Multivariate and Spatial Study and Monitoring Strategies of Groundwater Quality for Human Consumption in Corsica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, the Corsica Island
2.2. The Sise-Eaux Database
2.3. Mathematical Tools
2.3.1. Normality Tests, Q-Q Plots, and Data Conditioning
2.3.2. Principal Component Analysis
2.3.3. Agglomerative Hierarchical Clustering
2.3.4. Variograms and Map Calculation Method
- Using the entire dataset. The variability measured by the semivariance is both spatial and temporal;
- Using the mean values for each sampling point to minimize temporal variance.
3. Results
4. Discussion
4.1. Redundancy Within Multifactorial Information
4.2. Local or Regional and Spatial or Temporal Determinants of Water Quality
- A diversity of soil types and their varying degrees of flocculating power for particles, the main carriers of bacteria;
- A diversity of soil textures, impacting the intrusion of contaminated surface water;
- A diversity of contamination pressure, with livestock farming not evenly distributed across the territory, being more prominent in mountainous areas and less so in the plains, with differences in livestock type (cattle vs. pigs) depending on lithology.
4.3. Strategies for Water Quality Inventory and Mapping
4.4. Consequences for Sustainable Management of Groundwater in Corsica
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines for Drinking-Water Quality: Incorporating 1st and 2nd Addenda, Volume 1, Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2008; ISBN 978-92-4-154761-1. [Google Scholar]
- Saeedi, M.; Abessi, O.; Sharifi, F.; Meraji, H. Development of groundwater quality index. Environ. Monit. Assess. 2010, 163, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.C. Environmental Contamination of Arsenic and its Toxicological Impact on Humans. Environ. Chem. 2005, 2, 146–160. [Google Scholar] [CrossRef]
- Morales-Simfors, N.; Bundschuh, J. Arsenic-rich geothermal fluids as environmentally hazardous materials—A global assessment. Sci. Total Environ. 2022, 817, 152669. [Google Scholar] [CrossRef]
- Hinsby, K.; Condesso de Melo, M.T.; Dahl, M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci. Total Environ. 2008, 401, 1–20. [Google Scholar] [CrossRef]
- Bradford, S.A.; Harvey, R.W. Future research needs involving pathogens in groundwater. Hydrogeol. J. 2017, 25, 931–938. [Google Scholar] [CrossRef]
- Bunting, S.Y.; Lapworth, D.J.; Crane, E.J.; Grima-Olmedo, J.; Koroša, A.; Kuczyńska, A.; Mali, N.; Rosenqvist, L.; van Vliet, M.E.; Togola, A.; et al. Emerging organic compounds in European groundwater. Environ. Pollut. 2021, 269, 115945. [Google Scholar] [CrossRef]
- Kemper, K.E. Groundwater—From development to management. Hydrogeol. J. 2004, 12, 3–5. [Google Scholar] [CrossRef]
- Koundouri, P. Current Issues in the Economics of Groundwater Resource Management. J. Econ. Surv. 2004, 18, 703–740. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Brahma, S. Chapter 19—Groundwater conservation and management: Recent trends and future prospects. In Case Studies in Geospatial Applications to Groundwater Resources; Shit, P., Bhunia, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 371–385. ISBN 978-0-323-99963-2. [Google Scholar]
- Qiu, W.; Ma, T.; Wang, Y.; Cheng, J.; Su, C.; Li, J. Review on status of groundwater database and application prospect in deep-time digital earth plan. Geosci. Front. 2022, 13, 101383. [Google Scholar] [CrossRef]
- Fitch, P.; Brodaric, B.; Stenson, M.; Booth, N. Integrated Groundwater Data Management BT. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 667–692. ISBN 978-3-319-23576-9. [Google Scholar]
- Condon, L.E.; Kollet, S.; Bierkens, M.F.P.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.-J.H.; Verhoef, A.; Van Loon, A.F.; Sulis, M.; et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res. 2021, 57, e2020WR029500. [Google Scholar] [CrossRef]
- Lall, U.; Josset, L.; Russo, T. A Snapshot of the World's Groundwater Challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Chery, L.; Laurent, A.; Vincent, B.; Tracol, R. Echanges SISE-Eaux/ADES: Identification des Protocoles Compatibles Avec les Scénarios D’échange SANDRE; Vincennes/Orléans, France, 2011; Available online: https://infoterre.brgm.fr/rapports/RP-59211-FR.pdf (accessed on 6 November 2024).
- Loftis, J.C. Trends in groundwater quality. Hydrol. Process. 1996, 10, 335–355. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Elshall, A.S.; Arik, A.D.; El-Kadi, A.I.; Pierce, S.; Ye, M.; Burnett, K.M.; Wada, C.A.; Bremer, L.L.; Chun, G. Groundwater sustainability: A review of the interactions between science and policy. Environ. Res. Lett. 2020, 15, 93004. [Google Scholar] [CrossRef]
- Mays, L.W. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour. Manag. 2013, 27, 4409–4424. [Google Scholar] [CrossRef]
- De Graciansky, P.-C.; Roberts, D.G.; Tricart, P. Chapter Nine—The Tethyan Margin in Corsica. In The Western Alps, from Rift to Passive Margin to Orogenic Belt; Graciansky, P.-C.D., Roberts, D.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 14, pp. 183–188. ISBN 09282025. [Google Scholar]
- Gilli, E.; Nicod, J. Karsts et grottes de Corse. Karstologia 2010, 55, 260–261. [Google Scholar]
- Nguyen-Thé, D.; Palvadeau, E.; Sinzelle, B. Atlas Cartographique des Aquifères Littoraux de Corse. Available online: https://infoterre.brgm.fr/rapports/RP-58166-FR.pdf (accessed on 6 November 2024).
- ODDC. Observatoire du Développement Durable de Corse. Available online: http://www.oddc.fr/modules.php?name=SimpleProfil&op=showonedoc&id=23&mmg=9,513 (accessed on 6 November 2024).
- Lazar, H.; Ayach, M.; Barry, A.; Mohsine, I.; Touiouine, A.; Huneau, F.; Mori, C.; Garel, E.; Kacimi, I.; Valles, V.; et al. Groundwater bodies in Corsica: A critical approach to GWBs subdivision based on multivariate water quality criteria. Hydrology 2023, 10, 213. [Google Scholar] [CrossRef]
- Steinskog, D.J.; Tjøstheim, D.B.; Kvamstø, N.G. A Cautionary Note on the Use of the Kolmogorov–Smirnov Test for Normality. Mon. Weather Rev. 2007, 135, 1151–1157. [Google Scholar] [CrossRef]
- Marden, J.I. Positions and QQ Plots. Stat. Sci. 2004, 19, 606–614. [Google Scholar] [CrossRef]
- Cousineau, D.; Chartier, S. Outliers detection and treatment: A review. Int. J. Psychol. Res. 2010, 3, 58–67. [Google Scholar] [CrossRef]
- Mohsine, I.; Kacimi, I.; Abraham, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Bahaj, T.; Kassou, N.; Touiouine, A.; Jabrane, M.; et al. Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering. Water 2023, 15, 1603. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; Valles, V.; Barbiero, L. Data Conditioning Modes for the Study of Groundwater Resource Quality Using a Large Physico-Chemical and Bacteriological Database, Occitanie Region, France. Water 2023, 15, 84. [Google Scholar] [CrossRef]
- Pearson, K.L., III. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Rezende-Filho, A.T.; Valles, V.; Furian, S.; Oliveira, C.M.S.C.; Ouardi, J.; Barbiero, L. Impacts of lithological and anthropogenic factors affecting water chemistry in the upper Paraguay River Basin. J. Environ. Qual. 2015, 44, 1832–1842. [Google Scholar] [CrossRef]
- Gleser, L.J. A Note on the Sphericity Test. Ann. Math. Stat. 1966, 37, 464–467. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Yu, Q.; Liu, X.; Zhou, X.; Song, A. Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 2015, 42, 2785–2797. [Google Scholar] [CrossRef]
- Day, W.H.E.; Edelsbrunner, H. Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1984, 1, 7–24. [Google Scholar] [CrossRef]
- Bousouis, A.; Bouabdli, A.; Ayach, M.; Ravung, L.; Valles, V.; Barbiero, L. The Multi-Parameter Mapping of Groundwater Quality in the Bourgogne-Franche-Comté Region (France) for Spatially Based Monitoring Management. Sustainability 2024, 16, 8503. [Google Scholar] [CrossRef]
- Tiouiouine, A.; Yameogo, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Moulin, M.; Bouramtane, T.; Bahaj, T.; Morarech, M.; Kacimi, I. Dimension reduction and analysis of a 10-year physicochemical and biological water database applied to water resources intended for human consumption in the provence-alpes-cote d’azur region, France. Water 2020, 12, 525. [Google Scholar] [CrossRef]
- Mohsine, I.; Kacimi, I.; Valles, V.; Leblanc, M.; El Mahrad, B.; Dassonville, F.; Kassou, N.; Bouramtane, T.; Abraham, S.; Touiouine, A.; et al. Differentiation of multi-parametric groups of groundwater bodies through Discriminant Analysis and Machine Learning. Hydrology 2023, 10, 230. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Valles, V.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; El Jarjini, Y.; Morarech, M.; Duran, Y.; Barbiero, L. Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France). Hydrology 2023, 10, 89. [Google Scholar] [CrossRef]
- Ayach, M.; Lazar, H.; Bousouis, A.; Touiouine, A.; Kacimi, I.; Valles, V.; Barbiero, L. Multi-Parameter Analysis of Groundwater Resources Quality in the Auvergne-Rhô ne-Alpes Region (France) Using a Large Database. Resources 2023, 12, 869. [Google Scholar]
- Lambert, D.; Mallet, M.; Ducrocq, V.; Dulac, F.; Gheusi, F.; Kalthoff, N. CORSiCA: A Mediterranean atmospheric and oceanographic observatory in Corsica within the framework of HyMeX and ChArMEx. Adv. Geosci. 2010, 26, 125–131. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N.; Kohler, M.; Handwerker, J.; Wieser, A.; Corsmeier, U.; Kottmeier, C.; Lambert, D.; Bock, O. The variability of water vapour and pre-convective conditions over the mountainous island of Corsica. Q. J. R. Meteorol. Soc. 2016, 142, 335–346. [Google Scholar] [CrossRef]
- Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of water resources by pathogenic bacteria. AMB Express 2014, 4, 51. [Google Scholar] [CrossRef]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and Consequences of Groundwater Contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Gallay, A.; De Valk, H.; Cournot, M.; Ladeuil, B.; Hemery, C.; Castor, C.; Bon, F.; Mégraud, F.; Le Cann, P.; Desenclos, J.C. A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin. Microbiol. Infect. 2006, 12, 561–570. [Google Scholar] [CrossRef]
- Fitts, C.R. 11—Groundwater Contamination. In Groundwater Science (Second Edition); Fitts, C.R., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 499–585. ISBN 978-0-12-384705-8. [Google Scholar]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia Coli and Fecal Coliforms in Freshwater and Estuarine Sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32020L2184 (accessed on 6 November 2024).
Parameter (2830 Values) | Unit | Min. | Max. | Mean | Standard Deviation |
---|---|---|---|---|---|
Ent. | n/100 mL | 0 | 2.44 | 0.32 | 0.50 |
E.coli | n/100 mL | 0 | 2.55 | 0.23 | 0.44 |
Col. | n/100 mL | 0 | 0.52 | 0.01 | 0.05 |
Aer.22 | n/100 mL | 0 | 2.00 | 0.02 | 0.15 |
Aer.37 | n/100 mL | 0 | 1.69 | 0.01 | 0.10 |
EC | mS cm−1 | 1.49 | 3.12 | 2.38 | 0.30 |
Ca | mg L−1 | 0.02 | 2.19 | 1.30 | 0.47 |
Mg | mg L−1 | −0.15 | 1.91 | 0.78 | 0.34 |
Cl | mg L−1 | 0.46 | 2.34 | 1.22 | 0.32 |
SO4 | mg L−1 | 0.16 | 2.13 | 0.96 | 0.31 |
Na | mg L−1 | 0.27 | 2.09 | 1.04 | 0.30 |
HCO3 | mg L−1 | 0.55 | 2.70 | 1.92 | 0.42 |
NO3 | mg L−1 | −1 | 1.55 | 0.23 | 0.30 |
Fe | µg L−1 | 0.13 | 2.27 | 1.12 | 0.25 |
Mn | µg L−1 | −1 | 2.74 | 1.04 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, H.; Ayach, M.; Bousouis, A.; Huneau, F.; Mori, C.; Garel, E.; Kacimi, I.; Valles, V.; Barbiero, L. Multivariate and Spatial Study and Monitoring Strategies of Groundwater Quality for Human Consumption in Corsica. Hydrology 2024, 11, 197. https://doi.org/10.3390/hydrology11110197
Lazar H, Ayach M, Bousouis A, Huneau F, Mori C, Garel E, Kacimi I, Valles V, Barbiero L. Multivariate and Spatial Study and Monitoring Strategies of Groundwater Quality for Human Consumption in Corsica. Hydrology. 2024; 11(11):197. https://doi.org/10.3390/hydrology11110197
Chicago/Turabian StyleLazar, Hajar, Meryem Ayach, Abderrahim Bousouis, Frederic Huneau, Christophe Mori, Emilie Garel, Ilias Kacimi, Vincent Valles, and Laurent Barbiero. 2024. "Multivariate and Spatial Study and Monitoring Strategies of Groundwater Quality for Human Consumption in Corsica" Hydrology 11, no. 11: 197. https://doi.org/10.3390/hydrology11110197
APA StyleLazar, H., Ayach, M., Bousouis, A., Huneau, F., Mori, C., Garel, E., Kacimi, I., Valles, V., & Barbiero, L. (2024). Multivariate and Spatial Study and Monitoring Strategies of Groundwater Quality for Human Consumption in Corsica. Hydrology, 11(11), 197. https://doi.org/10.3390/hydrology11110197