Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analytical Methods
2.3. Data Analysis
3. Results
3.1. Physicochemical and Hydrochemical Properties
3.2. Nitrate Variation in the Lower Kagera River
3.3. Isotopic Variations of δ15N and δ18O-NO3−
3.4. Proportional Contribution of Nitrate Sources
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Qin, X.; Chen, L.; Jin, M.; Li, F. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China. J. Contam. Hydrol. 2015, 177–178, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Jia, G.; Chen, J. Nitrate sources and watershed denitrification inferred from nitrate dual isotopes in the Beijiang River, south China. Biogeochemistry 2009, 94, 163–174. [Google Scholar] [CrossRef]
- Cole, M.L.; Kroeger, K.D.; McClelland, J.W.; Valiela, I. Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater. Biogeochemistry 2006, 77, 199–215. [Google Scholar] [CrossRef]
- Mayer, B.; Boyer, E.W.; Goodale, C.; Jaworski, N.A.; Van Breemen, N.; Howarth, R.W.; Seitzinger, S.; Billen, G.; Lajtha, K.; Nadelhoffer, K.; et al. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 2002, 57–58, 171–197. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Hackley, K.C.; Hwang, H.H.; Martinsek, A.T. Sources and fate of nitrate in the Illinois River Basin, Illinois. J. Hydrol. 2008, 359, 174–188. [Google Scholar] [CrossRef]
- Scheren, P.A.G.M.; Zanting, H.A.; Lemmens, A.M.C. Estimation of water pollution sources in Lake Victoria, East Africa: Application and elaboration of the rapid assessment methodology. J. Environ. Manag. 2000, 58, 235–248. [Google Scholar] [CrossRef]
- Fukada, T.; Hiscock, K.M.; Dennis, P.F.; Grischek, T. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res. 2003, 37, 3070–3078. [Google Scholar] [CrossRef]
- Kendall, C. Tracing Nitrogen Sources and Cycling in Catchments. In Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998; pp. 519–576. ISBN 978-0-444-81546-0. [Google Scholar] [CrossRef]
- Machiwa, P.K. Water quality management and sustainability: The experience of Lake Victoria Environmental Management Project (LVEMP)—Tanzania. Phys. Chem. Earth 2003, 28, 1111–1115. [Google Scholar] [CrossRef]
- Kayombo, S.; Jorgensen, S.E. Experience and Lessons Learned Brief; Royal Danish University of Pharmaceutical Sciences: Copenhagen, Demark, 2002. [Google Scholar]
- Okungu, J.O.; Rutagemwa, D.K.; Ssenfuma-Nsubuga, M.; Abuodha, J.O.Z.; Muyodi, F.J.; Hecky, R.E. The Changing Water Quality of Lake Victoria, Current Conditions, Trends and Required Action; Uganda National Council for Science and Technology: Kampala, Uganda, 2005. [Google Scholar]
- Albright, T.P.; Moorhouse, T.G.; McNabb, T.J. The rise and fall of water hyacinth in Lake Victoria and the Kagera River basin, 1989–2001. J. Aquat. Plant Manag. 2004, 42, 73–84. [Google Scholar]
- Dersseh, M.G.; Steenhuis, T.S.; Kibret, A.A.; Eneyew, B.M.; Kebedew, M.G.; Zimale, F.A.; Worqlul, A.W.; Moges, M.A.; Abebe, W.B.; Mhiret, D.A.; et al. Water Quality Characteristics of a Water Hyacinth Infested Tropical Highland Lake: Lake Tana, Ethiopia. Front. Water 2022, 4, 774710. [Google Scholar] [CrossRef]
- Jayaweera, M.W.; Kasturiarachchi, J.C. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Sci. Technol. 2004, 50, 217–225. [Google Scholar] [CrossRef]
- Berakhi, R.O.; Oyana, T.J.; Adu-Prah, S. Land use and land cover change and its implications in Kagera river basin, East Africa. Afr. Geogr. Rev. 2015, 34, 209–231. [Google Scholar] [CrossRef]
- Ogola, S.A. Land and Natural Resources Conflicts in Transboundary Agroecosystem Management Project Kagera Basin; Food and Agriculture Organization (FAO): Rome, Italy, 2014. [Google Scholar]
- LVEMP. Lake Victoria Regional Water Quality Synthesis Report Lake Victoria Environment Management Project (LVEMP) Water Quality and Ecosystem Status; South Eastern Kenya University: Kwa Vonza, Kenya, 2005. [Google Scholar]
- Wali, U.G. Modelling of Nonpoint Source Pollution in Akagera Transboundary River in Rwanda. Open Environ. Eng. J. 2011, 4, 124–132. [Google Scholar] [CrossRef]
- Blake, W.; Smith, H.; Navas, A.; Bodé, S.; Goddard, R.; Zou Kuzyk, Z.; Lennard, A.; Lobb, D.; Owens, P.; Palazon, L.; et al. Application of hierarchical Bayesian unmixing models in river sediment source apportionment. EGU Gen. Assem. Conf. Abstr. 2016, 18, 10. [Google Scholar]
- Ransom, K.M.; Grote, M.N.; Deinhart, A.; Eppich, G.; Kendall, C.; Sanborn, M.E.; Souders, A.K.; Wimpenny, J.; Yin, Q.; Young, M.; et al. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers. Water Resour. Res. 2016, 52, 5577–5597. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. MixSIAR model description. PeerJ 2018, 6, e5096. [Google Scholar] [CrossRef] [PubMed]
- Nyilitya, B.; Mureithi, S.; Boeckx, P. Land use controls Kenyan riverine nitrate discharge into Lake Victoria–evidence from Nyando, Nzoia and Sondu Miriu river catchments*. Isot. Environ. Health Stud. 2020, 56, 170–192. [Google Scholar] [CrossRef]
- Nyilitya, B.; Mureithi, S.; Bauters, M.; Boeckx, P. Nitrate source apportionment in the complex Nyando tropical river basin in Kenya. J. Hydrol. 2021, 594, 125926. [Google Scholar] [CrossRef]
- Nyilitya, B.; Mureithi, S.; Boeckx, P. Tracking Sources and Fate of Groundwater Nitrate in Kisumu City and Kano Plains, Kenya. Water 2020, 12, 401. [Google Scholar] [CrossRef]
- Nestler, A.; Berglund, M.; Accoe, F.; Duta, S.; Xue, D.; Boeckx, P.; Taylor, P. Isotopes for improved management of nitrate pollution in aqueous resources: Review of surface water field studies. Environ. Sci. Pollut. Res. 2011, 18, 519–533. [Google Scholar] [CrossRef]
- Pastén-Zapata, E.; Ledesma-Ruiz, R.; Harter, T.; Ramírez, A.I.; Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 2014, 470–471, 855–864. [Google Scholar] [CrossRef]
- Tamborski, J.; Brown, C.; Bokuniewicz, H.; Cochran, J.K.; Rasbury, E.T. Investigating Boron Isotopes for Identifying Nitrogen Sources Supplied by Submarine Groundwater Discharge to Coastal Waters. Front. Environ. Sci. 2020, 8, 126. [Google Scholar] [CrossRef]
- Tirez, K.; Brusten, W.; Widory, D.; Petelet, E.; Bregnot, A.; Xue, D.; Boeckx, P.; Bronders, J. Boron isotope ratio (δ11B) measurements in Water Framework Directive monitoring programs: Comparison between double focusing sector field ICP and thermal ionization mass spectrometry. J. Anal. At. Spectrom. 2010, 25, 964–974. [Google Scholar] [CrossRef]
- Niu, X.; Jia, X.; Yang, X.; Wang, J.; Wei, X.; Wu, L.; Shao, M. Tracing the Sources and Fate of NO3− in the Vadose Zone–Groundwater System of a Thousand-Year-Cultivated Region. Environ. Sci. Technol. 2022, 56, 9335–9345. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Wasige, J.E.; Groen, T.A.; Smaling, E.; Jetten, V. Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using: Ancillary data and remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 32–42. [Google Scholar] [CrossRef]
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Small Water Supplies; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Hong, Y.; Zhu, Z.; Liao, W.; Yan, Z.; Feng, C.; Xu, D. Freshwater Water-Quality Criteria for Chloride and Guidance for the Revision of the Water-Quality Standard in China. Int. J. Environ. Res. Public Health 2023, 20, 2875. [Google Scholar] [CrossRef]
- Kothari, V.; Vij, S.; Sharma, S.; Gupta, N. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environ. Sustain. Indic. 2021, 9, 100093. [Google Scholar] [CrossRef]
- Widory, D.; Kloppmann, W.; Chery, L.; Bonnin, J.; Rochdi, H.; Guinamant, J.-L. Nitrate in groundwater: An isotopic multi-tracer approach. J. Contam. Hydrol. 2004, 72, 165–188. [Google Scholar] [CrossRef]
- Widory, D.; Petelet-Giraud, E.; Négrel, P.; Ladouche, B. Tracking the Sources of Nitrate in Groundwater Using Coupled Nitrogen and Boron Isotopes: A Synthesis. Environ. Sci. Technol. 2005, 39, 539–548. [Google Scholar] [CrossRef]
- Shu, L.; Chen, W.; Liu, Y.; Shang, X.; Yang, Y.; Dahlgren, R.A.; Chen, Z.; Zhang, M.; Ji, X. Riverine nitrate source identification combining δ15N/δ18O-NO3− with Δ17O-NO3− and a nitrification 15N-enrichment factor in a drinking water source region. Sci. Total Environ. 2024, 918, 170617. [Google Scholar] [CrossRef] [PubMed]
- Donaghy, J. Calculating Nutrient Loads from Four Tributaries of the Cedar River in Iowa. Master’s Thesis, University of Northern Iowa, Cedar Falls, IA, USA, 2014. [Google Scholar]
- Jacobs, S.R.; Breuer, L.; Butterbach-Bahl, K.; Pelster, D.E.; Rufino, M.C. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Sci. Total Environ. 2017, 603–604, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosporous and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Afrifa, G.Y.; Chegbeleh, L.P.; Sakyi, P.A.; Yidana, S.M.; Loh, Y.A.S.; Ansah-Narh, T.; Manu, E. Quantifying nitrate pollution sources and natural background in an equatorial context: A case of the Densu Basin, Ghana. Hydrol. Sci. J. 2022, 67, 1941–1953. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C.; Zheng, L.; Dong, X.; Chen, Y.; Li, C. Identification of nitrate sources and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city. Environ. Pollut. 2020, 267, 115651. [Google Scholar] [CrossRef]
- Kilonzo, F.; Masese, F.O.; Griensven, A.V.; Bauwens, W.; Obando, J.; Lens, P.N.L. Spatial–temporal variability in water quality and macro-invertebrate assemblages in the Upper Mara River basin, Kenya. Phys. Chem. Earth Parts A/B/C 2013, 67, 93–104. [Google Scholar] [CrossRef]
- Recha, J.W.; Lehmann, J.; Walter, M.T.; Pell, A.; Verchot, L.; Johnson, M. Stream water nutrient and organic carbon exports from tropical headwater catchments at a soil degradation gradient. Nutr. Cycl. Agroecosyst. 2013, 95, 145–158. [Google Scholar] [CrossRef]
- Masese, F.O.; Salcedo-Borda, J.S.; Gettel, G.M.; Irvine, K.; McClain, M.E. Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 2017, 132, 1–22. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Wu, N.; Yuan, C.; Liu, Y.; Yang, Y.; Chen, Z.; Dahlgren, R.A.; Zhang, M.; Ji, X. Sources and transformations of riverine nitrogen across a coastal-plain river network of eastern China: New insights from multiple stable isotopes. Sci. Total Environ. 2024, 924, 171671. [Google Scholar] [CrossRef]
- Jin, Z.; Cen, J.; Hu, Y.; Li, L.; Shi, Y.; Fu, G.; Li, F. Quantifying nitrate sources in a large reservoir for drinking water by using stable isotopes and a Bayesian isotope mixing model. Environ. Sci. Pollut. Res. 2019, 26, 20364–20376. [Google Scholar] [CrossRef] [PubMed]
- Kohn, J.; Soto, D.X.; Iwanyshyn, M.; Olson, B.; Kalischuk, A.; Lorenz, K.; Hendry, M.J. Groundwater nitrate and chloride trends in an agriculture-intensive area in southern Alberta, Canada. Water Qual. Res. J. 2016, 51, 47–59. [Google Scholar] [CrossRef]
- Shin, W.-J.; Jung, Y.-Y.; Choi, M.; Choi, S.-H.; Choi, H.-B.; Lee, K.-S.; Bong, Y.-S.; Song, H.; Koh, D.-C. National-scale investigation of dual nitrate isotopes and chloride ion in South Korea: Nitrate source apportionment for stream water. Environ. Res. 2023, 228, 115873. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. In Stable Isotopes in Ecology and Environmental Science, 1st ed.; Michener, R., Lajtha, K., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 375–449. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, C.; Wang, Z.; Xu, F.; Yang, F. Quantitative identification of nitrate sources in a coastal peri-urban watershed using hydrogeochemical indicators and dual isotopes together with the statistical approaches. Chemosphere 2020, 243, 125364. [Google Scholar] [CrossRef]
- Spalding, R.F.; Hirsh, A.J.; Exner, M.E.; Little, N.A.; Kloppenborg, K.L. Applicability of the dual isotopes δ15N and δ18O to identify nitrate in groundwater beneath irrigated cropland. J. Contam. Hydrol. 2019, 220, 128–135. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, P.; Li, F.; Wei, A.; Song, J.; Ma, J. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere 2018, 208, 493–501. [Google Scholar] [CrossRef]
- Mathenge, C.; Mureithi, S.; Midingoyi, S.-K.; Nyilitya, B.; Kironchi, G.; Masso, C. Unveiling the determinants of the spatial variability of nitrogen sources use in the Lake Victoria basin, East Africa. Environ. Sustain. Indic. 2024, 24, 100484. [Google Scholar] [CrossRef]
- Nikolenko, O.; Jurado, A.; Borges, A.V.; Knöller, K.; Brouyère, S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, T.; Wang, D.; Chen, S.; Ding, Y.; Li, Y.; Shi, G.; Sun, H.; Wu, S.; Li, Y.; et al. Treated wastewater and weak removal mechanisms enhance nitrate pollution in metropolitan rivers. Environ. Res. 2023, 231, 116182. [Google Scholar] [CrossRef]
- Park, J.; Kim, G.; Kim, T.-H.; Rho, T.; Son, P. Tracing the contributions of different nitrate sources associated with submarine groundwater discharge in coastal seawaters off Jeju Island, Korea. Mar. Chem. 2024, 261, 104382. [Google Scholar] [CrossRef]
- Ren, X.; Yue, F.-J.; Tang, J.; Li, C.; Li, S.-L. Nitrate transformation and source tracking of rivers draining into the Bohai Sea using a multi-tracer approach combined with an optimized Bayesian stable isotope mixing model. J. Hazard. Mater. 2024, 463, 132901. [Google Scholar] [CrossRef] [PubMed]
- Saka, D.; Adu-Gyamfi, J.; Skrzypek, G.; Antwi, E.O.; Heng, L.; Torres- Martínez, J.A. Disentangling nitrate pollution sources and apportionment in a tropical agricultural ecosystem using a multi-stable isotope model. Environ. Pollut. 2023, 328, 121589. [Google Scholar] [CrossRef] [PubMed]
Sampling Site Name | Latitude | Longitude | Site ID | DO (mg L−1) | pH | Temp (°C) | EC (µs cm−1/cm) | TDS (mg L−1) |
---|---|---|---|---|---|---|---|---|
Akagera + Ruvubu after confluence | −2.3883 | 30.78087 | K6 | 4.0 ± 2.1 bcde | 4.4 ± 0.9 a | 23.4 ± 0.8 de | 146.7 ± 9.5 bcd | 76.3 ± 5.2 bcd |
Akagera | −2.39011 | 30.78087 | K7 | 4.7 ± 1.7 abcde | 4.5 ± 0.8 a | 23.4 ± 0.9 cde | 154.8 ± 15.2 bcd | 81.9 ± 8.3 bcd |
Kagera Sugar Factory waste | −1.21496 | 31.28441 | S1 | 2 ± 1.7 de | 4.6 ± 0.8 a | 33.7 ± 3.9 a | 175.9 ± 81.2 abc | 111.5 ± 17.6 a |
GEM station | −1.20373 | 31.2214 | K4 | 7.5 ± 1.6 a | 4.6 ± 1.2 a | 23.0 ± 0.3 de | 142.09 ± 18.67 bcd | 76.2 ± 12.3 bcd |
Kagera + Ngono after confluence | −1.11998 | 31.59294 | K1 | 4.7 ± 2.1 abcde | 4.3 ± 0.4 a | 24.0 ± 1.2 cde | 114.0 ± 27.4 d | 59.8 ± 14.3 de |
Kagera Sugar Company discharge | −1.24681 | 31.33371 | S4 | 5.1 ± 1.1 abcd | 4.6 ± 1.1 a | 25.4 ± 1.4 cd | 185.2 ± 10.4 ab | 97.7 ± 5.6 abc |
Kagera Sugar Farm 1 | −1.2416 | 31.32942 | S2 | 1.5 ± 1.1 e | 4.6 ± 1.1 a | 29.9 ± 2.4 b | 208.6 ± 19.9 a | 110.1 ± 10.6 a |
Kagera Sugar Farm 2 | −1.23243 | 31.30149 | S3 | 2.1 ± 1.3 cde | 4.5 ± 1.0 a | 26.4 ± 2.3 c | 188.6 ± 12.9 ab | 99.6 ± 6.8 ab |
Kyaka ferry bridge | −1.25046 | 31.41842 | K3 | 6.2 ± 2.0 ab | 5.1 ± 1.3 a | 23.2 ± 0.4 de | 143.1 ± 18.6 bcd | 75.4 ± 9.8 bcd |
Murongo bridge | −1.06573 | 30.64361 | K5 | 5.4 ± 2.0 ab | 4.7 ± 1.1 a | 22.8 ± 0.5 de | 137.6 ± 19.4 bcd | 72.7 ± 10.2 cd |
Ngono bridge | −1.23928 | 31.59583 | K2 | 5.5 ± 1.6 ab | 4.8 ± 1.2 a | 23.2 ± 1.1 de | 49.3 ± 35.5 d | 35.6 ± 35.9 ef |
River Kagera mouth | −0.94427 | 31.77647 | K0 | 4.5 ± 2.5 abcde | 5.3 ± 1.1 a | 22.8 ± 0.8 de | 129.5 ± 14.4 cd | 68.3 ± 7.4 d |
Ruvubu bridge | −2.51946 | 30.72777 | K8 | 7.8 ± 2.3 a | 4.4 ± 0.7 a | 22.3 ± 0.9 e | 55.2 ± 2.8 e | 29.1 ± 1.4 f |
Cl− | SO42− | Na+ | NH4+ | K+ | Ca2+ | Mg2+ | PON | NO3− | δ15N | δ18O | |
---|---|---|---|---|---|---|---|---|---|---|---|
Site | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (‰) | (‰) |
K6 | 23.8 ± 16 a | 3.3 ± 1.1 a | 6.2 ± 2.1 a | 0.3 ± 0.4 a | 2.3 ± 1.6 cd | 27.3 ± 19.9 a | 1.9 ± 1.3 a | 0.5 ± 0.3 a | 1.6 ± 1 ab | 9.2 a | 6.7 a |
K7 | 26.5 ± 14 a | 3.8 ± 1.3 a | 7.8 ± 2.6 a | 0.1 ± 0.1 a | 2.8 ± 1.1 bcd | 28.9 ± 19.1 a | 2.4 ± 1.2 a | 0.4 ± 0.2 a | 1 ± 0.8 bc | 1.0 a | 6.4 a |
S1 | 33.2 ± 15 a | 5.7 ± 2.7 a | 9.0 ± 2.6 a | 0.2 ± 0.2 a | 5.9 ± 3.2 a | 38.8 ± 21.4 a | 2.8 ± 1.3 a | 2.8 ± 4.8 a | 0.1 ± 0.1 c | BDL | BDL |
K4 | 25.6 ± 18 a | 7.8 ± 6.1 a | 8.1 ± 2.4 a | 0.1 ± 0.1 a | 3.1 ± 1.3 abcd | 27. ± 721.4 a | 2.6 ± 1.2 a | 1.2 ± 1.9 a | 0.6 ± 0.4 bc | 9.7 a | 4.1 a |
K1 | 28.4 ± 22 a | 4.5 ± 3.4 a | 7.0 ± 1.9 a | 0.1 ± 0.3 a | 2.3 ± 1.3 cd | 32.1 ± 25 a | 2.2 ± 1.2 a | 0.2 ± 0.0 a | 0.3 ± 0.3 c | 10.2 a | 5.2 a |
S4 | 30.8 ± 15 a | 5.0 ± 1.6 a | 8.6 ± 2.0 a | 0.4 ± 0.5 a | 4.6 ± 2.0 abc | 35.6 ± 25.6 a | 2.6 ± 1.1 a | 0.2 ± 0.2 a | 0.1 ± 0.1 c | BDL | BDL |
S2 | 33.2 ± 15 a | 3.4 ± 1.6 a | 8.6 ± 2.6 a | 0.4 ± 0.6 a | 5.6 ± 1.7 ab | 33.7 ± 21.6 a | 2.6 ± 1.1 a | 1.6 ± 1.8 a | 0.1 ± 0.1 bc | BDL | BDL |
S3 | 28.9 ± 14 a | 4.6 ± 1.2 a | 8.6 ± 2.3 a | 1.2 ± 2.0 a | 5.3 ± 1.1 ab | 35.7 ± 27.0 a | 2.5 ± 1.1 a | 0.3 ± 0.1 a | 0.7 ± 0.8 abc | 6.0 a | −1.0 b |
K3 | 29.4 ± 16 a | 7.7 ± 3.5 a | 7.6 ± 3.2 a | 0.1 ± 0.1 a | 2.8 ± 1.8 bcd | 34.2 ± 32.3 a | 2.3 ± 1.2 a | 0.4 ± 0.2 a | 0.8 ± 0.7 bc | 9.4 a | 4.0 a |
K5 | 27.8 ± 12 a | 8.8 ± 8.4 a | 8.1 ± 4.2 a | 0.1 ± 0.1 a | 2.3 ± 1.2 cd | 35.4 ± 28.4 a | 2.3 ± 1.5 a | 0.2 ± 0.1 a | 0.5 ± 0.2 bc | BDL | BDL |
K2 | 25.1 ± 24 a | 4.2 ± 6.9 a | 5.1 ± 5.0 a | 0.1 ± 0.1 a | 1.0 ± 1.1 d | 27.0 ± 19.5 a | 1.1 ± 1.5 a | 0.2 ± 0.2 a | 0.1 ± 0 c | BDL | BDL |
K0 | 30.1 ± 17 a | 6.5 ± 3.7 a | 6.7 ± 3.3 a | 0.1 ± 0.1 a | 1.7 ± 0.8 cd | 25.0 ± 19.5 a | 2.1 ± 1.0 a | 0.1 ± 0.1 a | 0.5 ± 0.4 bc | 8.5 a | 6.1 a |
K8 | 21.7 ± 17 a | 5.2 ± 2.7 a | 5.9 ± 3.9 a | 0.6 ± 0.7 a | 1.5 ± 1.3 d | 27.6 ± 19.7 a | 1.9 ± 1.2 a | 3.2 ± 6.4 a | 2.5 ± 0.9 a | 8.7 a | 7.0 a |
Season | Cl− | SO42− | Na+ | NH4+ | K+ | Ca2+ | Mg2+ | PON | NO3− | δ15N | δ18O |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (‰) | (‰) | |
PW-April | 8.9 ± 2.7 c | (-) | 5.5 ± 1.8 b | 1.4 ± 2.0 a | 2.9 ± 1.8 a | 1.3 ± 1.6 d | 0.2 ± 0.2 b | (-) | 0.4 ± 0.4 a | (-) | (-) |
EW-June | 51.1 ± 9.4 a | 5.0 ± 1.4 ab | 8.8 ± 2.1 a | 0.1 ± 0.1 b | 2.7 ± 1.9 a | 67.9 ± 15.7 a | 2.4 ± 0.7 a | 0.3 ± 0.3 a | 0.8 ± 0.9 a | 10.7 ± 0.4 a | 6.5 ± 0.5 a |
Dry-July | 37.0 ± 9.2 b | 4.2 ± 4.2 ab | 9.4 ± 2.7 a | 0.2 ± 0.3 b | 2.8 ± 1.8 a | 37.4 ± 8.4 b | 2.6 ± 1.0 a | 0.2 ± 0.1 a | 1.2 ± 1.5 a | 9.7 ± 0 a | 5.0 ± 0 a |
SW-Sep | 32.3 ± 8.6 b | 3.4 ± 1.2 b | 8.7 ± 2.0 a | 0.2 ± 0.1 b | 3.7 ± 2.7 a | 39.8 ± 10.4 b | 2.5 ± 1.0 a | 1.7 ± 4.5 a | 1.1 ± 0.9 a | 10.8 ± 0.2 a | 6.3 ± 0 a |
MW-Oct | 36.1 ± 7.3 b | 4.8 ± 2.1 ab | 10.0 ± 3.4 a | 0.3 ± 0.5 b | 3.7 ± 2.3 a | 41.7 ± 16.4 b | 2.8 ± 1.3 a | 1.1 ± 1.7 a | 0.9 ± 1.3 a | 9.4 ± 0.1 a | 6.1 ± 0.8 a |
PW-Nov | 15.5 ± 6.6 c | 7.9 ± 5.2 a | 5.5 ± 1.8 b | 0.2 ± 0.3 b | 3.3 ± 2.0 a | 16.5 ± 4.1 c | 2.8 ± 0.9 a | 0.6 ± 0.5 a | 1.1 ± 1.0 a | 8.6 ± 1.0 a | 5.8 ± 2.0 a |
EW-Dec | 15.3 ± 8.3 c | 6.9 ± 5.9 ab | 4.4 ± 2.2 b | >BDL | 3.2 ± 2.9 a | 15.8 ± 7.4 c | 2.5 ± 1.0 a | 1.3 ± 3.4 a | 0.7 ± 0.7 a | 8.5 ± 1.6 a | 4.5 ± 3.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathenge, C.; Mureithi, S.; Boeckx, P.; Nyilitya, B.; Masso, C. Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model. Hydrology 2025, 12, 84. https://doi.org/10.3390/hydrology12040084
Mathenge C, Mureithi S, Boeckx P, Nyilitya B, Masso C. Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model. Hydrology. 2025; 12(4):84. https://doi.org/10.3390/hydrology12040084
Chicago/Turabian StyleMathenge, Catherine, Stephen Mureithi, Pascal Boeckx, Benjamin Nyilitya, and Cargele Masso. 2025. "Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model" Hydrology 12, no. 4: 84. https://doi.org/10.3390/hydrology12040084
APA StyleMathenge, C., Mureithi, S., Boeckx, P., Nyilitya, B., & Masso, C. (2025). Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model. Hydrology, 12(4), 84. https://doi.org/10.3390/hydrology12040084