Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers
Abstract
:1. Introduction
2. Materials and Methods
- Data collection: The Web of Science (WoS) database was used to access scientific articles from peer-reviewed journals. The literature review focused on nitrate, groundwater, and permeable reactive barriers. The search equation nitrate AND groundwater AND PRBs was applied in the topic search category, which includes keywords, titles, and abstracts. The search was conducted on 6 June 2023. The inclusion criteria encompassed publications from 1975 to 2023, resulting in 141 articles.
- Document filtering: The inclusion criteria for the type of documents encompassed articles, review articles, conference papers, news articles, and those designated as “early access” in all available languages. Data analysis from WoS indicated that 98.62% of the retrieved documents were in English, 0.69% in Mandarin, and 0.69% in German. Although the search was conducted for publications from 1975 to 2023, the earliest article retrieved in WoS that matched the topic search criteria and was available for full-text access was published in 2001. This indicates that either the terminology became widely adopted in indexed literature from 2001 onwards or that earlier works were not accessible through WoS at the time of the search. As a result, 136 documents were selected for in-depth analysis.
- Data analysis: A WoS data analyzer was employed to discern scientific production trends over time and identify key research areas of focus [21]. Graphical representations of bibliometric maps were created using the VOSviewer visualization software, version 1.6.19, developed by Jan Van Eck and Ludo Waltman [48]. VOSviewer is frequently used in bibliometric analyses to visualize bibliometric networks [49,50,51,52]. This utility is attributed to its functionality in constructing maps and groupings, either by the density of nodes or the distance between them, which signifies the relationships among the nodes [48]. The *.txt file exported from the Web of Science database was input into VOSviewer to generate these maps.
3. Results
3.1. Evolution of the Scientific Production
3.2. Articles by Research Areas
3.3. Bibliographic Mapping
3.3.1. Keyword Co-Occurrence Analysis
- Cluster 1 (red): This cluster contained the highest number of keywords, totaling 24. The most frequent keywords were “permeable reactive barrier” (81 occurrences), followed by “Zero-valence iron” (45) and “nitrate” (41). Other significant keywords in this cluster included “groundwater remediation” (20 occurrences), “pH” (7), “nitrate reduction” (11), “long-term performance” (22), “in situ remediation” (6), “degradation” (15), “zero-valent iron” (19), and “transport” (7). The strong interconnection between ZVI, groundwater remediation, nitrate, and PRBs suggests that this cluster emphasizes using PRBs for groundwater remediation using ZVI.
- Cluster 2 (green): This cluster comprises 22 keywords, with “denitrification” (44 occurrences) as the most frequent, followed by “nitrate removal” (22) and “wastewater” (21). Additional keywords included “biological denitrification” (11), “contaminated groundwater” (12), “drinking water” (13), “denitrifying bacteria” (6), “carbon sources” (8), and “water treatment” (5). This cluster predominantly pertains to biological denitrification for nitrate removal.
- Cluster 3 (blue): This group included six keywords, led by “remediation” (33 occurrences) and followed by “water” (25). Other keywords were “sediments” (6), “soil” (8), “iron” (9), and “nitrate in groundwater” (5). This cluster focuses on water remediation for nitrate contamination.
- Cluster 4 (yellow): This group also comprised six keywords, with “groundwater” (66 occurrences) as the most frequent, followed by “removal” (35). Other keywords in this group included “rate” (5), “nitrogen” (9), “groundwater contamination” (12), and “bioremediation” (5). This cluster likely pertains to the bioremediation of nitrate-contaminated groundwater.
3.3.2. Co-Occurrence Analysis of Author Keywords
- Cluster 1 (red): Comprising four keywords, with “denitrification” having the highest frequency (32). Other keywords included “adsorption” (5), “permeable reactive barrier (PRB)” (6), and “remediation” (8).
- Cluster 2 (green): Containing four keywords, where “permeable reactive barrier” was the most frequent (48). It also included “groundwater remediation” (16), “nitrate removal” (9), and “zero-valent iron” (19).
- Cluster 3 (blue): Composed of three keywords, with “groundwater” being the most frequent (26), followed by “nitrate” (24) and “autotrophic denitrification” (7).
3.3.3. Distribution of Publications in Journals
3.3.4. Contributions—Country
3.3.5. Most Cited Published Documents
4. Discussion
4.1. Permeable Reactive Barriers: Global Perspective
4.2. Exploring Opportunities: Challenges in Research Outcomes
4.3. Comparison of PRB with Other Technologies for Groundwater Nitrate Remediation
4.4. Addressing Economic and Viability Challenges Associated with the Use of Reduced Metals in Remediation Methods
4.5. Agricultural Industry as a Source of Materials and a Pathway for Sustainability and Circularity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-López, J.A.; Alacid, M.; Obón, J.M.; Martínez-Vives, R.; Angosto, J.M. Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Appl. Sci. 2023, 13, 4154. [Google Scholar] [CrossRef]
- United Nations. Informe Mundial De Las Naciones Unidas Sobre El Desarrollo De Los Recursos Hídricos 2023: Alianzas y Cooperación Por El Agua; UNESCO: Paris, France; United Nations: Paris, France, 2023; ISBN 978-92-3-300212-8.
- Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B.; Arulmani, S.; Parameswari, E.; Santhosh, A.; Srinivasulu, A.; Lal, A.; Naidu, R. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere 2024, 15, 122. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global Diagnosis of Nitrate Pollution in Groundwater and Review of Removal Technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Saleem, S.; Levison, J.; Parker, B.; Martin, R.; Persaud, E. Impacts of Climate Change and Different Crop Rotation Scenarios on Groundwater Nitrate Concentrations in a Sandy Aquifer. Sustainability 2020, 12, 1153. [Google Scholar] [CrossRef]
- Banerjee, A.; Creedon, L.; Jones, N.; Gill, L.; Gharbia, S. Dynamic Groundwater Contamination Vulnerability Assessment Techniques: A Systematic Review. Hydrology 2023, 10, 182. [Google Scholar] [CrossRef]
- Huno, S.K.M.; Rene, E.R.; van Hullebusch, E.D.; Annachhatre, A.P. Nitrate Removal from Groundwater: A Review of Natural and Engineered Processes. J. Water Supply Res. Technol. AQUA 2018, 67, 885–902. [Google Scholar] [CrossRef]
- Xin, J.; Wang, Y.; Shen, Z.; Liu, Y.; Wang, H.; Zheng, X. Critical Review of Measures and Decision Support Tools for Groundwater Nitrate Management: A Surface-to-Groundwater Profile Perspective. J. Hydrol. 2021, 598, 126386. [Google Scholar] [CrossRef]
- Gani, A.; Hussain, A.; Pathak, S.; Omar, P.J. Analysing Heavy Metal Contamination in Groundwater in the Vicinity of Mumbai’s Landfill Sites: An In-Depth Study. Top. Catal. 2024, 67, 1009–1023. [Google Scholar] [CrossRef]
- Singh, V. Water Pollution. In Textbook of Environment and Ecology; Singh, V., Ed.; Springer: Singapore, 2024; pp. 253–266. ISBN 978-981-99-8846-4. [Google Scholar]
- ONU. Objetivos y Metas de Desarrollo Sostenible—Desarrollo Sostenible. Available online: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/ (accessed on 24 June 2021).
- Budania, R.; Dangayach, S. A Comprehensive Review on Permeable Reactive Barrier for the Remediation of Groundwater Contamination. J. Environ. Manag. 2023, 332, 117343. [Google Scholar] [CrossRef]
- Siarkos, I.; Mallios, Z.; Latinopoulos, P. An Integrated Framework to Assess the Environmental and Economic Impact of Fertilizer Restrictions in a Nitrate-Contaminated Aquifer. Hydrology 2024, 11, 8. [Google Scholar] [CrossRef]
- Gibert, O.; Pomierny, S.; Rowe, I.; Kalin, R.M. Selection of Organic Substrates as Potential Reactive Materials for Use in a Denitrification Permeable Reactive Barrier (PRB). Bioresour. Technol. 2008, 99, 7587–7596. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, F.; Zhu, A.; Zhang, X.; Chen, H.; Sun, T. Risk Assessment of Nitrate Pollution in the Shallow Groundwater of the Mihe Alluvial–Diluvial Fan Based on a DEA Model. Water 2022, 14, 1360. [Google Scholar] [CrossRef]
- Karlović, I.; Posavec, K.; Larva, O.; Marković, T. Numerical Groundwater Flow and Nitrate Transport Assessment in Alluvial Aquifer of Varaždin Region, NW Croatia. J. Hydrol. Reg. Stud. 2022, 41, 101084. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An Overview of Nitrate Sources and Operating Processes in Arid and Semiarid Aquifer Systems. Sci. Total Environ. 2018, 624, 1513–1522. [Google Scholar] [CrossRef]
- World Health Organization. Nitrate and Nitrite in Drinking-Water; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Directiva (UE) 2020/2184 del Parlamento Europeo y del Consejo de 16 de diciembre de 2020 Relativa a la Calidad de las Aguas Destinadas al Consumo Humano (Versión Refundida) (Texto Pertinente a Efectos del EEE). Off. J. Eur. Union 2020, 435, 1–62. Available online: https://eur-lex.europa.eu/legal-content/ES/ALL/?uri=CELEX:32020L2184 (accessed on 24 March 2025).
- United States Environmental Protection Agency. Estándares Del Reglamento Nacional Primario de Agua Potable. In Agua Potable En Español; US EPA: Washington, DC, USA, 2000. [Google Scholar]
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—Nitrate and Nitrite; Health Canada: Ottawa, ON, Canada, 2013; ISBN 978-1-100-22999-7.
- Bryan, N.S.; van Grinsven, H. Chapter Three—The Role of Nitrate in Human Health. In Advances in Agronomy; Sparks, D.L., Ed.; Advances in Agronomy; Academic Press: New York, NY, USA, 2013; Volume 119, pp. 153–182. [Google Scholar]
- Mahaqi, A.; Mehiqi, M.; Moheghy, M.A.; Moheghi, M.M.; Hussainzadeh, J. Nitrate Pollution in Kabul Water Supplies, Afghanistan; Sources and Chemical Reactions: A review. Int. J. Environ. Sci. Technol. 2022, 19, 6925–6934. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Nie, F.; Tu, W.; Li, X.; Luo, X.; Luo, Y.; Fan, H.; Song, T. Remediation of Nitrate Contaminated Groundwater Using a Simulated PRB System with an La-CTAC-Modified Biochar Filler. Front. Environ. Sci. 2022, 10, 986866. [Google Scholar] [CrossRef]
- Ozkaraova, E.B.; Kalin, R.M.; Gkiouzepas, S.; Knapp, C.W. Industrial and Agricultural Wastes as a Potential Biofilter Media for Groundwater Nitrate Remediation. Desalination Water Treat. 2019, 172, 330–343. [Google Scholar] [CrossRef]
- Richa, A.; Touil, S.; Fizir, M. Recent Advances in the Source Identification and Remediation Techniques of Nitrate Contaminated Groundwater: A review. J. Environ. Manag. 2022, 316, 115265. [Google Scholar] [CrossRef]
- Ye, J.; Chen, X.; Chen, C.; Bate, B. Emerging Sustainable Technologies for Remediation of Soils and Groundwater in a Municipal Solid Waste Landfill Site—A Review. Chemosphere 2019, 227, 681–702. [Google Scholar] [CrossRef]
- Zhang, W.; Bai, Y.; Ruan, X.; Yin, L. The Biological Denitrification Coupled with Chemical Reduction for Groundwater Nitrate Remediation via Using SCCMs as Carbon Source. Chemosphere 2019, 234, 89–97. [Google Scholar] [CrossRef]
- Al-Hashimi, O.; Hashim, K.; Loffill, E.; Marolt Čebašek, T.; Nakouti, I.; Faisal, A.A.H.; Al-Ansari, N. A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Molecules 2021, 26, 5913. [Google Scholar] [CrossRef] [PubMed]
- Faisal, A.A.H.; Sulaymon, A.H.; Khaliefa, Q.M. A Review of Permeable Reactive Barrier as Passive Sustainable Technology for Groundwater Remediation. Int. J. Environ. Sci. Technol. 2018, 15, 1123–1138. [Google Scholar] [CrossRef]
- Singh, R.; Chakma, S.; Birke, V. Performance of Field-Scale Permeable Reactive Barriers: An Overview on Potentials and Possible Implications for In Situ Groundwater Remediation Applications. Sci. Total Environ. 2023, 858, 158838. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Hidalgo, G.C.; Deago, E.; Ortega Del Rosario, M.D.L.A. Permeable Reactive Barriers for In Situ Remediation of Nitrate-Contaminated Groundwater: A Review. In Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference, IESTEC, Panama City, Panama, 19–21 October 2022; pp. 469–476. [Google Scholar]
- Zhang, W.; Zhu, Y.; Gu, R.; Liang, Z.; Xu, W.; Jat Baloch, M.Y. Health Risk Assessment during In Situ Remediation of Cr(VI)-Contaminated Groundwater by Permeable Reactive Barriers: A Field-Scale Study. Int. J. Environ. Res. Public Health 2022, 19, 13079. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Ma, L.; Gong, Y.; Qian, J. Corncob PRB for On-Site Nitrate Removal in Groundwater. Arab. J. Geosci. 2020, 13, 1084. [Google Scholar] [CrossRef]
- Al-Mansoria, N.J.; Al-Baidhani, J.H.; Al-Bakric, M.J. Seeds-Based Activated Carbon for Copper Removal from Groundwater. J. Eng. Sci. Technol. 2020, 15, 1622–1638. [Google Scholar]
- Wen, Z.; Nan, S.; Ying, B.; Lin, Y. The Innovative Application of Agriculture Straw in In Situ Field Permeable Reactive Barrier for Remediating Nitrate-Contaminated Groundwater in Grain-Production Areas. Biochem. Eng. J. 2020, 164, 107755. [Google Scholar] [CrossRef]
- Sánchez Hidalgo, G.C.; Ortega, M.D.L.Á.; Deago, E. Enhanced Biological Nitrate Removal from Groundwater in Humid Tropical Regions Using Corn Cob-Based Permeable Reactive Barriers: A Case Study from Panama. Water 2024, 16, 1668. [Google Scholar] [CrossRef]
- Zhao, B.; Sun, Z.; Liu, Y. An Overview of In-Situ Remediation for Nitrate in Groundwater. Sci. Total Environ. 2022, 804, 149981. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B. Woodchip-Sulfur Packed Biological Permeable Reactive Barrier for Mixotrophic Vanadium (V) Detoxification in Groundwater. Sci. China Technol. Sci. 2020, 63, 2283–2291. [Google Scholar] [CrossRef]
- Guleria, A.; Chakma, S. A Bibliometric and Visual Analysis of Contaminant Transport Modeling in the Groundwater System: Current Trends, Hotspots, and Future Directions. Environ. Sci. Pollut. Res. 2023, 30, 32032–32051. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhang, H.; Shen, C. Visualization Analysis on the Current Status and Development Trend of Geothermal Research: Insights Into the Database of Web of Science. Front. Energy Res. 2022, 10, 853439. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Mora-Frank, C.; Berrezueta, E. Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research. Water 2022, 14, 1082. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; Del Río-Rama, M.D.l.C. Sustainable Water Resources Management: A Bibliometric Overview. Water 2018, 10, 1191. [Google Scholar] [CrossRef]
- Zhu, J.; Kang, S.; Zhao, W.; Li, Q.; Xie, X.; Hu, X. A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects. Land 2020, 9, 504. [Google Scholar] [CrossRef]
- Aristodemou, L.; Tietze, F. The State-of-the-Art on Intellectual Property Analytics (IPA): A Literature Review on Artificial Intelligence, Machine Learning and Deep Learning Methods for Analysing Intellectual Property (IP) Data. World Pat. Inf. 2018, 55, 37–51. [Google Scholar] [CrossRef]
- Vakili, M.; Ebadi, T.; Hajbabaie, M. A Systematic Analysis of Research Trends on the Permeable Reactive Barrier in Groundwater Remediation. Int. J. Environ. Sci. Technol. 2025, 22, 503–520. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Yi, J.; Yang, X.; Wu, T.; He, Y.; Duan, H.; Liu, M.; Tian, P. Bibliometric Analysis of Research on Soil Water from 1934 to 2019. Water 2020, 12, 1631. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Renzi, M.; Pauna, V.H.; Provenza, F.; Munari, C.; Mistri, M. Marine Litter in Transitional Water Ecosystems: State of The Art Review Based on a Bibliometric Analysis. Water 2020, 12, 612. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Moni, S.S.; Alsayegh, A.A. Bibliometric Mapping of Solid Lipid Nanoparticles Research (2012–2022) Using VOSviewer. Med. Nov. Technol. Devices 2023, 17, 100217. [Google Scholar] [CrossRef]
- Dash, S.; Kalamdhad, A.S. Science Mapping Approach to Critical Reviewing of Published Literature on Water Quality Indexing. Ecol. Indic. 2021, 128, 107862. [Google Scholar] [CrossRef]
- Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Kløve, B.; Haghighi, A.T. Unconventional Water Resources: Global Opportunities and Challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef]
- Alowitz, M.J.; Scherer, M.M. Kinetics of Nitrate, Nitrite, and Cr(VI) Reduction by Iron Metal. Environ. Sci. Technol. 2002, 36, 299–306. [Google Scholar] [CrossRef]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The Limitations of Applying Zero-Valent Iron Technology in Contaminants Sequestration and the Corresponding Countermeasures: The Development in Zero-Valent Iron Technology in the Last Two Decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef]
- Lai, K.C.K.; Lo, I.M.C. Removal of Chromium (VI) by Acid-Washed Zero-Valent Iron under Various Groundwater Geochemistry Conditions. Environ. Sci. Technol. 2008, 42, 1238–1244. [Google Scholar] [CrossRef]
- Su, C.M.; Puls, R.W. Arsenate and Arsenite Removal by Zerovalent Iron: Effects of Phosphate, Silicate, Carbonate, Borate, Sulfate, Chromate, Molybdate, and Nitrate, Relative to Chloride. Environ. Sci. Technol. 2001, 35, 4562–4568. [Google Scholar] [CrossRef]
- Fu, F.; Dionysiou, D.D.; Liu, H. The Use of Zero-Valent Iron for Groundwater Remediation and Wastewater Treatment: A Review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.G.; Schipper, L.A. Nitrate Removal and Hydraulic Performance of Organic Carbon for Use in Denitrification Beds. Ecol. Eng. 2010, 36, 1588–1595. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L. Biological Nitrate Removal from Water and Wastewater by Solid-Phase Denitrification Process. Biotechnol. Adv. 2016, 34, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Rocca, C.D.; Belgiorno, V.; Meric, S. Overview of In Situ Applicable Nitrate Removal Processes. Desalination 2007, 204, 46–62. [Google Scholar] [CrossRef]
- Bone, B.D.; Harris, R.C.; Smith, J.W.N.; Boshoff, G.A.; Kalin, R.M.; Thurgood, R.; Morgan, P. The Development and Use of Permeable Reactive Barrier Technologies and Potential Future Applications in the UK. In Permeable Reactive Barriers; Boshoff, G.A., Bone, B.D., Eds.; 2005; Volume 298, pp. 52–59. [Google Scholar]
- Nooten, T.V.; Diels, L.; Bastiaens, L. Design of a Multifunctional Permeable Reactive Barrier for the Treatment of Landfill Leachate Contamination: Laboratory Column Evaluation. Environ. Sci. Technol. 2008, 42, 8890–8895. [Google Scholar] [CrossRef]
- Kong, X.; Bi, E.; Liu, F.; Huang, G.; Ma, J. Laboratory Column Study for Evaluating a Multimedia Permeable Reactive Barrier for the Remediation of Ammonium Contaminated Groundwater. Environ. Technol. 2015, 36, 1433–1440. [Google Scholar] [CrossRef]
- Wang, X.; Xin, J.; Yuan, M.; Zhao, F. Electron Competition and Electron Selectivity in Abiotic, Biotic, and Coupled Systems for Dechlorinating Chlorinated Aliphatic Hydrocarbons in Groundwater: A Review. Water Res. 2020, 183, 116060. [Google Scholar] [CrossRef]
- Ruhl, A.S.; Jekel, M. Influence of Hydronium, Sulfate, Chloride and Other Non-Carbonate Ions on Hydrogen Generation by Anaerobic Corrosion of Granular Cast Iron. Water Res. 2013, 47, 6044–6051. [Google Scholar] [CrossRef]
- Gu, B.H.; Watson, D.B.; Wu, L.Y.; Phillips, D.H.; White, D.C.; Zhou, J.Z. Microbiological Characteristics in a Zero-Valent Iron Reactive Barrier. Environ. Monit. Assess. 2002, 77, 293–309. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, S.S.; Tsang, D.C.W.; Graham, N.J.D.; Ok, Y.S.; Feng, Y.; Li, X.-D. Zero-Valent Iron for the Abatement of Arsenate and Selenate from Flowback Water of Hydraulic Fracturing. Chemosphere 2017, 167, 163–170. [Google Scholar] [CrossRef]
- Vishnyakova, A.; Popova, N.; Artemiev, G.; Botchkova, E.; Litti, Y.; Safonov, A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. Biology 2022, 11, 1421. [Google Scholar] [CrossRef] [PubMed]
- Pensky, J.; Fisher, A.T.; Gorski, G.; Schrad, N.; Bautista, V.; Saltikov, C. Linking Nitrate Removal, Carbon Cycling, and Mobilization of Geogenic Trace Metals during Infiltration for Managed Recharge. Water Res. 2023, 239, 120045. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, X.; Banwart, S.A.; Du, W.; Yin, Y.; Guo, H. A Novel Permeable Reactive Biobarrier for Ortho-Nitrochlorobenzene Pollution Control in Groundwater: Experimental Evaluation and Kinetic Modelling. J. Hazard. Mater. 2021, 420, 126563. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, D.; Lou, S.; He, F.; Yin, L. Slowly Released Carbon Source from Composite Materials System for Removing Nitrate Pollution in Groundwater. RSC Adv. 2017, 7, 10215–10220. [Google Scholar] [CrossRef]
- Doherty, R.; McPolin, B.; Kulessa, B.; Frau, A.; Kulakova, A.; Allen, C.C.R.; Larkin, M.J. Microbial Ecology and Geoelectric Responses across a Groundwater Plume. Interpret. J. Subsurf. Charact. 2015, 3, SAB9–SAB21. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yin, S.; Wang, X.; Liu, T.; Deng, Z. Analysis of Microbial Community Structure and Degradation of Ammonia Nitrogen in Groundwater in Cold Regions. Environ. Sci. Pollut. Res. 2020, 27, 44137–44147. [Google Scholar] [CrossRef]
- Gorski, G.; Dailey, H.; Fisher, A.T.; Schrad, N.; Saltikov, C. Denitrification during Infiltration for Managed Aquifer Recharge: Infiltration Rate Controls and Microbial Response. Sci. Total Environ. 2020, 727, 138642. [Google Scholar] [CrossRef]
- Hiller-Bittrolff, K.; Foreman, K.; Bulseco-McKim, A.N.; Benoit, J.; Bowen, J.L. Effects of Mercury Addition on Microbial Community Composition and Nitrate Removal Inside Permeable Reactive Barriers. Environ. Pollut. 2018, 242, 797–806. [Google Scholar] [CrossRef]
- Gandhi, S.; Oh, B.T.; Schnoor, J.L.; Alvarez, P.J.J. Degradation of TCE, Cr(VI), Sulfate, and Nitrate Mixtures by Granular Iron in Flow-through Columns under Different Microbial Conditions. Water Res. 2002, 36, 1973–1982. [Google Scholar] [CrossRef]
- Liu, S.; Gao, B.; Xiong, X.; Chen, N.; Xuan, K.; Ma, W.; Song, Y.; Yu, Y. Treatment of Nitrate-Contaminated Groundwater Using Microbially Enhanced Permeable Reactive Barrier Technology. Environ. Sci. Water Res. Technol. 2023, 9, 1610–1619. [Google Scholar] [CrossRef]
- Beganskas, S.; Gorski, G.; Weathers, T.; Fisher, A.T.; Schmidt, C.; Saltikov, C.; Redford, K.; Stoneburner, B.; Harmon, R.; Weir, W. A Horizontal Permeable Reactive Barrier Stimulates Nitrate Removal and Shifts Microbial Ecology During Rapid Infiltration for Managed Recharge. Water Res. 2018, 144, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, G.; Kong, X.; Yang, Y.; Liu, F.; Hou, G.; Chen, H. Ammonium Removal from Groundwater Using a Zeolite Permeable Reactive Barrier: A Pilot-Scale Demonstration. Water Sci. Technol. 2014, 70, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, L.; Xiao, J.; Zhang, L.; Liu, H.; Wang, L. Experimental Study on Removal of Nitrate in Groundwater PRB. In Proceedings of the International Conference on Water Resource and Environmental Protection WREP 2014, Antalya, Turkey, 13–15 May 2014; pp. 206–210. [Google Scholar]
- Rodriguez-Maroto, J.M.; Garcia-Herruzo, F.; Garcia-Rubio, A.; Gomez-Lahoz, C.; Vereda-Alonso, C. Kinetics of the Chemical Reduction of Nitrate by Zero-Valent Iron. Chemosphere 2009, 74, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Shi, S.; Sun, B. Removal Effect of the Immobilized Biological Medium of PRB on Groundwater Nitrate. In Proceedings of the Conference on Environmental Pollution and Public Health, Wuhan, China, 10–11 September 2010; Volume 1–2, p. 1114. [Google Scholar]
- Lu, Q.; Jeen, S.-W.; Gui, L.; Gillham, R.W. Nitrate Reduction and Its Effects on Trichloroethylene Degradation by Granular Iron. Water Res. 2017, 112, 48–57. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Y.; Wu, B.; Zhang, Y.; Min, H.; Miyanaga, T.; Zhang, Z. Autotrophic Denitrification for Nitrate and Nitrite Removal Using Sulfur-Limestone. J. Environ. Sci. 2011, 23, 1761–1769. [Google Scholar] [CrossRef]
- Ghaeminia, M.; Mokhtarani, N. Remediation of Nitrate-Contaminated Groundwater by PRB-Electrokinetic Integrated Process. J. Environ. Manag. 2018, 222, 234–241. [Google Scholar] [CrossRef]
- Rao, S.M.; Malini, R. Use of Permeable Reactive Barrier to Mitigate Groundwater Nitrate Contamination from On-Site Sanitation. J. Water Sanit. Hyg. Dev. 2015, 5, 336–340. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ataie-Ashtiani, B.; Kholghi, M. Bench-Scaled Nano-Fe0 Permeable Reactive Barrier for Nitrate Removal. Ground Water Monit. Remediat. 2011, 31, 82–94. [Google Scholar] [CrossRef]
- Liu, S.; Gao, B.; Xuan, K.; Ma, W.; Nan, M.; Jia, C. Denitrification Performance and Mechanism of Permeable Reactive Barrier Technology with a Sulfur Autotrophic Denitrification Composite Filler in Rare Earth Mine Engineering Applications. Water Air Soil Pollut. 2023, 234, 76. [Google Scholar] [CrossRef]
- Buyanjargal, A.; Kang, J.; Sleep, B.E.; Jeen, S.-W. Sequential Treatment of Nitrate and Phosphate in Groundwater Using a Permeable Reactive Barrier System. J. Environ. Manag. 2021, 300, 113699. [Google Scholar] [CrossRef]
- Liu, S.-J.; Zhao, Z.-Y.; Li, J.; Wang, J.; Qi, Y. An Anaerobic Two-Layer Permeable Reactive Biobarrier for the Remediation of Nitrate-Contaminated Groundwater. Water Res. 2013, 47, 5977–5985. [Google Scholar] [CrossRef] [PubMed]
- Skinner, S.J.W.; Schutte, C.F. The Feasibility of a Permeable Reactive Barrier to Treat Acidic Sulphate- and Nitrate-Contaminated Groundwater. Water SA 2006, 32, 129–135. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, C.; Zhang, J.; Zhang, F. Nitrate Removal by a Permeable Reactive Barrier of Fe0: A Model-Based Evaluation. J. Earth Sci. 2017, 28, 447–456. [Google Scholar] [CrossRef]
- Lin, K.-S.; Chang, N.-B.; Chuang, T.-D. Decontamination of Nitrates and Nitrites in Wastewater by Zero-Valent Iron Nanoparticles. NANO 2008, 3, 291–295. [Google Scholar] [CrossRef]
- Liang, L.Y.; Moline, G.R.; Kamolpornwijit, W.; West, O.R. Influence of Hydrogeochemical Processes on Zero-Valent Iron Reactive Barrier Performance: A Field Investigation. J. Contam. Hydrol. 2005, 80, 71–91. [Google Scholar] [CrossRef]
- Kamolpornwijit, W.; Liang, L.; West, O.R.; Moline, G.R.; Sullivan, A.B. Preferential Flow Path Development and Its Influence on Long-Term PRB Performance: Column Study. J. Contam. Hydrol. 2003, 66, 161–178. [Google Scholar] [CrossRef]
- Li, L.; Benson, C.H.; Lawson, E.M. Modeling Porosity Reductions Caused by Mineral Fouling in Continuous-Wall Permeable Reactive Barriers. J. Contam. Hydrol. 2006, 83, 89–121. [Google Scholar] [CrossRef]
- Luo, X.; Liu, H.; Huang, G.; Li, Y.; Yan, Z.; Li, X. Remediation of Arsenic-Contaminated Groundwater Using Media-Injected Permeable Reactive Barriers with a Modified Montmorillonite: Sand Tank Studies. Environ. Sci. Pollut. Res. 2016, 23, 870–877. [Google Scholar] [CrossRef]
- Hu, S.; Wu, Y.; Zhang, Y.; Zhou, B.; Xu, X. Nitrate Removal from Groundwater by Heterotrophic/Autotrophic Denitrification Using Easily DegradableOrganics and Nano-Zero Valent Iron as Co-Electron Donors. Water Air Soil Pollut. 2018, 229, 56. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Y.; Hu, H.; Liu, F.; Zhang, Y.; Deng, R. Remediation of Nitrate-Nitrogen Contaminated Groundwater Using a Pilot-Scale Two-Layer Heterotrophic-Autotrophic Denitrification Permeable Reactive Barrier with Spongy Iron/Pine Bark. Chemosphere 2015, 130, 8–16. [Google Scholar] [CrossRef]
- Li, T.; Li, W.; Feng, C.; Hu, W. In-Situ Biological Denitrification Using Pretreated Maize Stalks as Carbon Source for Nitrate-Contaminated Groundwater Remediation. Water Sci. Technol. Water Supply 2017, 17, 1–9. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Tosco, T. Integrating NZVI and Carbon Substrates in a Non-Pumping Reactive Wells Array for the Remediation of a Nitrate Contaminated Aquifer. J. Contam. Hydrol. 2015, 179, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Moline, G.R.; Kamolpornwijit, W.; West, O.R. Influence of Hydrogeochemical Processes on Zero-Valent Iron Reactive Barrier Performance: A Field Investigation. J. Contam. Hydrol. 2005, 78, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Grau-Martinez, A.; Torrento, C.; Carrey, R.; Soler, A.; Otero, N. Isotopic Evidence of Nitrate Degradation by a Zero-Valent Iron Permeable Reactive Barrier: Batch Experiments and a Field Scale Study. J. Hydrol. 2019, 570, 69–79. [Google Scholar] [CrossRef]
- Gibert, O.; Assal, A.; Devlin, H.; Elliot, T.; Kalinc, R.M. Performance of a Field-Scale Biological Permeable Reactive Barrier for In-Situ Remediation of Nitrate-Contaminated Groundwater. Sci. Total Environ. 2019, 659, 211–220. [Google Scholar] [CrossRef]
- Liu, B.; Tang, Z.; Dong, S.; Wang, L.; Liu, D. Vegetation Recovery and Groundwater Pollution Control of Coal Gangue Field in a Semi-Arid Area for a Field Application. Int. Biodeterior. Biodegrad. 2018, 128, 134–140. [Google Scholar] [CrossRef]
- Eljamal, O.; Thompson, I.P.; Maamoun, I.; Shubair, T.; Eljamal, K.; Lueangwattanapong, K.; Sugihara, Y. Investigating the Design Parameters for a Permeable Reactive Barrier Consisting of Nanoscale Zero-Valent Iron and Bimetallic Iron/Copper for Phosphate Removal. J. Mol. Liq. 2020, 299, 112144. [Google Scholar] [CrossRef]
- Araujo, R.; Castro, A.C.M.; Baptista, J.S.; Fiuza, A. Nanosized Iron Based Permeable Reactive Barriers for Nitrate Removal—Systematic Review. Phys. Chem. Earth 2016, 94, 29–34. [Google Scholar] [CrossRef]
- Alyani, S.H.M.; Talebbeydokhti, N.; Ardejani, F.D.; Jashni, A.K.; Rakhshandehroo, R. Optimizing Operational Parameters of Electrokinetic Technique Assisted by a Permeable Reactive Barrier for Remediation of Nitrate-Contaminated Soil. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 2425–2438. [Google Scholar] [CrossRef]
- Maharjan, A.K.; Mori, K.; Toyama, T. Nitrogen Removal Ability and Characteristics of the Laboratory-Scale Tidal Flow Constructed Wetlands for Treating Ammonium-Nitrogen Contaminated Groundwater. Water 2020, 12, 1326. [Google Scholar] [CrossRef]
- Khalil, A.M.E.; Eljamal, O.; Saha, B.B.; Matsunaga, N. Performance of Nanoscale Zero-Valent Iron in Nitrate Reduction from Water Using a Laboratory-Scale Continuous-Flow System. Chemosphere 2018, 197, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, F.; Yang, Y.; Kong, X.; Li, S.; Zhang, Y.; Cao, D. Ammonium-Nitrogen-Contaminated Groundwater Remediation by a Sequential Three-Zone Permeable Reactive Barrier (Multibarrier) with Oxygen-Releasing Compound (ORC)/Clinoptilolite/Spongy Iron: Column Studies. Environ. Sci. Pollut. Res. 2015, 22, 3705–3714. [Google Scholar] [CrossRef] [PubMed]
- Margalef-Marti, R.; Carrey, R.; Soler, A.; Otero, N. Evaluating the Potential Use of a Dairy Industry Residue to Induce Denitrification in Polluted Water Bodies: A Flow-through Experiment. J. Environ. Manag. 2019, 245, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Rho, S.; Jahng, D. Design Considerations for Groundwater Remediation Using Reduced Metals. Korean J. Chem. Eng. 2004, 21, 621–628. [Google Scholar] [CrossRef]
- Lv, X.; Song, J.; Li, J.; Wu, F. Tertiary Denitrification by Sulfur/Limestone Packed Biofilter. Environ. Eng. Sci. 2017, 34, 103–109. [Google Scholar] [CrossRef]
- Lee, S.; Tase, N. In-Situ Denitrification of Nitrate-Nitrogen Contaminated Groundwater by a Permeable Reactive Barrier Using Sulfur-Limestone. J. Geogr. Chigaku Zasshi 2023, 132, 231–246. [Google Scholar] [CrossRef]
- Pensky, J.; Fisher, A.T.; Gorski, G.; Schrad, N.; Dailey, H.; Beganskas, S.; Saltikov, C. Enhanced Cycling of Nitrogen and Metals during Rapid Infiltration: Implications for Managed Recharge. Sci. Total Environ. 2022, 838, 156439. [Google Scholar] [CrossRef]
- Schrad, N.; Pensky, J.; Gorski, G.; Beganskas, S.; Fisher, A.T.; Saltikov, C. Soil Characteristics and Redox Properties of Infiltrating Water Are Determinants of Microbial Communities at Managed Aquifer Recharge Sites. FEMS Microbiol. Ecol. 2022, 98, fiac130. [Google Scholar] [CrossRef]
- Abu, A.; Carrey, R.; Valhondo, C.; Cristina, D.; Soler, A.; Martinez-Landa, L.; Diaz-Cruz, S.; Carrera, J.; Otero, N. Pathways and Efficiency of Nitrogen Attenuation in Wastewater Effluent through Soil Aquifer Treatment. J. Environ. Manag. 2022, 321, 115927. [Google Scholar] [CrossRef]
- Graffam, M.; Paulsen, R.; Volkenborn, N. Hydro-Biogeochemical Processes and Nitrogen Removal Potential of a Tidally Influenced Permeable Reactive Barrier behind a Perforated Marine Bulkhead. Ecol. Eng. 2020, 155, 105933. [Google Scholar] [CrossRef]
- Guo, C.; Qi, L.; Bai, Y.; Yin, L.; Li, L.; Zhang, W. Geochemical Stability of Zero-Valent Iron Modified Raw Wheat Straw Innovatively Applicated to In Situ Permeable Reactive Barrier: N2 Selectivity and Long-Term Denitrification. Ecotoxicol. Environ. Saf. 2021, 224, 112649. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Shi, L.; Zhong, H.; Wang, K. The Performance of Pyrite-Based Autotrophic Denitrification Column for Permeable Reactive Barrier under Natural Environment. Bioresour. Technol. 2019, 290, 121763. [Google Scholar] [CrossRef] [PubMed]
- Robertson, W.D.; Vogan, J.L.; Lombardo, P.S. Nitrate Removal Rates in a 15-Year-Old Permeable Reactive Barrier Treating Septic System Nitrate. Ground Water Monit. Remediat. 2008, 28, 65–72. [Google Scholar] [CrossRef]
- Mittal, A.; Singh, R.; Chakma, S.; Goel, G. Permeable Reactive Barrier Technology for the Remediation of Groundwater Contaminated with Nitrate and Phosphate Resulted from Pit-Toilet Leachate. J. Water Process Eng. 2020, 37, 101471. [Google Scholar] [CrossRef]
- Ismanto, A.; Hadibarata, T.; Widada, S.; Indrayanti, E.; Ismunarti, D.H.; Safinatunnajah, N.; Kusumastuti, W.; Dwiningsih, Y. Groundwater Contamination Status in Malaysia: Level of Heavy Metal, Source, Health Impact, and Remediation Technologies. Bioprocess Biosyst. Eng. 2023, 46, 467–482. [Google Scholar] [CrossRef]
- Kijjanapanich, P.; Yaowakun, Y. Enhancement of Nitrate-Removal Efficiency Using a Combination of Organic Substrates and Zero-Valent Iron as Electron Donors. J. Environ. Eng. 2019, 145, 04019006. [Google Scholar] [CrossRef]
- Naghikhani, A.; Karbassi, A.; Sarang, A.; Baghdadi, M. Investigating the Sustainable Performance of a Nanoscale Zerovalent Iron Permeable Reactive Barrier for Removal of Nitrate, Sulfide, and Arsenic. AQUA Water Infrastruct. Ecosyst. Soc. 2023, 72, 540–556. [Google Scholar] [CrossRef]
- Buyanjargal, A.; Kang, J.; Lee, J.-H.; Jeen, S.-W. Nitrate Removal Rates, Isotopic Fractionation, and Denitrifying Bacteria in a Woodchip-Based Permeable Reactive Barrier System: A Long-Term Column Experiment. Environ. Sci. Pollut. Res. 2023, 30, 36364–36376. [Google Scholar] [CrossRef]
- Fei, Y.; Chen, S.; Wang, Z.; Chen, T.; Zhang, B. Woodchip-Sulfur Based Mixotrophic Biotechnology for Hexavalent Chromium Detoxification in the Groundwater. J. Environ. Manag. 2022, 324, 116298. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, T.; Xin, J.; Zheng, X.; Hu, R.; Subhan, F.; Shao, H. Effects of Alkali-Treated Agricultural Residues on Nitrate Removal and N2O Reduction of Denitrification in Unsaturated Soil. J. Environ. Manag. 2018, 214, 276–282. [Google Scholar] [CrossRef]
- Rocca, C.D.; Belgiorno, V.; Meric, S. Heterotrophic/Autotrophic Denitrification (HAD) of Drinking Water: Prospective Use for Permeable Reactive Barrier. Desalination 2007, 210, 194–204. [Google Scholar] [CrossRef]
- Meng, F.; Li, M.; Wang, H.; Xin, L.; Xiaona, W.; Liu, X. Encapsulating Microscale Zero Valent Iron-Activated Carbon into Porous Calcium Alginate for the Improvement on the Nitrate Removal Rate and Fe0 Utilization Factor. Microporous Mesoporous Mater. 2020, 307, 110522. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, Z.; Sun, X. Effect of Common Ions on Nitrate Removal by Zero-Valent Iron from Alkaline Soil. J. Hazard. Mater. 2012, 231, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Li, F.; Chen, X.; Tian, C.; Liu, C.; Liu, D. Assessment of the Use of a Zero-Valent Iron Permeable Reactive Barrier for Nitrate Removal from Groundwater in the Alluvial Plain of the Dagu River, China. Environ. Earth Sci. 2019, 78, 244. [Google Scholar] [CrossRef]
Journal | Citations | Documents |
---|---|---|
Journal of Hazardous Materials | 1180 | 5 |
Water Research | 916 | 8 |
Chemosphere | 469 | 10 |
Journal of Contaminant Hydrology | 361 | 8 |
Ecological Engineering | 316 | 5 |
Science of the Total Environment | 96 | 6 |
Water Science and Technology | 92 | 5 |
Environmental Science and Pollution Research | 68 | 7 |
Journal of Environmental Management | 57 | 9 |
Total | 3555 citations | 63 documents |
Article | Year | Citations | Document Type | Citation Frequency | Reference |
---|---|---|---|---|---|
The use of ZVI for groundwater remediation and wastewater treatment: A review | 2014 | 1078 | Review | 119.78 | [60] |
The limitations of applying ZVI technology in contaminants sequestration and the corresponding countermeasures: The development of ZVI technology in the last two decades (1994–2014) | 2015 | 635 | Review | 79.38 | [57] |
Kinetics of Nitrate, Nitrite, and Cr (VI) Reduction by Iron Metal | 2002 | 538 | Article | 25.62 | [56] |
Arsenate and arsenite removal by ZVI: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride | 2001 | 397 | Article | 18.05 | [59] |
Biological nitrate removal from water and wastewater by solid-phase denitrification process | 2016 | 340 | Review | 48.57 | [62] |
Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds | 2010 | 213 | Article | 16.38 | [63] |
Overview of In-Situ Applicable Nitrate Removal Processes | 2007 | 205 | Review | 12.81 | [61] |
Removal of chromium (VI) by acid-washed ZVI under various groundwater geochemistry conditions | 2008 | 184 | Article | 12.27 | [58] |
Selection of organic substrates as potential reactive materials for use in a denitrification PRB. | 2008 | 174 | Article | 11.60 | [14] |
Active Material | Operating Conditions | Nitrate Removal (%) | Byproducts | Key Observations | PRB Implemented | References |
---|---|---|---|---|---|---|
ZVI granular | Lab column, 1.2 m depth, 25 °C | >95% | NH4⁺, trace NO2− | Effective long-term nitrate removal with gradual passivation | Yes | [59] |
Agricultural waste + ZVI (sawdust + corn stalks + zeolite) | Column, 30 °C, 65 mg/L NO3− | >90% | NH4⁺ (0.02–0.12 mg/L), NO2− (0.7–2.5 mg/L) | Sawdust + corn stalks + zeolite show stable removal | Yes | [87] |
Corncob + zeolite | Lab column, 16 °C, HRT 2.5–24 h | 85.9–98.9% | NO2−, NH4⁺ transient | Corncob shows efficient removal at different NO3− levels | Yes | [34] |
Sequential PRB (biozone + ZVI) | Column setup | >95% | NO2−, NH4⁺ | Biozone enhances nitrate reduction prior to ZVI | Yes | [104] |
nZVI + xanthan + mulch | Column setup, 10 days | 5.7% ↑ vs. bare nZVI | Not specified | Stabilization improves longevity and performance | Yes | [129] |
mZVI + AC in alginate | Batch tests, pH 7 | 2.46× vs. mZVI | None reported | Encapsulation prevents aggregation and improves reactivity | Potential (not PRB tested) | [134] |
Organic mix + ZVI wire | Batch tests, pH ~7 | Up to 93.3% | None reported | ZVI + rice husk/straw improves denitrification | Potential (not PRB tested) | [128] |
PHA, PLA, PBS, etc. | Various (drinking water, aquaculture, effluent) | 60–100% | None reported | Solid-phase denitrification using biodegradable materials | Potential (not PRB tested) | [62] |
Alkali-treated corncob, straw | Unsaturated soil incubation, 28 days | Complete in 14–28 days | CO2, trace NO2−; low N2O | Improved DOC and lower N2O with treated materials | Potential (not PRB tested) | [132] |
ZVI with cation/anion-enhanced soil | Batch tests, alkaline soil | Up to 96–99% | NH4⁺ primary product, some NO2− | Cations (Fe3⁺, Cu2⁺) and citrate enhance performance | Potential (not PRB tested) | [135] |
Mixed carbon (sawdust + cornstalk) | Column, ambient temp., 15 days | >90% | NO2−, NH4⁺ | Stable removal with nitrite/ammonia accumulation | Yes | [136] |
Biochar + ZVI + reactive media | Pilot PRB, 1.2 m depth | ~95% | Not reported | Enhanced adsorption and reduction via biochar synergy | Yes | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Hidalgo, G.C.; Ábrego-Bonilla, J.; Deago, E.; Ortega Del Rosario, M.D.L.A. Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers. Hydrology 2025, 12, 98. https://doi.org/10.3390/hydrology12040098
Sánchez Hidalgo GC, Ábrego-Bonilla J, Deago E, Ortega Del Rosario MDLA. Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers. Hydrology. 2025; 12(4):98. https://doi.org/10.3390/hydrology12040098
Chicago/Turabian StyleSánchez Hidalgo, Graciela Cecilia, Jessie Ábrego-Bonilla, Euclides Deago, and Maria De Los Angeles Ortega Del Rosario. 2025. "Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers" Hydrology 12, no. 4: 98. https://doi.org/10.3390/hydrology12040098
APA StyleSánchez Hidalgo, G. C., Ábrego-Bonilla, J., Deago, E., & Ortega Del Rosario, M. D. L. A. (2025). Global Perspectives on Groundwater Decontamination: Advances and Challenges of the Role of Permeable Reactive Barriers. Hydrology, 12(4), 98. https://doi.org/10.3390/hydrology12040098