Hydrological Sustainability of Dam-Based Water Resources in a Mediterranean Basin Undergoing Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Ecohydrological Model and the Water Resource Management System
2.1.1. The Distributed Ecohydrological Model
The Soil Water Balance Model
The Vegetation Dynamics Model
The Surface Runoff and Base Flow
2.1.2. Water Resources Management
- Reservoir nodes: These represent surface water resources with storage capacity. In these nodes, losses by evaporation can be considered;
- Demand nodes: For irrigation, civil, and industrial, among others;
- Hydroelectric nodes: They are non-consumptive nodes associated with hydroelectric units;
- Confluence nodes: Such as river confluence, withdraw connections for demands satisfaction, etc.;
- Aquifer nodes: These nodes represent ground water resources with storage capacity;
- Natural stream arcs: These represent the natural runoff along rivers or river beds;
- Conveyance work arcs: These are artificial channels, such as ditches, pipes, etc.;
- Water pumping facility arcs: These are arcs with a pumping plant;
- Emergency transfer arcs: These arcs allow transfers of water to alleviate shortages;
- Recharge facility arcs: These allow the direct injection of surface water from a connection node into an aquifer;
- Priorities in the stored water level of reservoirs;
- Priorities in demand satisfaction of demand nodes;
- Penalty on shortage and emergency transfers;
- Water quality aspects related to storage conditions.
2.1.3. The Coupling of the Ecohydrological and Water Resource Management Models
2.2. The Flumendosa Basin Case Study
2.2.1. Basin Characteristics
2.2.2. Hydrologic Data
2.3. The WARGI Model of the Flumendosa Case Study
2.4. Future Climate Scenarios
2.5. Land Cover Change and Water Usage Strategies
2.6. Comparisons and Statistical Data Analysis
3. Results
3.1. Analysis of Historical Hydrological Data
3.2. The Ecohydrological Model Results for the Historical Period
3.3. Future Scenarios of the Water Resources System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunetti, M.; Maugeri, M.; Nanni, T.; Navarra, A. Droughts and extreme events in regional daily Italian precipitation series. Int. J. Climatol. 2002, 22, 543–558. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Können, G.P. Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I. The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain. Int. J. Climatol. 2006, 26, 1427–1453. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Aldrian, E. Observed changes in extreme temperature and precipitation over Indonesia. Int. J. Climatol. 2017, 37, 1979–1997. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, M. Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmos. Res. 2020, 231, 104670. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, 101029. [Google Scholar] [CrossRef]
- Cudennec, C.; Leduc, C.; Koutsoyiannis, D. Dryland hydrology in Mediterranean regions—A review. Hydrol. Sci. J. 2007, 52, 1077–1087. [Google Scholar] [CrossRef]
- Martinez-Fernandez, J.; Sanchez, N.; Herrero-Jimenez, C.M. Recent trends in rivers with near-natural flow regime: The case of the river headwaters in Spain. Prog. Phys. Geogr. 2013, 37, 685–700. [Google Scholar] [CrossRef]
- Montaldo, N.; Sarigu, A. Potential links between the North Atlantic Oscillation and decreasing precipitation and runoff on a Mediterranean area. J. Hydrol. 2017, 553, 419–437. [Google Scholar] [CrossRef]
- Corona, R.; Montaldo, N.; Albertson, J.D. On the Role of NAO-Driven Interannual Variability in Rainfall Seasonality on Water Resources and Hydrologic Design in a Typical Mediterranean Basin. J. Hydrometeorol. 2018, 19, 485–498. [Google Scholar] [CrossRef]
- Montaldo, N.; Oren, R. Changing Seasonal Rainfall Distribution With Climate Directs Contrasting Impacts at Evapotranspiration and Water Yield in the Western Mediterranean Region. Earth Future 2018, 6, 841–856. [Google Scholar] [CrossRef]
- Savenije, H. The runoff coefficient as the key to moisture recycling. J. Hydrol. 1996, 176, 219–225. [Google Scholar] [CrossRef]
- Oki, T.; Agata, Y.; Kanae, S.; Saruhashi, T.; Yang, D.; Musiake, K. Global assessment of current water resources using total runoff integrating pathways. Hydrol. Sci. J. 2001, 46, 983–995. [Google Scholar] [CrossRef]
- Statzu, V.; Strazzera, E. Water Demand for Residential Uses in a Mediterranean Region: Econometric Analysis and Policy Implications; University of Cagliari: Cagliari, Italy, 2009. [Google Scholar]
- Ozturk, T.; Ceber, Z.P.; Turkes, M.; Kurnaz, M.L. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. Int. J. Climatol. 2015, 35, 4276–4292. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Envir. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Carvalho, D.; Pereira, S.; Silva, R.; Rocha, A. Aridity and desertification in the Mediterranean under EURO-CORDEX future climate change scenarios. Clim. Chang. 2022, 174, 28. [Google Scholar] [CrossRef]
- Cos, J.; Doblas-Reyes, F.; Jury, M.; Marcos, R.; Bretonnière, P.; Samsó, M. The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth Syst. Dynam. 2022, 13, 321–340. [Google Scholar] [CrossRef]
- Mariotti, A.; Zeng, N.; Yoon, J.-H.; Artale, V.; Navarra, A.; Alpert, P.; Li, L.Z. Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett. 2008, 3, 044001. [Google Scholar] [CrossRef]
- May, W. Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim. Dyn. 2008, 30, 581–603. [Google Scholar] [CrossRef]
- Mastrandrea, M.D.; Luers, A.L. Climate change in California: Scenarios and approaches for adaptation. Clim. Chang. 2012, 111, 5–16. [Google Scholar] [CrossRef]
- Masseroni, D.; Camici, S.; Cislaghi, A.; Vacchiano, G.; Massari, C.; Brocca, L. The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin. Hydrol. Earth Syst. Sci. 2021, 25, 5589–5601. [Google Scholar] [CrossRef]
- Marras, P.A.; Lima, D.C.A.; Soares, P.M.M.; Cardoso, R.M.; Medas, D.; Dore, E.; De Giudici, G. Future precipitation in a Mediterranean island and streamflow changes for a small basin using EURO-CORDEX regional climate simulations and the SWAT model. J. Hydrol. 2021, 603, 127025. [Google Scholar] [CrossRef]
- Sirigu, S.; Montaldo, N. Climate Change Impacts on the Water Resources and Vegetation Dynamics of a Forested Sardinian Basin through a Distributed Ecohydrological Model. Water 2022, 14, 3078. [Google Scholar] [CrossRef]
- Hawtree, D.; Nunes, J.; Keizer, J.; Jacinto, R.; Santos, J.; Rial-Rivas, M.; Boulet, A.; Tavares-Wahren, F.; Feger, K. Time series analysis of the long-term hydrologic impacts of afforestation in the Agueda watershed of north-central Portugal. Hydrol. Earth Syst. Sci. 2015, 19, 3033–3045. [Google Scholar] [CrossRef]
- Guyennon, N.; Salerno, F.; Rossi, D.; Rainaldi, M.; Calizza, E.; Romano, E. Climate change and water abstraction impacts on the long-term variability of water levels in Lake Bracciano (Central Italy): A Random Forest approach. J. Hydrol.-Reg. Stud. 2021, 37, 100880. [Google Scholar] [CrossRef]
- Zanoni, M.; Stella, E.; Bellin, A. Long-term hydrological behavior of an Alpine glacier. J. Hydrol. 2023, 626, 130316. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejia-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Penuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D.; et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 2016, 6, 360–369. [Google Scholar] [CrossRef]
- Arora, V.K. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric. For. Meteorol. 2003, 118, 21–47. [Google Scholar] [CrossRef]
- Montaldo, N.; Rondena, R.; Albertson, J.D.; Mancini, M. Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems. Water Resour. Res. 2005, 41, W10416. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Bras, R.L.; Vivoni, E.R. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 2. Energy-water controls of vegetation spatiotemporal dynamics and topographic niches of favorability. Water Resour. Res. 2008, 44, W03430. [Google Scholar] [CrossRef]
- Montaldo, N.; Albertson, J.D.; Mancini, M. Vegetation dynamics and soil water balance in a water-limited Mediterranean ecosystem on Sardinia, Italy. Hydrol. Earth Syst. Sci. 2008, 12, 1257–1271. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.-K.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resour. Res. 2008, 44, W00A09. [Google Scholar] [CrossRef]
- Touhami, I.; Chirino, E.; Andreu, J.; Sánchez, J.; Moutahir, H.; Bellot, J. Assessment of climate change impacts on soil water balance and aquifer recharge in a semiarid region in south east Spain. J. Hydrol. 2015, 527, 619–629. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Zou, S.; Yang, L. Assessing variation in water balance components in mountainous inland river basin experiencing climate change. Water 2016, 8, 472. [Google Scholar] [CrossRef]
- Swart, N.; Cole, J.; Kharin, V.; Lazare, M.; Scinocca, J.; Gillett, N.; Anstey, J.; Arora, V.; Christian, J.; Hanna, S.; et al. CCCma CanESM5 Model Output Prepared for CMIP6 C4MIP; World Data Center for Climate (WDCC) at DKRZ: Hamburg, Germany, 2019; Volume 12, pp. 4823–4873. [Google Scholar] [CrossRef]
- Gustafson, E.J.; De Bruijn, A.M.; Pangle, R.E.; Limousin, J.M.; McDowell, N.G.; Pockman, W.T.; Sturtevant, B.R.; Muss, J.D.; Kubiske, M.E. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change. Glob. Chang. Biol. 2015, 21, 843–856. [Google Scholar] [CrossRef]
- Noce, S.; Collalti, A.; Santini, M. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 2017, 7, 9358–9375. [Google Scholar] [CrossRef]
- Pinheiro, E.A.R.; Van Lier, Q.D.J.; Bezerra, A.H.F. Hydrology of a Water-Limited Forest under Climate Change Scenarios: The Case of the Caatinga Biome, Brazil. Forests 2017, 8, 62. [Google Scholar] [CrossRef]
- Sulis, A.; Sechi, G. Comparison of generic simulation models for water resource systems. Environ. Modell. Softw. 2013, 40, 214–225. [Google Scholar] [CrossRef]
- Garrote, L. Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context. Water Resour. Manag. 2017, 31, 2951–2963. [Google Scholar] [CrossRef]
- Han, X.; Boota, M.; Soomro, S.; Ali, S.; Soomro, S.; Soomro, N.; Soomro, M.; Soomro, A.; Batool, S.; Bai, Y.; et al. Water strategies and management: Current paths to sustainable water use. Appl. Water Sci. 2024, 14, 154. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, C.; Zhao, Z.; Pan, X.; Li, Z. Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Clim. Chang. 2019, 155, 145–156. [Google Scholar] [CrossRef]
- Eekhout, J.; Delsman, I.; Baartman, J.; van Eupen, M.; van Haren, C.; Contreras, S.; Martínez-López, J.; de Vente, J. How future changes in irrigation water supply and demand affect water security in a Mediterranean catchment. Agric. Water Manag. 2024, 297, 108818. [Google Scholar] [CrossRef]
- Lyra, A.; Loukas, A. Simulation and Evaluation of Water Resources Management Scenarios Under Climate Change for Adaptive Management of Coastal Agricultural Watersheds. Water Resour. Manag. 2023, 37, 2625–2642. [Google Scholar] [CrossRef]
- Koch, H.; Silva, A.; Liersch, S.; de Azevedo, J.; Hattermann, F. Effects of model calibration on hydrological and water resources management simulations under climate change in a semi-arid watershed. Clim. Chang. 2020, 163, 1247–1266. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Beça, P.; Rodrigues, A.; Nunes, J.; Diogo, P.; Mujtaba, B. Optimizing Reservoir Water Management in a Changing Climate. Water Resour. Manag. 2023, 37, 3423–3437. [Google Scholar] [CrossRef]
- Garrote, L.; Granados, A.; Spiliotis, M.; Martin-Carrasco, F. Effectiveness of Adaptive Operating Rules for Reservoirs. Water Resour. Manag. 2023, 37, 2527–2542. [Google Scholar] [CrossRef]
- Latron, J.; Gallart, F. Seasonal dynamics of runoff-contributing areas in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). J. Hydrol. 2007, 335, 194–206. [Google Scholar] [CrossRef]
- Fortesa, J.; Latron, J.; Garcia-Comendador, J.; Tomas-Burguera, M.; Company, J.; Calsamiglia, A.; Estrany, J. Multiple Temporal Scales Assessment in the Hydrological Response of Small Mediterranean-Climate Catchments. Water 2020, 12, 299. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; Lopez-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta-Martinez, T.; Begueria, S. Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Guerra, C.A.; Maes, J.; Geijzendorffer, I.; Metzger, M.J. An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecol. Indic. 2016, 60, 213–222. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover–water yield debate: From demand-to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.; Weiss, K.; Palmer, M. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef]
- Ovando, P.; Beguería, S.; Campos, P. Carbon sequestration or water yield? The effect of payments for ecosystem services on forest management decisions in Mediterranean forests. Water Resour. Econ. 2019, 28, 100119. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, X.; Zhang, M.; Creed, I.; McNulty, S.; Ferraz, S. A global synthesis of hydrological sensitivities to deforestation and forestation. For. Ecol. Manag. 2023, 529, 120718. [Google Scholar] [CrossRef]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrol. Earth Syst. Sci. 2014, 18, 5201–5217. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ. Monit. Assess. 2015, 187, 4175. [Google Scholar] [CrossRef]
- Vinelli, M. Water conservation in Sardinia. Geogr. Rev. 1926, 16, 395–402. [Google Scholar] [CrossRef]
- Sechi, G.; Zucca, R.; Zuddas, P. Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach. Water Resour. Manag. 2013, 27, 1781–1796. [Google Scholar] [CrossRef]
- Dozier, C.L. Establishing a Framework for Development in Sardinia: The Campidano. Geogr. Rev. 1957, 47, 490–506. [Google Scholar] [CrossRef]
- Corsale, A.; Iorio, M. Recent trends in water policy in Sardinia. Filling the gap between increased demand and decreasing availability. In Global Changes: Vulnerability, Mitigation and Adataption; Sofia University Press-Za Bukvite: Tokyo, Japan, 2009; pp. 435–440. [Google Scholar]
- Montaldo, N.; Corona, R.; Albertson, J.D. On the separate effects of soil and land cover on Mediterranean ecohydrology: Two contrasting case studies in Sardinia, Italy. Water Resour. Res. 2013, 49, 1123–1136. [Google Scholar] [CrossRef]
- Montaldo, N.; Corona, R.; Curreli, M.; Sirigu, S.; Piroddi, L.; Oren, R. Rock water as a key resource for patchy ecosystems on shallow soils: Digging deep tree clumps subsidize surrounding surficial grass. Earth’s Future 2021, 9, e2020EF001870. [Google Scholar] [CrossRef]
- Yu, K.L.; D’Odorico, P. Climate, vegetation, and soil controls on hydraulic redistribution in shallow tree roots. Adv. Water Resour. 2014, 66, 70–80. [Google Scholar] [CrossRef]
- Noilhan, J.; Planton, S. A Simple Parameterization of Land Surface Processes for Meteorological Models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Service, S.C. National Engineering Handbook, Section 4: Hydrology; Department of Agriculture: Washington, DC, USA, 1986. [Google Scholar]
- Service, S.C. National Engineering Handbook, Section 4: Hydrology; Department of Agriculture: Washington, DC, USA, 1972. [Google Scholar]
- Chow, V.; Maidment, D.; Mays, L. Applied Hydrology; McGraw-Hill Book Company: New York, NY, USA, 1988. [Google Scholar]
- Ponce, V.M. Engineering Hydrology: Principles and Practices; Prentice Hall: Hoboken, NJ, USA, 1989. [Google Scholar]
- Albertson, J.D.; Kiely, G. On the structure of soil moisture time series in the context of land surface models. J. Hydrol. 2001, 243, 101–119. [Google Scholar] [CrossRef]
- Clapp, R.B.; Hornberger, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef]
- Ryel, R.; Caldwell, M.; Yoder, C.; Or, D.; Leffler, A. Hydraulic redistribution in a stand of Artemisia tridentata: Evaluation of benefits to transpiration assessed with a simulation model. Oecologia 2002, 130, 173–184. [Google Scholar] [CrossRef]
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History, and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Jarvis, P.G.; Monteith, J.L.; Weatherley, P.E. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Parlange, M.B.; Hopmans, J.W. Evaporation. Use of Fast-Response Turbulence Sensors, Raman Lidar, and Passive Microwave Remote Sensing; Oxford Academic: Oxford, UK, 1999; pp. 260–278. [Google Scholar] [CrossRef]
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 1. [Google Scholar]
- Larcher, W. Physiological Plant Ecology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Cayrol, P.; Chehbouni, A.; Kergoat, L.; Dedieu, G.; Mordelet, P.; Nouvellon, Y. Grassland modeling and monitoring with SPOT-4 VEGETATION instrument during the 1997-1999 SALSA experiment. Agric. For. Meteorol. 2000, 105, 91–115. [Google Scholar] [CrossRef]
- Nouvellon, Y.; Rambal, S.; Lo Seen, D.; Moran, M.S.; Lhomme, J.P.; Begue, A.; Chehbouni, A.G.; Kerr, Y. Modelling of daily fluxes of water and carbon from shortgrass steppes. Agric. For. Meteorol. 2000, 100, 137–153. [Google Scholar] [CrossRef]
- Montaldo, N.; Ravazzani, G.; Mancini, M. On the prediction of the Toce alpine basin floods with distributed hydrologic models. Hydrol. Process. 2007, 21, 608–621. [Google Scholar] [CrossRef]
- Sorooshian, S. Surface water hydrology: On-line estimation. Rev. Geophys. 1983, 21, 706–721. [Google Scholar] [CrossRef]
- Sechi, G.; Zuddas, P. WARGI: Water resources system optimisation aided by graphical interface. In Proceedings of the Hydraulic Engeneering Software VIII, Ashrust, UK, 1 January 2000; pp. 109–120. [Google Scholar]
- Sechi, G.; Sulis, A. Water System Management through a Mixed Optimization-Simulation Approach. J. Water Resour. Plan. Manag.-ASCE 2009, 135, 160–170. [Google Scholar] [CrossRef]
- Detto, M.; Montaldo, N.; Albertson, J.D.; Mancini, M.; Katul, G. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour. Res. 2006, 42, 16. [Google Scholar] [CrossRef]
- Montaldo, N.; Curreli, M.; Corona, R.; Oren, R. Fixed and variable components of evapotranspiration in a Mediterranean wild-olive—Grass landscape mosaic. Agric. For. Meteorol. 2020, 280, 107769. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.; Senior, C.; Stevens, B.; Stouffer, R.; Taylor, K. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; CABI: São Paulo, Brazil, 1991. [Google Scholar]
- Hensel, D.; Hirsch, R. Statistical Method in Water Resources; USGS Science for a Changing World: Reston, VA, USA, 2002; Chapter A3. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 1, 173. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Mohsin, T.; Gough, W.A. Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA). Theor. Appl. Climatol. 2010, 101, 311–327. [Google Scholar] [CrossRef]
- Hu, Y.; Maskey, S.; Uhlenbrook, S. Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim. Chang. 2012, 110, 403–429. [Google Scholar] [CrossRef]
- Amirabadizadeh, M.; Huang, Y.F.; Lee, T.S. Recent trends in temperature and precipitation in the Langat River Basin, Malaysia. Adv. Meteorol. 2015, 2015, 579437. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Pinna, C.C.; Silvano, R.; Fadda, A. Nuovo Studio Dell’idrologia Superficiale della Sardegna; Ente Autonomo del Flumendosa: Cagliari, Italy, 1998. [Google Scholar]
- Adeyeri, O.; Laux, P.; Lawin, A.; Oyekan, K. Multiple bias-correction of dynamically downscaled CMIP5 climate models temperature projection: A case study of the transboundary Komadugu-Yobe river basin, Lake Chad region, West Africa. SN Appl. Sci. 2020, 2, 1221. [Google Scholar] [CrossRef]
- Miralha, L.; Muenich, R.; Scavia, D.; Wells, K.; Steiner, A.; Kalcic, M.; Apostel, A.; Basile, S.; Kirchhoff, C. Bias correction of climate model outputs influences watershed model nutrient load predictions. Sci. Total Environ. 2021, 759, 143039. [Google Scholar] [CrossRef]
- El-Samra, R.; Haddad, A.; Alameddine, I.; Bou-Zeid, E.; El-Fadel, M. Downscaling Climatic Variables at a River Basin Scale: Statistical Validation and Ensemble Projection under Climate Change Scenarios. Climate 2024, 12, 27. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F.; Chen, H.; Yin, H. Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+. Hydrology 2021, 8, 157. [Google Scholar] [CrossRef]
- Llop, M.; Ponce-Alifonso, X. Water and Agriculture in a Mediterranean Region: The Search for a Sustainable Water Policy Strategy. Water 2016, 8, 66. [Google Scholar] [CrossRef]
- Zdruli, P. Land Resources of the Mediterranean: Status, pressure, trends and impacts on future regional developement. Land Degrad. Dev. 2014, 25, 373–384. [Google Scholar] [CrossRef]
- Andréassian, V. Waters and forests:: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Song, Y.; Chung, E.; Shiru, M. Uncertainty Analysis of Monthly Precipitation in GCMs Using Multiple Bias Correction Methods under Different RCPs. Sustainability 2020, 12, 7508. [Google Scholar] [CrossRef]
Parameter | Description | Grass | Forest |
---|---|---|---|
rs,min [s m−1] | Minimum stomatal resistance | 150 | 290 |
θwp [-] | Wilting point | 0.08 | 0.05 |
θlim [-] | Limiting soil moisture for vegetation | 0.20 | 0.18 |
Tmin [°K] | Minimum temperature | 279.15 | 268.15 |
Topt [°K] | Optimal temperature | 293.15 | 288.15 |
Tmax [°K] | Maximum temperature | 299.15 | 304.15 |
ca [m2 gDM−1] | Specific leaf areas of the green biomass | 0.01 | 0.0065 |
cd [m2 gDM−1] | Specific leaf areas of the dead biomass | 0.01 | 0.0062 |
ke [-] | PAR extinction coefficient | 0.5 | 0.5 |
ξa [-] | Parameter controlling allocation to leaves | 0.6 | 0.55 |
ξs [-] | Parameter controlling allocation to stem | 0.1 | 0.1 |
ξr [-] | Parameter controlling allocation to roots | 0.4 | 0.35 |
Ω [-] | Allocation parameter | 0.8 | 0.1 |
ma [d−1] | Maintenance respiration coefficients for aboveground biomass | 0.032 | 0.0001 |
ga [-] | Growth respiration coefficients for aboveground biomass | 0.32 | 0.85 |
mr [d−1] | Maintenance respiration coefficients for root biomass | 0.007 | 0.0003 |
gr [-] | Growth respiration coefficients for root biomass | 0.1 | 0.1 |
Q10 [-] | Temperature coefficient in the respiration process | 2.5 | 3 |
δa [d−1] | Death rate of aboveground biomass | 0.023 | 0.0019 |
δr [d−1] | Death rate of root biomass | 0.005 | 0.0001 |
ka [d−1] | Rate of standing biomass pushed down | 0.23 | 0.35 |
QN [-] | Soil respiration coefficient related to temperature | 1.2 | |
R10 [mmol CO2/m2 s] | Reference respiration at 10° C | 2.54 | |
zom,v [m] | Vegetation momentum roughness length | 0.05 | 0.5 |
zov,v [m] | Vegetation water vapor roughness length | zom/7.4 | zom/2.5 |
zom,bs [m] | Bare soil momentum roughness length | 0.015 | |
zov,bs [m] | Bare soil water vapor roughness length | zom/10 |
Class | Civil | Industrial | Irrigation | Ecological |
---|---|---|---|---|
I | 50 | |||
II | 30 | 80 | ||
III | 20 | 20 | 50 | 50 |
IV | 50 | |||
V | 50 |
Demand Scenario | Total Demand | Civil Demand | Industrial Demand | Irrigation Demand | Ecological Demand | |||||
---|---|---|---|---|---|---|---|---|---|---|
South Sardinia | Orroli | Gerrei | TOTAL Demand | South Sardinia | Isili | TOTAL Demand | ||||
[mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | [mm3/y] | |
A | 242.1 | 73.1 | 0.5 | 0.9 | 74.5 | 12.2 | 115.0 | 1.2 | 116.2 | 10% of the runoff |
B | 279.6 | 86.6 | 0.8 | 1.0 | 88.4 | 14.5 | 136.2 | 1.3 | 137.5 | |
C | 364.0 | 86.6 | 0.8 | 1.0 | 88.4 | 14.5 | 220.6 | 1.3 | 221.9 |
Parameter | Description | Mean | Range |
---|---|---|---|
CN | Curve Number of the Soil Conservation Service method | 84 | 42–99 |
θsat,s [-] | Saturated soil moisture in the surface soil | 0.44 | 0.41–0.46 |
bs [-] | Slope of the retention curve in the surface soil | 10.28 | 7.75–11.40 |
ksat,s [m/s] | Saturated hydraulic conductivity | 2.82 × 10−7 | 10−8–10−6 |
ds [m] | Surface soil depth | 0.36 | 0.20–0.85 |
θsat,r [-] | Saturated moisture in the underlying layer | 0.48 | 0.45–0.50 |
br [-] | Slope of the retention curve in the underlying layer | 7 | |
ksat,r [m/s] | Saturated hydraulic conductivity in the underlying layer | 1.41 × 10−7 | 5 × 10−9–5 × 10−7 |
Monte Scrocca | Mulargia | ||
---|---|---|---|
Calibration | Validation | Validation | |
R2 | 0.87 | 0.72 | 0.84 |
p | <0.0005 | <0.0005 | <0.0005 |
RMSE | 66.01 [mm/y] | 87.79 [mm/y] | 10.42 [mm/m] |
NSE | 0.84 | 0.52 | 0.72 |
ΔV | 11% | 6.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montaldo, N.; Sirigu, S.; Zucca, R.; Ruiu, A.; Corona, R. Hydrological Sustainability of Dam-Based Water Resources in a Mediterranean Basin Undergoing Climate Change. Hydrology 2024, 11, 200. https://doi.org/10.3390/hydrology11120200
Montaldo N, Sirigu S, Zucca R, Ruiu A, Corona R. Hydrological Sustainability of Dam-Based Water Resources in a Mediterranean Basin Undergoing Climate Change. Hydrology. 2024; 11(12):200. https://doi.org/10.3390/hydrology11120200
Chicago/Turabian StyleMontaldo, Nicola, Serena Sirigu, Riccardo Zucca, Adriano Ruiu, and Roberto Corona. 2024. "Hydrological Sustainability of Dam-Based Water Resources in a Mediterranean Basin Undergoing Climate Change" Hydrology 11, no. 12: 200. https://doi.org/10.3390/hydrology11120200
APA StyleMontaldo, N., Sirigu, S., Zucca, R., Ruiu, A., & Corona, R. (2024). Hydrological Sustainability of Dam-Based Water Resources in a Mediterranean Basin Undergoing Climate Change. Hydrology, 11(12), 200. https://doi.org/10.3390/hydrology11120200