Protocols for Water and Environmental Modeling Using Machine Learning in California
Abstract
:1. Introduction
2. Machine Learning in Water and Environmental Modeling
2.1. The Life Cycle of a Machine Learning Model
2.2. Roles of Machine Learning Models in Water and Environmental Modeling
- (1)
- Enhanced simulation and prediction
- (2)
- Uncovering hidden insights
- (3)
- Efficiency and scalability
- (4)
- Integration with traditional models
2.3. Machine Learning Experience of the California Department of Water Resources
2.3.1. Applications in Modeling Salinity
2.3.2. Applications in Modeling Ion Constituents
2.3.3. Applications in Modeling Other Variables
3. Machine Learning Protocols and Case Study
3.1. Problem Definition
3.1.1. Problem Definition Protocols
- (1)
- Understand the Context
- (a)
- Identify the problem: Begin by clearly identifying the specific water-related or environmental issues to be addressed. Is it water data anomaly detection, water quality deterioration, flood, drought, and water supply forecasting, or others?
- (b)
- Stakeholder needs: Consider the needs and interests of stakeholders who might benefit from the model’s insights, such as policymakers, water managers, or the public.
- (2)
- Define the Scope
- (a)
- Specificity: Avoid broad and ambiguous statements like “improve water quality understanding”. Instead, focus on specific and measurable objectives.
- (b)
- Temporal and spatial considerations: Specify the desired prediction timeframe (e.g., hourly, daily, seasonal, or annual) and the spatial scope (e.g., a specific river, channel, an entire watershed, or groundwater basin).
- (3)
- Define the Desirable Outcome
- (a)
- Measurable goals: State what you want the model to achieve in a quantifiable manner. This could involve predicting specific water quality parameters, identifying areas of water quality degradation, or forecasting the probability of specific events.
- (b)
- Performance metrics: Define the metrics you will use to evaluate the model’s success in achieving the desired outcome. This could involve metrics including but not limited to accuracy, precision, and recall for classification tasks or bias, Mean Absolute Error, and the coefficient of determination for regression tasks.
- (4)
- Refine and Iterate
- (a)
- Seek feedback: Share the draft problem statement with colleagues or experts in the field and stakeholders to gather feedback and ensure clarity and feasibility.
- (b)
- Iterative process: Be prepared to make adjustments based on feedback and emerging information throughout the project.
3.1.2. Problem Definition Example
3.2. Data Preparation
3.2.1. Data Preparation Protocols
- (1)
- Use of standardized protocols: It is necessary to adhere to standardized protocols and methodologies for data collection, measurement, model simulation, and sampling to ensure consistency and comparability across datasets.
- (2)
- Implementation of quality assurance/quality control (QA/QC) measures: It is necessary to implement rigorous QA/QC procedures to identify and rectify errors, outliers, and inconsistencies in the collected data, including the calibration of instruments, duplicate measurements, and cross-validation with reference data.
- (3)
- Selection of representative data: It is necessary to choose sampling locations that are representative of the spatial and temporal variability of the water and environmental processes under study, taking into account factors such as study purpose, study period, and data availability, among others.
- (4)
- Data accessibility and documentation: It is necessary to document metadata, data sources, and collection methods to facilitate data sharing, reproducibility, and transparency.
- (5)
- Data pre-processing: This process involves examining raw input data and transforming them—either directly or through feature extraction—into a form that ML models can effectively utilize. Typical techniques for pre-processing include normalization and standardization. Normalization scales the data to a range, typically [0, 1], by adjusting values proportionally based on the minimum and maximum of each feature. This is particularly useful when features have varying scales. Standardization transforms data to have a mean of 0 and a standard deviation of 1, making them suitable for ML algorithms that assume normally distributed features.
- (6)
- Data split: Once the data are prepared, they are typically divided into separate subsets. A common approach involves a three-way split into training, validation, and test sets, where the validation set is used for tuning hyperparameters and preventing overfitting. In some cases, cross-validation is employed instead of a fixed validation set to ensure robust model evaluation. These strategies help optimize the model’s parameters and assess its performance on unseen data.
3.2.2. Data Preparation Example
3.3. Model Development
3.3.1. Model Development Protocols
- (1)
- Start Simple
- (2)
- Ensemble Methods
- (3)
- Hybrid Methods
- (4)
- Consider Spatial and Temporal Dynamics
- (5)
- Incorporate Domain Knowledge
- (1)
- Sensitivity Analysis
- (2)
- Overfitting Prevention
- (3)
- Ensemble Learning
- (4)
- Cross-Validation
- (5)
- Hyperparameter Optimization
3.3.2. Model Development Example
- (1)
- Model Selection
- (2)
- Model Training
- (3)
- Model Evaluation
3.4. Model Deployment
3.4.1. Model Deployment Protocols
- (1)
- Comprehensive Documentation
- (2)
- Open-Source Collaboration
- (3)
- Hands-On Training
- (4)
- User Community Engagement
- (5)
- Peer-Reviewed Journal Articles
- (6)
- Maintenance and Improvement
3.4.2. Model Deployment Example
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Artificial Intelligence and Machine Learning
Appendix B. Terms and Definitions
Term | Definition |
---|---|
Accuracy | Correctness of predictions made by a machine learning model. |
Activation function | A mathematical operation applied to a neuron’s output to introduce non-linearity, enabling the model to learn complex relationships between inputs and outputs. |
Adaptability | The capability of a model to adjust and perform effectively in new or changing environments or tasks. |
Artificial intelligence (AI) | The development of computer systems that can perform tasks that typically require human intelligence. |
Artificial Neural Network (ANN) | A model inspired by the structure and function of biological neural networks, consisting of interconnected nodes (neurons) organized into layers for learning from data. |
Bagging | An ensemble learning technique that improves model stability and accuracy by training multiple models on different subsets of the training data and averaging their predictions (for regression) or using majority voting (for classification). |
Boosting | An ensemble learning technique that combines multiple weak learners to create a strong learner by iteratively correcting the errors of previous models. |
Classification | Techniques used to categorize data into predefined classes or categories based on input features. |
Cloud | A network of remote servers hosted on the internet for storing, managing, and processing data and algorithms, providing scalable resources and services. |
Communication | The process of conveying updates, status reports, or instructions among team members, stakeholders, and deployed systems to ensure smooth operation and maintenance. |
Computational resources | The hardware and software components utilized for training, inference, and executing machine learning algorithms, including CPUs, GPUs, and memory. |
Computer science (CS) | The study of the theory, design, and implementation of computer systems and algorithms, including hardware, software, and networking, to solve problems and develop innovative technologies. |
Cross-validation | A technique used to assess the performance and generalization ability of a model by dividing the dataset into multiple subsets for training and testing. |
Data augmentation | A regularization technique used to artificially increase the size and diversity of a training dataset by applying transformations to existing data. |
Data collection | The gathering of relevant information or samples, often from various sources, to build a dataset suitable for training and evaluating machine learning models. |
Data pre-processing | The processing of cleaning, transforming, and preparing raw data to make them suitable for analysis and machine learning model training. |
Deep learning (DL) | A subset of machine learning where Artificial Neural Networks with multiple layers learn to represent data in increasingly abstract and complex ways. |
Domain expertise | Specialized knowledge and understanding of a particular subject area or industry that informs the development and application of machine learning models within that domain. |
Dropout | A regularization technique used in neural networks to prevent overfitting by randomly setting a fraction of the neurons (or units) to zero during training. |
Early stopping | A technique used in machine learning to prevent overfitting during the training of a model by stopping the training process before the model has fully converged if its performance on a validation set stops improving. |
Ensemble | A technique where multiple models are combined to improve predictive performance by aggregating their individual predictions. |
Evaluation | The process of assessing the performance, robustness, and effectiveness of a trained machine learning model by using various metrics and techniques. |
Explainability | The degree to which the inner workings and decisions of a model can be understood and interpreted by humans. |
Explainable AI | The development of models whose internal logic and reasoning can be transparently understood by human experts. |
Features | The data attributes or variables that are fed into a machine learning model for training or making predictions. |
Generalization | A model’s capacity to effectively learn from training data and apply that knowledge to accurately predict outcomes for unseen data. |
Generative AI (GenAI) | A subset of deep learning that generates new content based on patterns learned from existing data. |
Gradient | The vector of partial derivatives of a function with respect to its input variables. |
Grid search | An exhaustive hyperparameter optimization technique that systematically evaluates a large number of possible combinations of a predefined set of hyperparameters to find the best-performing model configuration. |
Hidden layer | An intermediate layer of neurons between the input and output layers in a neural network responsible for extracting and transforming features from the input data. |
Hyperband | A hyperparameter optimization algorithm that combines successive halving and bandit-based strategies to allocate computational resources dynamically, prioritizing the most promising configurations while pruning less effective ones. |
Hyperparameter | A configuration parameter external to the model that influences its learning process and performance, typically set before training. |
Interoperability | The ability of different models or systems to seamlessly exchange and utilize data or functionality, promoting integration and collaboration across diverse environments. |
Interpretability | The degree to which a model’s internal decision-making process can be understood by humans. |
Learning algorithm | A set of procedures and rules that a model follows to adjust its parameters based on input data, aiming to minimize a predefined loss or error function. |
Learning rate | A hyperparameter that controls how quickly a model adapts to new information, determining the step size for each iteration’s weight updates, balancing convergence speed and accuracy. |
Loss function | A function quantifying the difference between predicted and actual values, guiding the optimization process during model training. |
Machine learning (ML) | The field of study that enables computers to learn data without being explicitly programmed. |
Model architecture | The high-level design of a model, specifying the organization and connection of its components for data processing and transformation. |
Model deployment | The process of integrating a trained, tested, and evaluated machine learning model into a production environment. |
Model selection | The process of choosing the most appropriate machine learning algorithm or architecture for a given task by comparing and evaluating multiple candidates. |
Neuron | Artificial Neural Network component that processes inputs, applies weights, and produces outputs, mimicking biological neurons’ behavior, to learn and make predictions or decisions. |
Noise | Irrelevant or random fluctuations in data that can interfere with the learning process or affect the accuracy of a model’s predictions. |
Normalization | The process of rescaling input features to a predetermined range, to ensure consistent scales and improve convergence in training. |
Open source | Software made available under a license that allows users to freely access, modify, and distribute the source code, promoting collaboration, community-driven development, and transparent innovation. |
Overfitting | A model’s tendency to capture noise or random fluctuations in the training data, resulting in poor performance on unseen data. |
Privacy | Safeguarding sensitive information and preserving the confidentiality of data used in models, preventing unauthorized access or disclosure. |
Problem definition | Articulating the task or objective that the machine learning model aims to solve. |
Protocols | Standardized procedures and guidelines for building, training, and evaluating machine learning models. |
Pruning | A regularization technique used to reduce the size of a machine learning model by removing less important parameters (such as weights, neurons, or branches), thereby improving efficiency while maintaining performance. |
Quality assurance | Ensuring that products or services meet specified requirements and standards through systematic processes and testing procedures. |
Regression | Technique to establish a relationship between independent variables and a dependent variable for prediction. |
Regularization | Technique applied during model training to prevent overfitting by penalizing overly complex models. |
Reliability | A model’s ability to produce consistent and accurate results over time. |
Reproducibility | The ability to repeat and obtain consistent results in an experiment, study, or computation. |
Robustness | A model’s ability to maintain performance when faced with variations in the data or unexpected conditions. |
Scalability | The ability of a machine learning model to handle increasing quantities of data, computation, or users while maintaining performance and efficiency. |
Security | Protecting models, data, and systems from unauthorized access, manipulation, or adversarial attacks, ensuring confidentiality, integrity, and availability. |
Sensitivity | A measure of how much a model’s output changes in response to small changes in its inputs or parameters. |
Stacking | An ensemble learning technique that combines multiple base models (often of different types) by training a meta-model (or “blender”) to make final predictions based on the outputs of those base models. |
Supervised learning | The paradigm where models are trained on labeled data, with input–output pairs provided, to learn the mapping between inputs and outputs. |
Standardization | Establishing uniform processes, specifications, or data formats to ensure compatibility and efficient operation. |
Testing | Evaluating the performance and generalization ability of a trained machine learning model on unseen data to assess its accuracy and reliability. |
Training | The process of teaching a machine learning model to recognize patterns and make predictions by exposing it to data and adjusting its parameters through iterative optimization algorithms. |
Transparency | The quality of being clear, open, and understandable. |
Uncertainty | The lack of confidence or variability in predictions made by a model. |
Unsupervised learning | The paradigm where models are trained on unlabeled data to discover patterns, structures, or relationships without explicit guidance on the desired output. |
Appendix C. Summary of Machine Learning Applications in California
Discipline | Target | Reference ID |
---|---|---|
Surface water hydrology | Streamflow | [29,31,32,37,38,39,41,42,44] |
Soil moisture | [30,33] | |
Seasonal runoff volume | [34,35,36] | |
Reservoir inflow/outflow | [40,43] | |
Groundwater hydrology | Groundwater storage | [45,52] |
Groundwater age | [46] | |
Groundwater level | [47,48,49,50,51] | |
Hydro-meteorology/hydro-Climatology | Reference evapotranspiration | [53,54] |
Precipitation | [55,56,57,58,59,61,62,64] | |
Evapotranspiration | [60] | |
Snow water equivalent | [63] | |
Water quality | Water temperature | [65,85,166] |
Salinity | [66,67,70,71,77,78,79,80,82,83,170,171,172,173,174] | |
Dissolved oxygen | [66] | |
Nitrate | [68,81] | |
Trichloropropane | [69] | |
Trihalomethane | [167] | |
Arsenic | [72] | |
Sediment | [73] | |
Uranium | [74] | |
Ion constituents | [75,76] | |
Fecal indicator bacteria | [84] | |
Ecology | Wildfire | [86,87,88,89,91,93,94] |
Forage | [90] | |
Chinook salmon migration | [92] | |
Kelp biodiversity | [95] | |
Fish biomass | [95] | |
Rocky intertidal biodiversity | [95] | |
Fish entrainment | [96] | |
Almond yield | [97] | |
Crop | [98] | |
Harmful algal bloom | [178] | |
Water management/operations | Community water systems | [19] |
Agricultural water shortage | [99] | |
Flood | [100,104,107] | |
Irrigation water demand | [101] | |
Water security/access | [102] | |
Drought | [103] | |
Reservoir operations | [105,108] | |
Water supply vulnerability | [106] | |
Water use pattern | [109] | |
Marginal export cost | [168,169,175,176,177] |
Appendix D. Supplementary Section for the Case Study
Feature/Model | Decision Trees | Random Forest | Gradient Boosting | Artificial Neural Networks |
---|---|---|---|---|
Model type | Tree-based | Ensemble | Ensemble | Neural network |
Basic unit | Decision Trees | Decision Trees | Weak learners | Neurons |
Hidden layers | N/A | N/A | N/A | One or more |
Loss function | Gini/Entropy | Gini/Entropy | Various | MSE, Cross-Entropy, etc. |
Learning algorithm | ID3, CART, etc. | Bagging | Boosting | Gradient Descent, Adam, etc. |
Regularization | Pruning | Voting/averaging | Shrinkage | Dropout, Weight Decay, etc. |
Scalability | Moderate | High | Moderate to high | High |
Robustness | Moderate | High | High | Varies |
Interpretability | High | Moderate | Low | Low |
Speed/efficiency (training) | Fast | Moderate | Moderate | Varies |
Speed/efficiency (inference) | Fast | Fast | Fast | Fast |
Applications | Classification and regression | Classification, regression, and anomaly detection | Classification, regression, and ranking | Classification, regression, NLP, and image processing |
Hidden Layer | TDSs | Mg2+ | Na+ | |||
---|---|---|---|---|---|---|
N | Act | N | Act | N | Act | |
1 | 30 | elu | 30 | relu | 30 | tanh |
2 | 30 | sigmoid | 30 | elu | 30 | elu |
3 | 30 | elu | 30 | tanh | 30 | sigmoid |
4 | 30 | relu | 30 | relu | 30 | elu |
Hidden Layer | Ca2+ | Cl− | SO42− | |||
N | Act | N | Act | N | Act | |
1 | 40 | elu | 30 | relu | 44 | relu |
2 | 40 | sigmoid | 30 | elu | 44 | relu |
3 | 40 | relu | 30 | sigmoid | 44 | relu |
4 | 30 | tanh | 30 | elu | 22 | relu |
Hidden Layer | Br− | Alkalinity | K+ | |||
N | Act | N | Act | N | Act | |
1 | 44 | elu | 30 | tanh | 44 | relu |
2 | 44 | sigmoid | 30 | relu | 44 | relu |
3 | 30 | elu | 30 | tanh | 44 | relu |
4 | 30 | tanh | 30 | elu | 22 | relu |
References
- Pinter, N.; Lund, J.; Moyle, P. The California Water Model: Resilience through failure. Hydrol. Process. 2019, 33, 1775–1779. [Google Scholar] [CrossRef]
- Hanak, E.; Lund, J.R. Adapting California’s water management to climate change. Clim. Chang. 2012, 111, 17–44. [Google Scholar] [CrossRef]
- Bay-Delta Modeling Forum (BDMF). Protocols for Water and Environmental Modeling; California Water and Environmental Modeling Forum: Sacramento, CA, USA, 2000; p. 47. [Google Scholar]
- California Water & Environmental Modeling Forum (CWEMF). Protocols for Water and Environmental Modeling; California Water and Environmental Modeling Forum: Sacramento, CA, USA, 2021; p. 119. [Google Scholar]
- Hannaford, J.F. Multiple-graphical correlation for water supply forecasting. In Proceedings of the 24th Annual Western Snow Conference, Penticton, BC, Canada, 17–19 April 1956. [Google Scholar]
- Hart, D.; Gehrke, F. Status of the California cooperative snow survey program. In Proceedings of the 58th Annual Western Snow Conference, Sacramento, CA, USA, 17–19 April 1990. [Google Scholar]
- California Department of Water Resources (DWR; formerly the Division of Water Resources). Variation and Control of Salinity; California Division of Water Resources Bulletin: Sacramento, CA, USA, 1931. [Google Scholar]
- California Department of Water Resources. Dayflow Documentation [Internet]. Available online: https://water.ca.gov/Programs/Integrated-Science-and-Engineering/Compliance-Monitoring-And-Assessment/Dayflow-Data (accessed on 1 May 2024).
- Becker, L.; Sparks, D.; Fults, D.M.; Yeh, W.W. Operations models for central valley project. J. Water Resour. Plan. Manag. Div. 1976, 102, 101–115. [Google Scholar] [CrossRef]
- Draper, A.J.; Munévar, A.; Arora, S.K.; Reyes, E.; Parker, N.L.; Chung, F.I.; Peterson, L.E. CalSim: Generalized model for reservoir system analysis. J. Water Resour. Plan. Manag. 2004, 130, 480–489. [Google Scholar] [CrossRef]
- California Department of Water Resources (DWR). Calibration and verification of DWRDSM. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 12th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 1991. [Google Scholar]
- Demargne, J.; Wu, L.; Regonda, S.K.; Brown, J.D.; Lee, H.; He, M.; Seo, D.J.; Hartman, R.; Herr, H.D.; Fresch, M.; et al. The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 2014, 95, 79–98. [Google Scholar] [CrossRef]
- Brown, J.D.; Wu, L.; He, M.; Regonda, S.; Lee, H.; Seo, D.J. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification. J. Hydrol. 2014, 519, 2869–2889. [Google Scholar] [CrossRef]
- He, M.; Whitin, B.; Hartman, R.; Henkel, A.; Fickenschers, P.; Staggs, S.; Morin, A.; Imgarten, M.; Haynes, A.; Russo, M. Verification of Ensemble Water Supply Forecasts for Sierra Nevada Watersheds. Hydrology 2016, 3, 35. [Google Scholar] [CrossRef]
- Brown, J.D.; He, M.; Regonda, S.; Wu, L.; Lee, H.; Seo, D.J. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 2. Streamflow verification. J. Hydrol. 2014, 519, 2847–2868. [Google Scholar] [CrossRef]
- Rosenberg, E.A.; Wood, A.W.; Steinemann, A.C. Statistical applications of physically based hydrologic models to seasonal stream-flow forecasts. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- He, M.; Russo, M.; Anderson, M. Predictability of seasonal streamflow in a changing climate in the Sierra Nevada. Climate 2016, 4, 57. [Google Scholar] [CrossRef]
- Shukla, S.; Safeeq, M.; AghaKouchak, A.; Guan, K.; Funk, C. Temperature impacts on the water year 2014 drought in California. Geophys. Res. Lett. 2015, 42, 4384–4393. [Google Scholar] [CrossRef]
- Wang, D.; Bui, H.; Zúñiga, E.J. How Machine Learning Can Help Water Systems During Drought. J. Am. Water Work. Assoc. 2024, 116, 32–43. [Google Scholar] [CrossRef]
- Allaire, M.; Acquah, S. Disparities in drinking water compliance: Implications for incorporating equity into regulatory practices. AWWA Water Sci. 2022, 4, e1274. [Google Scholar] [CrossRef]
- Schwarz, A.M. California Central Valley water rights in a changing climate. San Franc. Estuary Watershed Sci. 2015, 13, 1–11. [Google Scholar] [CrossRef]
- Arnold, W.; Spanos, K.A.; Schwarz, A.; Doan, C.; Deaver, K.; Akens, M.U.; Maendly, R.; Selmon, M.; Ekstrom, J.; Coombe, P.; et al. A Climate Action Plan for the California Department of Water Resources. J. Am. Water Work. Assoc. 2022, 114, 10–20. [Google Scholar] [CrossRef]
- Ray, P.; Wi, S.; Schwarz, A.; Correa, M.; He, M.; Brown, C. Vulnerability and risk: Climate change and water supply from California’s Central Valley water system. Clim. Chang. 2020, 161, 177–199. [Google Scholar] [CrossRef]
- Hamilton, A.L.; Zeff, H.B.; Characklis, G.W.; Reed, P.M. Resilient California water portfolios require infrastructure investment partnerships that are viable for all partners. Earth’s Futur. 2022, 10, e2021EF002573. [Google Scholar] [CrossRef]
- DiGennaro, B.; Reed, D.; Swanson, C.; Hastings, L.; Hymanson, Z.; Healey, M.; Siegel, S.; Cantrell, S.; Herbold, B. Using conceptual models in ecosystem restoration decision making: An example from the Sacramento-San Joaquin River Delta, California. San Franc. Estuary Watershed Sci. 2012, 10, 1–15. [Google Scholar] [CrossRef]
- MacWilliams, M.L.; Ateljevich, E.S.; Monismith, S.G.; Enright, C. An overview of multi-dimensional models of the Sacramento–San Joaquin Delta. San Franc. Estuary Watershed Sci. 2016, 14, 1–35. [Google Scholar] [CrossRef]
- Sommer, T.; Hartman, R.; Koller, M.; Koohafkan, M.; Conrad, J.L.; MacWilliams, M.; Bever, A.; Burdi, C.; Hennessy, A.; Beakes, M. Evaluation of a large-scale flow manipulation to the upper San Francisco Estuary: Response of habitat conditions for an en-dangered native fish. PLoS ONE 2020, 15, e0234673. [Google Scholar] [CrossRef]
- Draper, A.J.; Jenkins, M.W.; Kirby, K.W.; Lund, J.R.; Howitt, R.E. Economic-engineering optimization for California water management. J. Water Resour. Plan. Manag. 2003, 129, 155–164. [Google Scholar] [CrossRef]
- Adera, S.; Bellugi, D.; Dhakal, A.; Larsen, L. Streamflow prediction at the intersection of physics and machine learning: A case study of two Mediterranean-climate watersheds. Water Resour. Res. 2024, 60, e2023WR035790. [Google Scholar] [CrossRef]
- Basak, A.; Schmidt, K.M.; Mengshoel, O.J. From data to interpretable models: Machine learning for soil moisture forecasting. Int. J. Data Sci. Anal. 2023, 15, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Pallotta, G.; Bonfils, C. Higher-order internal modes of variability imprinted in year-to-year California streamflow changes. Commun. Earth Environ. 2024, 5, 448. [Google Scholar] [CrossRef]
- Duan, S.; Ullrich, P.; Shu, L. Using convolutional neural networks for streamflow projection in California. Front. Water 2020, 2, 28. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C. Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Fleming, S.W.; Goodbody, A.G. A machine learning metasystem for robust probabilistic nonlinear regression-based forecasting of seasonal water availability in the US west. IEEE Access 2019, 7, 119943–119964. [Google Scholar] [CrossRef]
- Fleming, S.W.; Garen, D.C.; Goodbody, A.G.; McCarthy, C.S.; Landers, L.C. Assessing the new Natural Resources Conservation Service water supply forecast model for the American West: A challenging test of explainable, automated, ensemble artificial intelligence. J. Hydrol. 2021, 602, 126782. [Google Scholar] [CrossRef]
- Fleming, S.W.; Rittger, K.; Oaida Taglialatela, C.M.; Graczyk, I. Leveraging next-generation satellite remote sensing-based snow data to improve seasonal water supply predictions in a practical machine learning-driven river forecast system. Water Resour. Res. 2024, 60, e2023WR035785. [Google Scholar] [CrossRef]
- Grantham, T.E.; Zimmerman, J.K.; Carah, J.K.; Howard, J.K. Stream flow modeling tools inform environmental water policy in California. Calif. Agric. 2019, 73, 33–39. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.K.; Hochreiter, S.; Nearing, G.S. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Benchmarking a catchment-aware long short-term memory network (LSTM) for large-scale hydrological modeling. Hydrol. Earth Syst. Sci. Discuss 2019, 2019, 1–32. [Google Scholar]
- Maddu, R.; Pradhan, I.; Ahmadisharaf, E.; Singh, S.K.; Shaik, R. Short-range reservoir inflow forecasting using hydrological and large-scale atmospheric circulation information. J. Hydrol. 2022, 612, 128153. [Google Scholar] [CrossRef]
- Thakur, B.; Kalra, A.; Ahmad, S.; Lamb, K.W.; Lakshmi, V. Bringing statistical learning machines together for hydro-climatological predictions-Case study for Sacramento San-Joaquin River Basin, California. J. Hydrol. Reg. Stud. 2020, 27, 100651. [Google Scholar] [CrossRef]
- Wi, S.; Steinschneider, S. Assessing the physical realism of deep learning hydrologic model projections under climate change. Water Resour. Res. 2022, 58, e2022WR032123. [Google Scholar] [CrossRef]
- Yang, T.; Asanjan, A.A.; Welles, E.; Gao, X.; Sorooshian, S.; Liu, X. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information. Water Resour. Res. 2017, 53, 2786–2812. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Carlisle, D.M.; May, J.T.; Klausmeyer, K.R.; Grantham, T.E.; Brown, L.R.; Howard, J.K. Patterns and magnitude of flow alteration in California, USA. Freshw. Biol. 2018, 63, 859–873. [Google Scholar] [CrossRef]
- Agarwal, V.; Akyilmaz, O.; Shum, C.K.; Feng, W.; Yang, T.-Y.; Forootan, E.; Syed, T.H.; Haritashya, U.K.; Uz, M. Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California. Sci. Total Environ. 2023, 865, 161138. [Google Scholar] [CrossRef]
- Azhar, A.; Chakraborty, I.; Visser, A.; Liu, Y.; Lerback, J.C.; Oerter, E. Machine learning prediction of tritium-helium groundwater ages in the Central Valley, California, USA. Water Resour. Res. 2025, 61, e2024WR038031. [Google Scholar] [CrossRef]
- May-Lagunes, G.; Chau, V.; Ellestad, E.; Greengard, L.; D’Odorico, P.; Vahabi, P.; Todeschini, A.; Girotto, M. Forecasting groundwater levels using machine learning methods: The case of California’s Central Valley. J. Hydrol. X 2023, 21, 100161. [Google Scholar] [CrossRef]
- Miro, M.E.; Groves, D.; Tincher, B.; Syme, J.; Tanverakul, S.; Catt, D. Adaptive water management in the face of uncertainty: Integrating machine learning, groundwater modeling and robust decision making. Clim. Risk Manag. 2021, 34, 100383. [Google Scholar] [CrossRef]
- Müller, J.; Park, J.; Sahu, R.; Varadharajan, C.; Arora, B.; Faybishenko, B.; Agarwal, D. Surrogate optimization of deep neural networks for groundwater predictions. J. Glob. Optim. 2021, 81, 203–231. [Google Scholar] [CrossRef]
- Park, J.; Müller, J.; Arora, B.; Faybishenko, B.; Pastorello, G.; Varadharajan, C.; Sahu, R.; Agarwal, D. Long-term missing value imputation for time series data using deep neural networks. Neural Comput. Appl. 2023, 35, 9071–9091. [Google Scholar] [CrossRef]
- Rohde, M.M.; Biswas, T.; Housman, I.W.; Campbell, L.S.; Klausmeyer, K.R.; Howard, J.K. A machine learning approach to predict groundwater levels in California reveals ecosystems at risk. Front. Earth Sci. 2021, 9, 784499. [Google Scholar] [CrossRef]
- Yin, J.; Medellín-Azuara, J.; Escriva-Bou, A.; Liu, Z. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change. Sci. Total Environ. 2021, 769, 144715. [Google Scholar] [CrossRef]
- Ahmadi, A.; Daccache, A.; Sadegh, M.; Snyder, R.L. Statistical and deep learning models for reference evapotranspiration time series forecasting: A comparison of accuracy, complexity, and data efficiency. Comput. Electron. Agric. 2023, 215, 108424. [Google Scholar] [CrossRef]
- Ahmadi, A.; Kazemi, M.H.; Daccache, A.; Snyder, R.L. SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation. Agric. Water Manag. 2024, 295, 108779. [Google Scholar] [CrossRef]
- Ghazvinian, M.; Delle Monache, L.; Afzali Gorooh, V.; Steinhoff, D.; Sengupta, A.; Hu, W.; Simpson, M.; Weihs, R.; Papadopoulos, C.; Mulrooney, P.; et al. Deep Learning of a 200-Member Ensemble with a Limited Historical Training to Improve the Prediction of Extreme Precipitation Events. Mon. Weather. Rev. 2024, 152, 1587–1605. [Google Scholar] [CrossRef]
- Ghazvinian, M.; Zhang, Y.; Seo, D.-J.; He, M.; Fernando, N. A novel hybrid artificial neural network-parametric scheme for postprocessing medium-range precipitation forecasts. Adv. Water Resour. 2021, 151, 103907. [Google Scholar] [CrossRef]
- Gibson, P.B.; Chapman, W.E.; Altinok, A.; Delle Monache, L.; DeFlorio, M.J.; Waliser, D.E. Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth Environ. 2021, 2, 159. [Google Scholar] [CrossRef]
- Hu, W.; Ghazvinian, M.; Chapman, W.E.; Sengupta, A.; Ralph, F.M.; Delle Monache, L. Deep learning forecast uncertainty for precipitation over the Western United States. Mon. Weather. Rev. 2023, 151, 1367–1385. [Google Scholar] [CrossRef]
- Majnooni, S.; Nikoo, M.R.; Nematollahi, B.; Fooladi, M.; Alamdari, N.; Al-Rawas, G.; Gandomi, A.H. Long-term precipitation prediction in different climate divisions of California using remotely sensed data and machine learning. Hydrol. Sci. J. 2023, 68, 1984–2008. [Google Scholar] [CrossRef]
- Poon, P.K.; Kinoshita, A.M. Estimating evapotranspiration in a post-fire environment using remote sensing and machine learning. Remote Sens. 2018, 10, 1728. [Google Scholar] [CrossRef]
- Scheuerer, M.; Switanek, M.B.; Worsnop, R.P.; Hamill, T.M. Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Weather. Rev. 2020, 148, 3489–3506. [Google Scholar] [CrossRef]
- Silverman, D.; Dracup, J.A. Artificial neural networks and long-range precipitation prediction in California. J. Appl. Meteorol. 2000, 39, 57–66. [Google Scholar] [CrossRef]
- Song, Y.; Tsai, W.-P.; Gluck, J.; Rhoades, A.; Zarzycki, C.; McCrary, R.; Lawson, K.; Shen, C. LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources. J. Hydrometeorol. 2024, 25, 223–237. [Google Scholar] [CrossRef]
- Zhang, C.; Brodeur, Z.P.; Steinschneider, S.; Herman, J.D. Leveraging spatial patterns in precipitation forecasts using deep learning to support regional water management. Water Resour. Res. 2022, 58, e2021WR031910. [Google Scholar] [CrossRef]
- Abdi, R.; Rust, A.; Hogue, T.S. Development of a multilayer deep neural network model for predicting hourly river water temperature from meteorological data. Front. Environ. Sci. 2021, 9, 738322. [Google Scholar] [CrossRef]
- Chawla, P.; Cao, X.; Fu, Y.; Hu, C.-M.; Wang, M.; Wang, S.; Gao, J.Z. Water quality prediction of Salton sea using machine learning and big data techniques. Int. J. Environ. Anal. Chem. 2023, 103, 6835–6858. [Google Scholar] [CrossRef]
- Chen, L.; Roy, S.B.; Hutton, P.H. Emulation of a process-based estuarine hydrodynamic model. Hydrol. Sci. J. 2018, 63, 783–802. [Google Scholar] [CrossRef]
- Gorski, G.; Fisher, A.T.; Dailey, H.; Beganskas, S.; Schmidt, C. The potential for nitrate removal during infiltration: Mapping with machine learning informed by field and laboratory experiments. Hydrol. Process. 2022, 36, e14750. [Google Scholar] [CrossRef]
- Hauptman, B.H.; Naughton, C.C.; Harmon, T.C. Using machine learning to predict 1, 2, 3-trichloropropane contamination from legacy non-point source pollution of groundwater in California’s Central Valley. Groundw. Sustain. Dev. 2023, 22, 100955. [Google Scholar] [CrossRef]
- He, M.; Zhong, L.; Sandhu, P.; Zhou, Y. Emulation of a process-based salinity generator for the Sacramento–San Joaquin Delta of California via deep learning. Water 2020, 12, 2088. [Google Scholar] [CrossRef]
- Jayasundara, N.C.; Seneviratne, S.A.; Reyes, E.; Chung, F.I. Artificial neural network for Sacramento–San Joaquin Delta flow–salinity relationship for CalSim 3.0. J. Water Resour. Plan. Manag. 2020, 146, 04020015. [Google Scholar] [CrossRef]
- Karasaki, S.; Morello-Frosch, R.; Callaway, D. Machine learning for environmental justice: Dissecting an algorithmic approach to predict drinking water quality in California. Sci. Total Environ. 2024, 951, 175730. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; He, M.; Sandhu, P. Suspended sediment concentration estimation in the Sacramento-San Joaquin Delta of California using long short-term memory networks. Hydrol. Process. 2022, 36, e14694. [Google Scholar] [CrossRef]
- Lopez, A.M.; Wells, A.; Fendorf, S. Soil and aquifer properties combine as predictors of groundwater uranium concentrations within the Central Valley, California. Environ. Sci. Technol. 2020, 55, 352–361. [Google Scholar] [CrossRef]
- Namadi, P.; He, M.; Sandhu, P. Salinity-constituent conversion in South Sacramento-San Joaquin Delta of California via machine learning. Earth Sci. Inform. 2022, 15, 1749–1764. [Google Scholar] [CrossRef]
- Namadi, P.; He, M.; Sandhu, P. Modeling ion constituents in the Sacramento-San Joaquin Delta using multiple machine learning approaches. J. Hydroinform. 2023, 25, 2541–2560. [Google Scholar] [CrossRef]
- Qi, S.; Bai, Z.; Ding, Z.; Jayasundara, N.; He, M.; Sandhu, P.; Seneviratne, S.; Kadir, T. Enhanced artificial neural networks for salinity estimation and forecasting in the Sacramento-San Joaquin delta of California. J. Water Resour. Plan. Manag. 2021, 147, 04021069. [Google Scholar] [CrossRef]
- Qi, S.; He, M.; Bai, Z.; Ding, Z.; Sandhu, P.; Chung, F.; Namadi, P.; Zhou, Y.; Hoang, R.; Tom, B.; et al. Novel Salinity Modeling Using Deep Learning for the Sacramento–San Joaquin Delta of California. Water 2022, 14, 3628. [Google Scholar] [CrossRef]
- Qi, S.; He, M.; Bai, Z.; Ding, Z.; Sandhu, P.; Zhou, Y.; Namadi, P.; Tom, B.; Hoang, R.; Anderson, J. Multi-location emulation of a process-based salinity model using machine learning. Water 2022, 14, 2030. [Google Scholar] [CrossRef]
- Qi, S.; He, M.; Hoang, R.; Zhou, Y.; Namadi, P.; Tom, B.; Sandhu, P.; Bai, Z.; Chung, F.; Ding, Z.; et al. Salinity Modeling Using Deep Learning with Data Augmentation and Transfer Learning. Water 2023, 15, 2482. [Google Scholar] [CrossRef]
- Ransom, K.M.; Nolan, B.T.; Traum, J.A.; Faunt, C.C.; Bell, A.M.; Gronberg, J.A.M.; Wheeler, D.C.; Rosecrans, C.Z.; Jurgens, B.; Schwarz, G.E.; et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 2017, 601, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Rath, J.S.; Hutton, P.H.; Chen, L.; Roy, S.B. A hybrid empirical-Bayesian artificial neural network model of salinity in the San Francisco Bay-Delta estuary. Environ. Model. Softw. 2017, 93, 193–208. [Google Scholar] [CrossRef]
- Roh, D.M.; He, M.; Bai, Z.; Sandhu, P.; Chung, F.; Ding, Z.; Qi, S.; Zhou, Y.; Hoang, R.; Namadi, P.; et al. Physics-Informed Neural Networks-Based Salinity Modeling in the Sacramento–San Joaquin Delta of California. Water 2023, 15, 2320. [Google Scholar] [CrossRef]
- Searcy, R.T.; Boehm, A.B. Know before you go: Data-driven beach water quality forecasting. Environ. Sci. Technol. 2022, 57, 17930–17939. [Google Scholar] [CrossRef]
- Wade, J.; Kelleher, C.; Hannah, D.M. Machine learning unravels controls on river water temperature regime dynamics. J. Hydrol. 2023, 623, 129821. [Google Scholar] [CrossRef]
- Bhowmik, R.T.; Jung, Y.S.; Aguilera, J.A.; Prunicki, M.; Nadeau, K. A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. J. Environ. Manag. 2023, 341, 117908. [Google Scholar] [CrossRef]
- Brown, P.T.; Hanley, H.; Mahesh, A.; Reed, C.; Strenfel, S.J.; Davis, S.J.; Kochanski, A.K.; Clements, C.B. Climate warming increases extreme daily wildfire growth risk in California. Nature 2023, 621, 760–766. [Google Scholar] [CrossRef]
- Chen, A. Evaluating the relationships between wildfires and drought using machine learning. Int. J. Wildland Fire 2022, 31, 230–239. [Google Scholar] [CrossRef]
- Cheng, S.; Jin, Y.; Harrison, S.P.; Quilodrán-Casas, C.; Prentice, I.C.; Guo, Y.K.; Arcucci, R. Parameter flexible wildfire prediction using machine learning techniques: Forward and inverse modelling. Remote Sens. 2022, 14, 3228. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Roche, L.M.; T O’Geen, A.; Dahlgren, R.A. Understanding spatial variability of forage production in California grasslands: Delineating climate, topography and soil controls. Environ. Res. Lett. 2021, 16, 014043. [Google Scholar] [CrossRef]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-driven wildfire risk prediction in northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Olivetti, S.; Gil, M.A.; Sridharan, V.K.; Hein, A.M. Merging computational fluid dynamics and machine learning to reveal animal migration strategies. Methods Ecol. Evol. 2021, 12, 1186–1200. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, J.; Fan, L.; Sun, L.; Zheng, C. High-resolution mapping of wildfire drivers in California based on machine learning. Sci. Total Environ. 2022, 833, 155155. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef]
- Stock, A.; Haupt, A.J.; Mach, M.E.; Micheli, F. Mapping ecological indicators of human impact with statistical and machine learning methods: Tests on the California coast. Ecol. Inform. 2018, 48, 37–47. [Google Scholar] [CrossRef]
- Tillotson, M.D.; Hassrick, J.; Collins, A.L.; Phillis, C. Machine learning forecasts to reduce risk of entrainment loss of endangered salmonids at large-scale water diversions in the Sacramento–San Joaquin Delta, California. San Franc. Estuary Watershed Sci. 2022, 20, 1–21. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Y.; Chen, B.; Brown, P. California almond yield prediction at the orchard level with a machine learning approach. Front. Plant Sci. 2019, 10, 809. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Boisramé, G.F.; Carroll, R.W. Exploring Climate-Driven agricultural water shortages in a Snow-Fed basin using a water allocation model and Machine learning. J. Hydrol. 2023, 621, 129605. [Google Scholar] [CrossRef]
- Bowers, C.; Serafin, K.A.; Baker, J.W. Uncovering drivers of atmospheric river flood damage using interpretable machine learning. Nat. Hazards Rev. 2024, 25, 04024022. [Google Scholar] [CrossRef]
- Emami, M.; Ahmadi, A.; Daccache, A.; Nazif, S.; Mousavi, S.-F.; Karami, H. County-level irrigation water demand estimation using machine learning: Case study of California. Water 2022, 14, 1937. [Google Scholar] [CrossRef]
- Gu, Z.; Li, W.; Hanemann, M.; Tsai, Y.; Wutich, A.; Westerhoff, P.; Landes, L.; Roque, A.D.; Zheng, M.; Velasco, C.A.; et al. Applying machine learning to understand water security and water access inequality in underserved colonia communities. Comput. Environ. Urban Syst. 2023, 102, 101969. [Google Scholar] [CrossRef]
- Parajuli, A.; Parajuli, R.; Banjara, M.; Bhusal, A.; Dahal, D.; Kalra, A. Application of Machine Learning and Hydrological Models for Drought Evaluation in Ungauged Basins Using Satellite-Derived Precipitation Data. Climate 2024, 12, 190. [Google Scholar] [CrossRef]
- Rasheed, Z.; Aravamudan, A.; Sefidmazgi, A.G.; Anagnostopoulos, G.C.; Nikolopoulos, E.I. Advancing flood warning procedures in ungauged basins with machine learning. J. Hydrol. 2022, 609, 127736. [Google Scholar] [CrossRef]
- Rieker, J.D.; Labadie, J.W. An intelligent agent for optimal river-reservoir system management. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Robinson, B.; Cohen, J.S.; Herman, J.D. Detecting early warning signals of long-term water supply vulnerability using machine learning. Environ. Model. Softw. 2020, 131, 104781. [Google Scholar] [CrossRef]
- Tanim, A.H.; McRae, C.B.; Tavakol-Davani, H.; Goharian, E. Flood detection in urban areas using satellite imagery and machine learning. Water 2022, 14, 1140. [Google Scholar] [CrossRef]
- Yang, T.; Gao, X.; Sorooshian, S.; Li, X. Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme. Water Resour. Res. 2016, 52, 1626–1651. [Google Scholar] [CrossRef]
- Zhou, Y.; Khan, B.M.; Choi, J.Y.; Cohen, Y. Machine Learning Modeling of Water Use Patterns in Small Disadvantaged Communities. Water 2021, 13, 2312. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–215. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Black, D.C.; Wallbrink, P.J.; Jordan, P.W. Towards best practice implementation and application of models for analysis of water resources management scenarios. Environ. Model. Softw. 2014, 52, 136–148. [Google Scholar] [CrossRef]
- Wu, W.; Dandy, G.C.; Maier, H.R. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Model. Softw. 2014, 54, 108–127. [Google Scholar] [CrossRef]
- Epstein, Z.; Hertzmann, A. Art and the science of generative AI. Science 2023, 380, 1110–1111. [Google Scholar] [CrossRef]
- McCarthy, J.; Minsky, M.; Rochester, N.; Shannon, C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. August 1955. Available online: http://raysolomonoff.com/dartmouth/boxa/dart564props.pdf (accessed on 1 March 2024).
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Huang, R.; Ma, C.; Ma, J.; Huangfu, X.; He, Q. Machine learning in natural and engineered water systems. Water Res. 2021, 205, 117666. [Google Scholar] [CrossRef] [PubMed]
- Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mishra, A.K. Deep learning in hydrology and water resources disciplines: Concepts, methods, applications, and research directions. J. Hydrol. 2023, 628, 130458. [Google Scholar] [CrossRef]
- Wai, K.P.; Chia, M.Y.; Koo, C.H.; Huang, Y.F.; Chong, W.C. Applications of deep learning in water quality management: A state-of-the-art review. J. Hydrol. 2022, 613, 128332. [Google Scholar] [CrossRef]
- Chapman, W.E.; Subramanian, A.C.; Delle Monache, L.; Xie, S.P.; Ralph, F.M. Improving atmospheric river forecasts with machine learning. Geophys. Res. Lett. 2019, 46, 10627–10635. [Google Scholar] [CrossRef]
- Chapman, W.E.; Delle Monache, L.; Alessandrini, S.; Subramanian, A.C.; Ralph, F.M.; Xie, S.-P.; Lerch, S.; Hayatbini, N. Probabilistic predictions from deterministic atmospheric river forecasts with deep learning. Mon. Weather. Rev. 2022, 150, 215–234. [Google Scholar] [CrossRef]
- Zarei, M.; Bozorg-Haddad, O.; Baghban, S.; Delpasand, M.; Goharian, E.; Loáiciga, H.A. Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Sci. Rep. 2021, 11, 24295. [Google Scholar] [CrossRef]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
- Wee, W.J.; Zaini, N.A.B.; Ahmed, A.N.; El-Shafie, A. A review of models for water level forecasting based on machine learning. Earth Sci. Inform. 2021, 14, 1707–1728. [Google Scholar] [CrossRef]
- Jones, A.; Kuehnert, J.; Fraccaro, P.; Meuriot, O.; Ishikawa, T.; Edwards, B.; Stoyanov, N.; Remy, S.L.; Weldemariam, K.; Assefa, S. AI for climate impacts: Applications in flood risk. npj Clim. Atmos. Sci. 2023, 6, 63. [Google Scholar] [CrossRef]
- Kumar, V.; Azamathulla, H.M.; Sharma, K.V.; Mehta, D.J.; Maharaj, K.T. The state of the art in deep learning applications, challenges, and future prospects: A comprehensive review of flood forecasting and management. Sustainability 2023, 15, 10543. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.-W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; et al. Global prediction of extreme floods in ungauged watersheds. Nature 2024, 627, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.W.; Huang, Y.F.; Koo, C.H.; Chong, K.L.; El-Shafie, A.; Ahmed, A.N. A review of hybrid deep learning applications for streamflow forecasting. J. Hydrol. 2023, 625, 130141. [Google Scholar] [CrossRef]
- Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A review of hydrodynamic and machine learning approaches for flood inundation modeling. Water 2023, 15, 566. [Google Scholar] [CrossRef]
- Fleming, S.W.; Garen, D.C. Simplified cross-validation in principal component regression (PCR) and PCR-like machine learning for water supply forecasting. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 517–524. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Hasan, S.S.; Sharma, T.P.P.; Mohana, H.P. A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions. Environ. Model. Softw. 2022, 149, 105327. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A review of the artificial neural network models for water quality prediction. Appl. Sci. 2020, 10, 5776. [Google Scholar] [CrossRef]
- Zhi, W.; Appling, A.P.; Golden, H.E.; Podgorski, J.; Li, L. Deep learning for water quality. Nat. Water 2024, 2, 228–241. [Google Scholar] [CrossRef]
- Varadharajan, C.; Appling, A.P.; Arora, B.; Christianson, D.S.; Hendrix, V.C.; Kumar, V.; Lima, A.R.; Müller, J.; Oliver, S.; Ombadi, M.; et al. Can machine learning accelerate process understanding and decision-relevant predictions of river water quality? Hydrol. Process. 2022, 36, e14565. [Google Scholar] [CrossRef]
- Feigl, M.; Lebiedzinski, K.; Herrnegger, M.; Schulz, K. Machine-learning methods for stream water temperature prediction. Hydrol. Earth Syst. Sci. 2021, 25, 2951–2977. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Bui, V.K.H.; Cho, K.H.; Hur, J. Practical application of machine learning for organic matter and harmful algal blooms in freshwater systems: A review. Crit. Rev. Environ. Sci. Technol. 2023, 54, 953–975. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.H.; Kim, K.T.; Park, C.Y.; Lee, S.; Heo, T.Y. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 2022, 832, 155070. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Han, B.; Wang, X.; Zhao, J.; Yang, W.; Yang, Z. Machine learning methods in weather and climate applications: A survey. Appl. Sci. 2023, 13, 12019. [Google Scholar] [CrossRef]
- de Burgh-Day, C.O.; Leeuwenburg, T. Machine learning for numerical weather and climate modelling: A review. Geosci. Model Dev. 2023, 16, 6433–6477. [Google Scholar] [CrossRef]
- Kaack, L.H.; Donti, P.L.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning artificial intelligence with climate change mitigation. Nat. Clim. Chang. 2022, 12, 518–527. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling climate change with machine learning. ACM Comput. Surv. (CSUR) 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Slater, L.J.; Arnal, L.; Boucher, M.-A.; Chang, A.Y.-Y.; Moulds, S.; Murphy, C.; Nearing, G.; Shalev, G.; Shen, C.; Speight, L.; et al. Hybrid forecasting: Blending climate predictions with AI models. Hydrol. Earth Syst. Sci. 2023, 27, 1865–1889. [Google Scholar] [CrossRef]
- Cui, S.; Gao, Y.; Huang, Y.; Shen, L.; Zhao, Q.; Pan, Y.; Zhuang, S. Advances and applications of machine learning and deep learning in environmental ecology and health. Environ. Pollut. 2023, 335, 122358. [Google Scholar] [CrossRef]
- Lei, L.; Pang, R.; Han, Z.; Wu, D.; Xie, B.; Su, Y. Current applications and future impact of machine learning in emerging contaminants: A review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1817–1835. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Wicaksono, P.; Aryaguna, P.A.; Lazuardi, W. Benthic habitat mapping model and cross validation using machine-learning classification algorithms. Remote Sens. 2019, 11, 1279. [Google Scholar] [CrossRef]
- Pichler, M.; Boreux, V.; Klein, A.M.; Schleuning, M.; Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods Ecol. Evol. 2020, 11, 281–293. [Google Scholar] [CrossRef]
- Mosebo Fernandes, A.C.; Quintero Gonzalez, R.; Lenihan-Clarke, M.A.; Leslie Trotter, E.F.; Jokar Arsanjani, J. Machine learning for conservation planning in a changing climate. Sustainability 2020, 12, 7657. [Google Scholar] [CrossRef]
- Tuia, D.; Kellenberger, B.; Beery, S.; Costelloe, B.R.; Zuffi, S.; Risse, B.; Mathis, A.; Mathis, M.W.; Van Langevelde, F.; Burghardt, T.; et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 2022, 13, 792. [Google Scholar] [CrossRef]
- Anjum, R.; Parvin, F.; Ali, S.A. Machine Learning Applications in Sustainable Water Resource Management: A Systematic Review. In Emerging Technologies for Water Supply, Conservation and Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 29–47. [Google Scholar]
- Pollard, J.A.; Spencer, T.; Jude, S. Big Data Approaches for coastal flood risk assessment and emergency response. Wiley Interdiscip. Rev. Clim. Change 2018, 9, e543. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Kamrava, S.; Bai, T.; Sahimi, M. Machine learning in geo- and environmental sciences: From small to large scale. Adv. Water Resour. 2020, 142, 103619. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Wan, W.; Zhao, J.; Xie, G. Large-scale prediction of stream water quality using an interpretable deep learning approach. J. Environ. Manag. 2023, 331, 117309. [Google Scholar] [CrossRef]
- Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine learning: New ideas and tools in environmental science and engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef]
- Muñoz-Carpena, R.; Carmona-Cabrero, A.; Yu, Z.; Fox, G.; Batelaan, O. Convergence of mechanistic modeling and artificial intelligence in hydrologic science and engineering. PLoS Water 2023, 2, e0000059. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Sandhu, N.; Finch, R. Application of Artificial Neural Networks to the Sacramento-San Joaquin Delta. In Proceedings of the Estuarine and Coastal Modeling, San Diego, CA, USA, 26–28 October 1995; ASCE: Reston, VA, USA, 1995; pp. 490–504. [Google Scholar]
- California Department of Water Resources. DSM2 Water Temperature Modeling Input Extension: 1922–2015. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 43rd Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2022. [Google Scholar]
- California Department of Water Resources. Disinfection By-product Formation. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 16th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 1995. [Google Scholar]
- California Department of Water Resources. Carriage Water. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 16th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 1995. [Google Scholar]
- California Department of Water Resources. Emulation of DWRDSM Using Artificial Neural Networks and Estimation of Sacramento River Flow. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 17th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 1996. [Google Scholar]
- Senevirante, S. Short-Term Improvements to Artificial Neural Network Implementation in CALSIM. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 23rd Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2002. [Google Scholar]
- California Department of Water Resources. Artificial Neural Networks. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 21st Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2000. [Google Scholar]
- Senevirante, S.; Wu, S. Enhanced Development of Flow-Salinity Relationships in the Delta Using Artificial Neural Networks: Incorporating Tidal Influence. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 28th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2007. [Google Scholar]
- Wilbur, R.; Munevar, R. Integration of CALSIM and Artificial Neural Networks Models for Sacramento-San Joaquin Delta Flow-Salinity Relationships. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 22nd Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2001. [Google Scholar]
- Mierzwa, M. CALSIM versus DSM2 ANN and G-model Comparisons. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 23rd Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2002. [Google Scholar]
- California Department of Water Resources. Marginal Export Cost and MDO Replacement. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 18th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 1997. [Google Scholar]
- California Department of Water Resources. Artificial Neural Networks and MEC Estimates. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 19th Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 1998. [Google Scholar]
- Hutton, P.; Senevirante, S. An Initial Assessment of Delta Carriage Water Requirements Using a New CalSim Flow-Salinity Routine. In Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh: 22nd Annual Progress Report; California Department of Water Resources: Sacramento, CA, USA, 2001. [Google Scholar]
- Saha, G.; Namadi, P.; He, M.; Sandhu, P. Machine Learning-Based Harmful Algal Blooms (HABs) Modeling. In Proceedings of the Sacramento-San Joaquin Delta, Bay-Delta Science Conference 2024, Sacramento, CA, USA, 30 September–2 October 2024. [Google Scholar]
- Guivetchi, K. Salinity Unit Conversion Equations; California Department of Water Resources Interoffice Memo: Sacramento, CA, USA, 1986. [Google Scholar]
- Hutton, P.; Sinha, A.; Roy, S. Simplified Approach for Estimating Salinity Constituent Concentrations in the San Francisco Estuary & Sacramento-San Joaquin River Delta. User Guide. July 2022. Available online: https://rtdf.info/ (accessed on 1 March 2024).
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Li, B.; Tang, X.; Qi, X.; Chen, Y.; Li, C.-G.; Xiao, R. EMU: Effective multi-hot encoding net for lightweight scene text recognition with a large character set. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5374–5385. [Google Scholar] [CrossRef]
- Carbonell, J.G.; Michalski, R.S.; Mitchell, T.M. An overview of machine learning. Mach. Learn. 1983, 3–23. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Shen, C.; Appling, A.P.; Gentine, P.; Bandai, T.; Gupta, H.; Tartakovsky, A.; Baity-Jesi, M.; Fenicia, F.; Kifer, D.; Li, L.; et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Feng, D.; Beck, H.; de Bruijn, J.; Sahu, R.K.; Satoh, Y.; Wada, Y.; Liu, J.; Pan, M.; Lawson, K.; Shen, C. Deep dive into hydrologic simulations at global scale: Harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1. 0-hydroDL). Geosci. Model Dev. 2024, 17, 7181–7198. [Google Scholar] [CrossRef]
- Song, Y.; Knoben, W.J.; Clark, M.P.; Feng, D.; Lawson, K.; Sawadekar, K.; Shen, C. When ancient numerical demons meet physics-informed machine learning: Adjoint-based gradients for implicit differentiable modeling. Hydrol. Earth Syst. Sci. 2024, 28, 3051–3077. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Umirbekov, A.; Peña-Guerrero, M.D.; Didovets, I.; Apel, H.; Gafurov, A.; Müller, D. The Value of Hydroclimatic Teleconnections for Snow-based Seasonal Streamflow Forecasting. Hydrol. Earth Syst. Sci. Discuss. 2024, 1–19. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; pp. 2546–2554. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In Proceedings of the International Conference on Machine Learning PMLR, Atlanta, GA, USA, 16–21 June 2013; pp. 115–123. [Google Scholar]
- Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res. 2018, 18, 1–43. [Google Scholar]
- Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al. Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1484. [Google Scholar] [CrossRef]
- Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13, 455–492. [Google Scholar] [CrossRef]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 2018, 18, 1–52. [Google Scholar]
- Lorraine, J.; Vicol, P.; Duvenaud, D. Optimizing millions of hyperparameters by implicit differentiation. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Toronto, ON, Canada, 26–28 August 2020; pp. 1540–1552. [Google Scholar]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P.; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 2023, 55, 1–33. [Google Scholar] [CrossRef]
- Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [Google Scholar] [CrossRef]
- Grieves, M.W. Digital twins: Past, present, and future. In The Digital Twin; Springer International Publishing: Cham, Switzerland, 2023; pp. 97–121. [Google Scholar]
- Cannon, A.J.; McKendry, I.G. A graphical sensitivity analysis for statistical climate models: Application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. Int. J. Clim. 2002, 22, 1687–1708. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics–informed neural networks: Where we are and what’s next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- He, Q.; Tartakovsky, A.M. Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resour. Res. 2021, 57, e2020WR029479. [Google Scholar] [CrossRef]
- Yu, J.; Lu, L.; Meng, X.; Karniadakis, G.E. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput. Methods Appl. Mech. Eng. 2022, 393, 114823. [Google Scholar] [CrossRef]
- Li, X.; Feng, M.; Ran, Y.; Su, Y.; Liu, F.; Huang, C.; Shen, H.; Xiao, Q.; Su, J.; Yuan, S.; et al. Big Data in Earth system science and progress towards a digital twin. Nat. Rev. Earth Environ. 2023, 4, 319–332. [Google Scholar] [CrossRef]
- Brocca, L.; Barbetta, S.; Camici, S.; Ciabatta, L.; Dari, J.; Filippucci, P.; Massari, C.; Modanesi, S.; Tarpanelli, A.; Bonaccorsi, B.; et al. A Digital Twin of the terrestrial water cycle: A glimpse into the future through high-resolution Earth observations. Front. Sci. 2024, 1, 1190191. [Google Scholar] [CrossRef]
- Foroumandi, E.; Moradkhani, H.; Sanchez-Vila, X.; Singha, K.; Castelletti, A.; Destouni, G. ChatGPT in hydrology and earth sciences: Opportunities, prospects, and concerns. Water Resour. Res. 2023, 59, e2023WR036288. [Google Scholar] [CrossRef]
- Stokel-Walker, C.; Nordeen, V.R. The promise and peril of generative AI. Nature 2023, 614, 214–216. [Google Scholar] [CrossRef]
- Zhu, J.J.; Jiang, J.; Yang, M.; Ren, Z.J. ChatGPT and environmental research. Environ. Sci. Technol. 2023, 57, 17667–17670. [Google Scholar] [CrossRef]
- Feynman, R.P. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold. Nature 2024, 638, 920–926. [Google Scholar] [CrossRef]
- Saygin, A.P.; Cicekli, I.; Akman, V. Turing test: 50 years later. Minds Mach. 2000, 10, 463–518. [Google Scholar] [CrossRef]
- Barr, A.; Feigenbaum, E.A.; Cohen, P.R. (Eds.) The Handbook of Artificial Intelligence; HeurisTech Press: Los Altos, CA, USA, 1981; Volume 1. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S. Deep learning explained: Fundamentals, explainability, and bridge ability to process-based modelling. Environ. Model. Softw. 2021, 144, 105159. [Google Scholar] [CrossRef]
- Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1989; pp. 396–404. [Google Scholar]
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
Ion | Sample Size | Data Range | SD | Period | Units |
---|---|---|---|---|---|
TDSs | 1466 | 49–2120 | 204 | 1968–2022 | mg/L |
Mg2+ | 1336 | 2–102 | 8.6 | 1959–2022 | mg/L |
Na+ | 1575 | 6–343 | 44 | 1959–2022 | mg/L |
Ca2+ | 1335 | 5.8–244 | 18 | 1959–2022 | mg/L |
Cl− | 1972 | 4–775 | 77 | 1959–2022 | mg/L |
SO42− | 1066 | 5–350 | 46.5 | 1959–2022 | mg/L |
Br− | 1239 | 0.01–2.3 | 0.22 | 1990–2022 | mg/L |
Alkalinity | 1036 | 26–198 | 27.6 | 1959–2020 | mg/L as CaCO3 |
K+ | 1148 | 0.87–11 | 1.35 | 1959–2022 | mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Sandhu, P.; Namadi, P.; Reyes, E.; Guivetchi, K.; Chung, F. Protocols for Water and Environmental Modeling Using Machine Learning in California. Hydrology 2025, 12, 59. https://doi.org/10.3390/hydrology12030059
He M, Sandhu P, Namadi P, Reyes E, Guivetchi K, Chung F. Protocols for Water and Environmental Modeling Using Machine Learning in California. Hydrology. 2025; 12(3):59. https://doi.org/10.3390/hydrology12030059
Chicago/Turabian StyleHe, Minxue, Prabhjot Sandhu, Peyman Namadi, Erik Reyes, Kamyar Guivetchi, and Francis Chung. 2025. "Protocols for Water and Environmental Modeling Using Machine Learning in California" Hydrology 12, no. 3: 59. https://doi.org/10.3390/hydrology12030059
APA StyleHe, M., Sandhu, P., Namadi, P., Reyes, E., Guivetchi, K., & Chung, F. (2025). Protocols for Water and Environmental Modeling Using Machine Learning in California. Hydrology, 12(3), 59. https://doi.org/10.3390/hydrology12030059