The Development of Drawdown Dolines and Subsidence Dolines with the Comparison of Their Bedrock Resistivities—A Case Study
Abstract
:1. Introduction
2. Research Areas
3. Methods
4. Results
- -
- The compaction doline developed by the compaction of the sediment filling the bedrock depression [10]. The doline is younger than the depression of the bedrock and developed independently of it.
- -
- It is also younger than the bedrock depression and developed independently of it even when the bedrock depressions are filled with lenticular bedded series and these are overlain by the beds bearing subsidence dolines (Figure 7).
- -
- Similarly, the doline is younger than the bedrock depression if the depression of the subsidence doline is constituted by the beds that curved into the bedrock depression (drawdown doline, Figure 8). In this case, the development of the subsidence doline is not independent of the drawdown doline of the bedrock since the caprock subsided during its development. There is a genetic relationship between the development of the two doline types; a precondition of subsidence doline development is drawdown doline development.
- -
- Below dolines, resistivities are low (below 1000 Ohmm) and lower than in their environment (group B).
- -
- Below dolines, resistivities are low (below 1000 Ohmm), but higher than in their environments (group A).
- -
- Below dolines, resistivities are high (above 1000 Ohmm), but lower than in their environments (group D).
- -
- Below dolines, resistivities are high (above 1000 Ohmm), but higher than in their environments (group C).
- -
- Below dolines, resistivities are low (below 1000 Ohmm), but there is no superficial deposit on the floor of the doline, there is a shaft (group E).
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mangin, A. Contribution a l’etude hydrodynamique des aquiferes karstiques. Univ. Dijon These Doct. Es. Sci. 1975, 29, 283–332. [Google Scholar]
- Jones, W.K. Physical Structure of the Epikarst. 2013. Available online: https://ojs.zrc-sazu.si/carsologica/article/view/672 (accessed on 8 January 2025).
- Bakalowicz, M. Epikarst. In Encyclopedia of Caves; White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 394–398. [Google Scholar]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Chichester, UK, 2007; 561p. [Google Scholar]
- Alemdağ, H.; Köroğlu, F.; Aydın, Z.Ö.; Seren, A. Deciphering of karst geomorphology and sinkhole (doline) structures using multiple geophysical and geological methods (Trabzon, NE Türkiye). Bull. Eng. Geol. Environ. 2024, 83, 286. [Google Scholar] [CrossRef]
- Sauro, U. Closed Depressions in Karst Areas. In Encyclopedia of Caves; White, W.B., Culver, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 140–155. [Google Scholar]
- Veress, M. The Evolution and Development of Solution Dolines with Horizontal Growth and the Processes of Their Floors: A Case Study on the Plate-Shaped Dolines of the Bükk Mountains, Aggtelek Karst and Pádis Plateau. Earth 2020, 1, 49–74. [Google Scholar] [CrossRef]
- Waltham, A.C.; Fookes, P.G. Engineering classification of karst ground conditions. Q. J. Eng. Geol. Hydrogeol. 2003, 36, 101–118. [Google Scholar] [CrossRef]
- Waltham, T.; Bell, F.; Culshaw, M. Sinkholes and Subsidence; Springer: Berlin/Heidelberg, Germany, 2005; 382p. [Google Scholar]
- Williams, P.W. Dolines. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: New York, NY, USA; London, UK, 2004; pp. 304–310. [Google Scholar]
- Veress, M. A mészkőfekü morfológiájának a hatása a fedett karsztosodásra az Északi-Bakonyban (The effect of the morphology of the limestone bedrock on covered karstification in the Northern Bakony Mountains). Karszt És Barlang 2008, 28, 33–54. (In Hungarian) [Google Scholar]
- Veress, M. Covered Karst; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016; 536p. [Google Scholar] [CrossRef]
- Yuan, D. Environmental and engineering problems of karst geology in China. In Karst Hydrogeology: Engineering and Environmental Applications; Beck, B.F., Wilson, W.L., Eds.; Balkema: Rotterdam, The Netherlands, 1987; pp. 1–11. [Google Scholar]
- Chen, J. Karst collapses in cities and mining areas, China. Environ. Geol. Water Sci. 1988, 12, 29–35. [Google Scholar] [CrossRef]
- Veress, M. The surface morphology of karsts in Hungary. In Cave and Karst Systems of Hungary; Veress, M., Leél-Őssy, S.Z., Eds.; Springer: Cham, Switzerland, 2022; pp. 179–247. [Google Scholar] [CrossRef]
- Veress, M. Processes and Features of Subsidence Dolines (Sinkholes). Glob. J. Earth Sci. Eng. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- De Waele, J.; Gutiérrez, F. Karren and sinkholes. In Karst Hydrogeology, Geomorphology and Caves; De Waele, J., Gutiérrez, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; Chapter 5; pp. 336–465. [Google Scholar] [CrossRef]
- Kercsmár, Z.; Selmeczi, I.; Budai, T.; Less, G.; Konrád, G. Geology of the Karst Terrains in Hungary. In Cave and Karst Systems of Hungary; Veress, M., Leél-Őssy, S.Z., Eds.; Springer: Cham, Switzerland, 2022; pp. 63–176. [Google Scholar] [CrossRef]
- Haas, J. Földtan (Geology). In Magyarország Térképekben; Kocsis, K., Schweitzer, F., Eds.; MTA, Földrajztudományi Kutatóintézet: Budapest, Hungary, 2011; pp. 35–38. (In Hungarian) [Google Scholar]
- Bleahu, M. Structural position of the Apuseni Mountains in the Alpine System. Rev. Roum. De Geol. Geophys. Et Geogr. Ser. De Geol. 1976, 20, 7–19. [Google Scholar]
- Górna, M. Geotourist potential of the Padis Karst Region (Apuseni Mountains, Romania) // Potencjał geoturystyczny krasowego regionu Padis (Góry Apuseni, Rumunia). Geotourism/Geoturystyka 2008, 15, 41. [Google Scholar] [CrossRef]
- Lovász, G. Adatok az Abaligeti karszt geomorfológiai és hidrológiai jellemzéséhez (Data on the geomorphological and hydrological characterization of Abaligetien Karst). Földrajzi Értesítő 1971, XX, 283–296. (In Hungarian) [Google Scholar]
- Lippmann, L.; Kiss, K.; Móga, J. Az Abaligeti-Orfűi karszt karsztos felszínformáinak vizsgálata térinformatikai módszerekkel (GIS investigation of the karst landforms in the Abaliget-Orfű Karst). Karsztfejlődés 2008, XIII, 151–166. (In Hungarian) [Google Scholar]
- Williams, P.W. The role of the subcutaneous zone in karst hydrology. J. Hydrol. 1983, 61, 45–67. [Google Scholar] [CrossRef]
- Williams, P.W. Subcutaneous hydrology and the development of doline and cockpit karst. Zeits. F. Geomorphol. 1985, 29, 463–482. [Google Scholar] [CrossRef]
Doline Code | Area | Resistivity [Ohmm] | Profile Length (m) | Measurement Number | Cover Thickness Below Doline [m] | Shaft | Genetics According to Sediment Structure | Reducible Doline Group | ||
---|---|---|---|---|---|---|---|---|---|---|
Below Doline | Average Along Profile | Its Largest Difference | ||||||||
I-16 | Tés 3 | - | 346.4 | 92.00 | 100 | 5 | 0 | + | ●■ | E |
I-23 | Tés 2 | - | 350.00 | 0.00 | 30 | 2 | 0 | + | ● | |
I-24 | Tés 2 | - | 275.00 | 120.00 | 200 | 4 | 0 | + | ? | |
I-32 | Tés 1 | - | 252.62 | 170.00 | 200 | 8 | 0 | + | ▲ | |
I-33 | Tés 1 | - | 301.28 | 186.00 | 260 | 7 | 0 | + | ▲ | |
H-1 | Homód Valley | - | 307.00 | 390.00 | 144 | 8 | 0 | + | ▲■ | |
E-6 | Eleven-Förtés | - | 758.57 | 660 | 105 | 7 | 0 | + | ●■ | |
I-25 | Tés 2 | 230 | 306.67 | 90.00 | 10.8 | 5 | 6.5 | - | ● | B |
I-27 | Tés 2 | 360 | 400.67 | 178.00 | 60 | 3 | 4.8 | - | ? | |
H-2 | Homód Valley | 200 | 252.5 | 140 | 126 | 5 | 7.7 | - | ● | |
H-6 | Homód Valley | 170 | 278.75 | 180 | 300 | 8 | 1.5 | - | ● | |
E-1 | Eleven-Förtés | 360 | 688 | 650 | 180 | 10 | 4.9 | ++ | ●▲ | |
E-2 | Eleven-Förtés | 650 | 840 | 690 | 87 | 6 | 3.9 | - | ●○ | |
E-5 | Eleven-Förtés | 560 | 645 | 10 | 26 | 2 | 5.3 | - | ●○■ | |
I-17 | Tés 2 | 310 | 251.63 | 80 | 75 | 8 | 0.9 | - | ● | A |
I-18 | Tés 3 | 370 | 248.2 | 83 | 60 | 5 | 2.9 | - | ●○ | |
I-26 | Tés 2 | 340 | 275.00 | 200 | 12 | 7 | 13.3 | - | ●■ | |
I-31 1 | Tés 1 | 430 | 272.28 | 125 | 213.33 | 7 | 6.3 | + | ●▲ | |
H-8 | Homód Valley | 390 | 303.33 | 220 | 300 | 9 | 6.5 | - | ●○ | |
E-3 | Eleven-Förtés | 670 | 550 | 780 | 118.33 | 5 | 2.7 | - | ●○ | |
MH18 | Mester-Hajag | 1500 | 1700 | 1000 | 67.5 | 5 | 5.4 | - | ● | D |
MH22 | Mester-Hajag | 1600 | 1660 | 900 | 52.5 | 5 | 5.8 | - | ? | |
MB-50 | Mester-Hajag | 3350 | 493.89 | 160 | 100.67 | 9 | 3.2 | - | ? | |
F-2 1 | Fehérkő-árok | 1390 | 1420 | 1330 | 118.00 | 7 | 3.6 | - | ●○ | |
MH10 | Mester-Hajag | 1800 | 1271.67 | 1000 | 80.00 | 6 | 3.9 | - | ? | C |
MH41 1 | Mester-Hajag | 2000 | 1862.5 | 1000 | 92.5 | 8 | 4.0 | - | ●○ | |
MH52 | Mester-Hajag | 1400 | 1262.5 | 900 | 80.00 | 8 | 9.1 | - | ? | |
MB41 1 | Mester-Hajag | 510 | 505.6 | 156 | 196.67 | 10 | 4.6 | - | ●○ | |
F1 | Fehérkő Valley | 2500 | 1987.14 | 2720 | 65.78 | 7 | 1.2 | - | ●○ | |
E-8 1 | Eleven-Förtés | 1100 | 646 | 740 | 72.5 | 5 | 8.1 | - | ●○ |
Area | Number of Profiles Taken into Consideration (Profile) | Number of VES Measurement (Measurement) | Average Penetration of Measurement into the Bedrock Relative to Bedrock Surface (m) | Average Resistivity 1 (Ohmm) | Site of Profile |
---|---|---|---|---|---|
Apuseni Mountains, Pádis Răchite (Romania) | 3 | 46 | 4.55–8.58 | 11,385.44 | closed area enclosed by mounds, buried recent depressions on the bedrock, with subsidence dolines at its surface |
Apuseni Mountains, Pádis Răchite (Romania) | 5 | 34 | 4.76–6.96 | 10,335.83 | closed area enclosed by mounds, plain bedrock, with subsidence dolines at the surface |
sum and average at Răchite | 8 | 80 | - | 10,860.63 | |
Hideg Valley, Aggtelek Karst, | 1 | 6 | 4.4–5.4 | 5220 | solution dolines (soil-covered karst), recent |
Czigány-földek, Mecsek Karst inner part of drawdown dolines | 4 | 25 | 5.16–6.56 | 4730.78 | subsidence dolines in drawdown doline |
Czigány-földek Mecseki Karst, margin of drawdown dolines | 4 | 19 | 5.61–7.12 | 3818.45 | subsidence dolines in drawdown doline |
Czigány-földek sum and average | 4 | 44 | - | 4274.61 | |
Hochschwab | 3 | 19 | 5.39–11.54 | 5258.98 | large paleodepression, with covered karst subsidence dolines |
Totes Gebirge | 2 | 13 | 0.5–5 | 4176.4 | paleodepression, with covered karst subsidence dolines |
Zsidó-Rét, Bükk Mountains | 2 | 6 | 4.65–5.81 | 10,000 | floor of plate-shaped doline |
sum and average | 20 | 168 | - | 6865.73 | drawdown dolines (recent and paleokarstic) |
Area | Number of Profiles Taken into Consideration (Profile) | Number of VES Measurement (Measurement) | Average Penetration of Measurement into the Bedrock Relative to Bedrock Surface (m) | Average Resistivity 1 (Ohmm) | Site of Profile |
---|---|---|---|---|---|
Bakony Mountains, eastern part of Tés plateau | 14 | 104 | 3–10 | 315 | mostly on valley floor |
Bakony, Eleven-Förtés | 10 | 68 | 5–7 | 611 | inactive depression, subsidence dolines in its area |
Bakony, northern part of Mester-Hajag | 18 | 137 | 3–8 | 1273 | area enclosed by mounds with subsidence dolines |
sum and average | 42 | 309 | - | 733 | |
Cigány-földek Mecsek Karst outside solution dolines | 2 | 11 | 4.7–6.2 | 3785.50 | subsidence dolines |
area next to Răchite | 2 | 8 | 2.49–6.37 | 8443.33 | covered karst of valley floor with subsidence dolines |
Dachstein 2 | 1 | 7 | 10–15 | 868.56 (453.86) | paleodoline |
sum and average | 47 | 328 | - | 2885.57 | - |
Doline Code Group Code | Area | Resistivities [Ohmm] | Average Profile Length [m] | Average Measurement Number [Measurement] | Average Cover Thickness Below the Dolines of the Group [m] | Shaft (Total) [Shaft] | Doline Case Number [Case Number] | Potential Water Supply into the Karst | ||
---|---|---|---|---|---|---|---|---|---|---|
Average Resistivity of Bedrock at the Dolines of the Doline Group | Average Resistivity of Profile Parts Bearing the Dolines of the Doline Group | The Largest Resistivity Difference of Doline Groups | ||||||||
E | Tés, Homód Valley, Eleven-Förtés, Homód Valley | - | 370.13 | 229.71 | 137 | 5.86 | 0 | 7 | n = 7 | a lot of |
B | Tés, Homód Valley, Eleven-Förtés | 367.14 | 487.37 | 276.86 | 112.83 | 5.57 | 4.96 | 1 | n = 7 | a lot of |
A | Tés, Homód Valley, Eleven-Förtés | 418.33 | 323.41 | 248.0 | 129.78 | 6.83 | 6.23 | 1++ | n = 6 | little |
D | Mester-Hajag, Fehérkő Valley | 1206.25 | 1318.47 | 847.5 | 86.17 | 6.5 | 4.5 | 0 | n = 4 | little |
C | Mester-Hajag,, Fehérkő Valley | 1551.67 | 1255.90 | 1086.2 | 97.21 | 7.33 | 5.15 | 0 | n = 6 | little |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veress, M. The Development of Drawdown Dolines and Subsidence Dolines with the Comparison of Their Bedrock Resistivities—A Case Study. Hydrology 2025, 12, 12. https://doi.org/10.3390/hydrology12010012
Veress M. The Development of Drawdown Dolines and Subsidence Dolines with the Comparison of Their Bedrock Resistivities—A Case Study. Hydrology. 2025; 12(1):12. https://doi.org/10.3390/hydrology12010012
Chicago/Turabian StyleVeress, Márton. 2025. "The Development of Drawdown Dolines and Subsidence Dolines with the Comparison of Their Bedrock Resistivities—A Case Study" Hydrology 12, no. 1: 12. https://doi.org/10.3390/hydrology12010012
APA StyleVeress, M. (2025). The Development of Drawdown Dolines and Subsidence Dolines with the Comparison of Their Bedrock Resistivities—A Case Study. Hydrology, 12(1), 12. https://doi.org/10.3390/hydrology12010012