.J.; Parker, C.; Sayer, C.D. Re-introduction of structurally complex wood jams promotes channel and habitat recovery from overwidening: Implications for river conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 28, 395–407. [Google Scholar] [CrossRef]
- Hamidifar, H.; Nones, M. Hydro-morphodynamic responses of rivers to the construction of hydropower dams: A case study—The Kor River, Iran. Hydrol. Sci. J. 2023, 68, 1567–1577. [Google Scholar] [CrossRef]
- Hamidifar, H.; Omid, M.H. Floodplain vegetation contribution to velocity distribution in compound channels. J. Civ. Eng. Urban. 2013, 3, 357–361. [Google Scholar]
- Keshavarzi, A.; Hamidifar, H.; Ball, J. Bed morphology in vegetated estuarine river with mild-curved meander bend. Hydrol. Sci. J. 2016, 61, 2033–2049. [Google Scholar] [CrossRef]
- Hamidifar, H.; Omid, M.; Keshavarzi, A. Kinetic energy and momentum correction coefficients in straight compound channels with vegetated floodplain. J. Hydrol. 2016, 537, 10–17. [Google Scholar] [CrossRef]
- Siergieiev, D.; Ehlert, L.; Reimann, T.; Lundberg, A.; Liedl, R. Modelling hyporheic processes for regulated rivers under transient hydrological and hydrogeological conditions. Hydrol. Earth Syst. Sci. 2015, 19, 329–340. [Google Scholar] [CrossRef]
- Sallwey, J.; Glass, J.; Stefan, C. Utilizing unsaturated soil zone models for assessing managed aquifer recharge. Sustain. Water Resour. Manag. 2018, 4, 383–397. [Google Scholar] [CrossRef]
- Morley, S.A.; Rhodes, L.D.; Baxter, A.E.; Goetz, G.W.; Wells, A.H.; Lynch, K.D. Invertebrate and Microbial Response to Hyporheic Restoration of an Urban Stream. Water 2021, 13, 481. [Google Scholar] [CrossRef]
Models | Type of Storage Process | Parameters | Application | Pros | Cons | Sources |
---|---|---|---|---|---|---|
Classical Advection–Dispersion Equation (ADE) | None | (U, D) | The asymptotic result is continuous movement with mixing and a narrow velocity distribution. | Simple to implement; widely used for conservative solute transport. | It does not account for transient storage or hyporheic exchange, leading to inaccurate predictions in complex systems with significant storage zones. | [132] |
Modified Advection–Dispersion Equation (MADE) | Only Type(II) of Breakthrough Curve | (Ua, Da) | A modified asymptotic result relative to advection–dispersion equation. | Improves the ADE by including breakthrough curve modifications for better accuracy in systems with storage zones. | Limited to specific types of storage, lacking flexibility in representing diverse hyporheic processes. | [117] |
Fractional Advection–Dispersion Equation (FRADE) | Heavy-Tailed Power-Law Residence Time Distribution | (U, D, γ, α) | The long-term outcome of movement that is irregular in both time and space, characterized by significant shifts or extended periods of inactivity compared to the scale of measurement. | Captures heavy-tailed RTDs and provides better accuracy for systems with power-law distributions. | Complex to parameterize; may not perform well in systems with uniform or exponential RTDs. | [133] |
Transient Storage Model (TSM) | Finite Volume, Well-Mixed Storage Zones | (U, D, A/As, α) | Fickian in-stream transport combined with first-order mass transfer in well-mixed stationary zones (similar to asymptotic Brownian motion). | Well suited for systems with mixed storage zones; models hyporheic exchange effectively. | Limited flexibility in handling complex RTD shapes (e.g., power-law distributions). | [65] |
Multirate Mass Transport (MRMT) | Any Residence Time Distribution/Memory Function | Controlled by Memory Function | Fickian in-stream transport with storage times modeled by a memory function. | Capable of modeling a variety of RTDs, including those controlled by memory functions; handles hyporheic exchange well. | Computationally intensive due to the complexity of representing multiple rates of transport. | [120] |
Advective Storage Path (ASP) | Any Residence Time Distribution/Memory Function | Controlled by Memory Function | The residence time distribution characterizes Fickian in-stream transport with storage times. | Can model detailed residence time distributions based on memory functions. | Requires detailed calibration data, limiting its application in field studies without sufficient data. | [68] |
Continuous-Time Random Walk (CTRW) | Any Residence Time Distribution/Memory Function | Controlled by Memory Function | Brownian in-stream transport is characterized by a jump length distribution combined with a storage process modeled by a memory function. | Excellent for modeling Brownian transport and complex RTDs; flexible in capturing storage processes. | It is challenging to calibrate and difficult to apply to systems without clear RTD information. | [126] |
Solute Transport in Rivers (STIR) | Any Residence Time Distribution/Memory Function | Controlled by Memory Function | Fickian in-stream transport combined with a storage process characterized by a specific RTD. | It combines flexibility in RTD representation with storage processes and is well suited for diverse stream conditions. | The complexity in defining RTD functions makes it harder to implement without extensive data. | [124] |
Variable Residence Time Model (VART) | Any Residence Time Distribution without a Memory Function | (U, Ks, Tmin, A/As + Ds) | Fickian in-stream transport without any user-specified RTD functions. | Allows for user-defined RTDs and the flexible modeling of transient storage. | Requires significant user input and customization, which can be a barrier for broader applications. | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadat, A.M.; Khodambashi Emami, S.; Hamidifar, H. A Review on Storage Process Models for Improving Water Quality Modeling in Rivers. Hydrology 2024, 11, 187. https://doi.org/10.3390/hydrology11110187
Saadat AM, Khodambashi Emami S, Hamidifar H. A Review on Storage Process Models for Improving Water Quality Modeling in Rivers. Hydrology. 2024; 11(11):187. https://doi.org/10.3390/hydrology11110187
Chicago/Turabian StyleSaadat, Amir Mohammad, Sajad Khodambashi Emami, and Hossein Hamidifar. 2024. "A Review on Storage Process Models for Improving Water Quality Modeling in Rivers" Hydrology 11, no. 11: 187. https://doi.org/10.3390/hydrology11110187
APA StyleSaadat, A. M., Khodambashi Emami, S., & Hamidifar, H. (2024). A Review on Storage Process Models for Improving Water Quality Modeling in Rivers. Hydrology, 11(11), 187. https://doi.org/10.3390/hydrology11110187