The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Statistics Methods
2.3.1. Rescaled Adjusted Partial Sums (RAPS) Method
2.3.2. Mann–Kendall (MK) Test
2.3.3. Structural Equation Model (SEM)
3. Results
3.1. Changes in Precipitation and Snowfall
3.2. Increased Air Temperature
3.3. Changes in River Discharge
3.4. Relationship Between Precipitation, Temperature, and River Discharge
4. Discussion
4.1. Tipping Point of Precipitation Pattern
4.2. Variation in River Discharge May Increase Flood Risk
4.3. Vulnerability of Water Resources in Coastal Region
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-32584-4. [Google Scholar]
- Xu, K.; Zhuang, Y.; Bin, L.; Wang, C.; Tian, F. Impact Assessment of Climate Change on Compound Flooding in a Coastal City. J. Hydrol. 2023, 617, 129166. [Google Scholar] [CrossRef]
- Tait, D.R.; Santos, I.R.; Lamontagne, S.; Sippo, J.Z.; McMahon, A.; Jeffrey, L.C.; Maher, D.T. Submarine Groundwater Discharge Exceeds River Inputs as a Source of Nutrients to the Great Barrier Reef. Environ. Sci. Technol. 2023, 57, 15627–15634. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E. Changes in Precipitation with Climate Change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Pattnayak, K.C.; Awasthi, A.; Sharma, K.; Pattnayak, B.B. Fate of Rainfall over the North Indian States in the 1.5 and 2 °C Warming Scenarios. Earth Space Sci. 2023, 10, e2022EA002671. [Google Scholar] [CrossRef]
- Feng, S.; Hu, Q. Changes in Winter Snowfall/Precipitation Ratio in the Contiguous United States. J. Geophys. Res. Atmos. 2007, 112, D15109. [Google Scholar] [CrossRef]
- Putnam, A.E.; Broecker, W.S. Human-Induced Changes in the Distribution of Rainfall. Sci. Adv. 2017, 3, e1600871. [Google Scholar] [CrossRef]
- Lenderink, G.; Fowler, H.J. Hydroclimate: Understanding Rainfall Extremes. Nat. Clim. Change 2017, 7, 391–393. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Y.; Wang, Y.; Lu, F.; Xiao, W.; Hou, B.; Yu, Y.; Liu, J.; Xue, W. Impacts of Precipitation Type Variations on Runoff Changes in the Source Regions of the Yangtze and Yellow River Basins in the Past 40 Years. Water 2022, 14, 4115. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I.; Zhang, X. Anthropogenic Climate Change Detected in European Renewable Freshwater Resources. Nat. Clim. Change 2017, 7, 813–816. [Google Scholar] [CrossRef]
- Wang, Y.; Borthwick, A.G.L.; Ni, J. Human Affinity for Rivers. River 2022, 1, 4–14. [Google Scholar] [CrossRef]
- Wang, H.; He, G. Rivers: Linking Nature, Life, and Civilization. River 2022, 1, 25–36. [Google Scholar] [CrossRef]
- Cotner, J.B.; Powers, S.M.; Sadro, S.; McKnight, D. Whither Winter: The Altered Role of Winter for Freshwaters as the Climate Changes. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006761. [Google Scholar] [CrossRef]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, Impacts and Patterns of Disastrous River Floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing Climate Shifts Timing of European Floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dong, Q.; Zhang, X. Attribution Analysis of Runoff Change Based on Budyko-Type Model with Time-Varying Parameters for the Lhasa River Basin, Qinghai–Tibet Plateau. J. Hydrol. Reg. Stud. 2023, 48, 101469. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Jia, Z.; Zou, J.; Xiao, P. Applicability of Attribution Methods for Identifying Runoff Changes in Changing Environments. Sci. Rep. 2024, 14, 26100. [Google Scholar] [CrossRef]
- Thomas, B.F.; Nanteza, J. Global Assessment of the Sensitivity of Water Storage to Hydroclimatic Variations. Sci. Total Environ. 2023, 879, 162958. [Google Scholar] [CrossRef]
- de Franca Doria, M.; Pidgeon, N.; Hunter, P. Perception of Tap Water Risks and Quality: A Structural Equation Model Approach. Water Sci. Technol. 2005, 52, 143–149. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchia, K.; Ishidaira, H. Monotonic Trend and Step Changes in Japanese Precipitation. J. Hydrol. 2003, 279, 144–150. [Google Scholar] [CrossRef]
- Hatta, M.; Zhang, J. Temporal Changes and Impacts of Submarine Fresh Groundwater Discharge to the Coastal Environment: A Decadal Case Study in Toyama Bay, Japan. J. Geophys. Res. Oceans 2013, 118, 2610–2622. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Yoshida, T. Temporal Variations of Groundwater Tables and Implications for Submarine Groundwater Discharge: A 3-Decade Case Study in Central Japan. Hydrol. Earth Syst. Sci. 2017, 21, 3417–3425. [Google Scholar] [CrossRef]
- Katazakai, S.; Zhang, J. A Shift from Snow to Rain in Midlatitude Japan Increases Fresh Submarine Groundwater Discharge and Doubled Inorganic Carbon Flux over 20 Years. Environ. Sci. Technol. 2021, 55, 14667–14675. [Google Scholar] [CrossRef]
- Zhang, J.; Satake, H. The Chemical Characteristics of Submarine Groundwater Seepage in Toyama Bay, Central Japan. In Land and Marine Hydrogeology; Taniguchi, M., Wang, K., Gamo, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 45–60. ISBN 978-0-444-51479-0. [Google Scholar]
- Ito, T.; Fujii, S. The Water Balance of Ground-Water Reservoir in the Toyama Basin. Mem. Toyama Geogr. Soc. 1993, 10, 63–74. [Google Scholar]
- Okakita, N.; Iwatake, K.; Hirata, H.; Ueda, A. Contribution of Precipitation to Groundwater Flow Systems in Three Major Alluvial Fans in Toyama Prefecture, Japan: Stable-Isotope Characterization and Application to the Use of Groundwater for Urban Heat Exchangers. Hydrogeol. J. 2019, 27, 345–362. [Google Scholar] [CrossRef]
- Ishikawa, S.; Kure, S.; Yagi, R.; Priyambodho, B. Flood Hazard Evaluation for Rivers in Toyama Prefecture, Japan. In Proceedings of the 22nd IAHR APD Congress, Sapporo, Japan, 14–17 September 2020. [Google Scholar]
- Kamishima, T.; Takeuchi, A. Late Quaternary Geomorphology of the Tonami Plain and Activity of the Tonami-Heiya Fault Zone, Toyama Prefecture, Central Japan. Int. J. Geosci. 2016, 7, 962–976. [Google Scholar] [CrossRef]
- Jonas, T.; Marty, C.; Magnusson, J. Estimating the Snow Water Equivalent from Snow Depth Measurements in the Swiss Alps. J. Hydrol. 2009, 378, 161–167. [Google Scholar] [CrossRef]
- Kuribayashi, M.; Noh, N.J.; Saitoh, T.M.; Tamagawa, I.; Wakazuki, Y.; Muraoka, H. Comparison of Snow Water Equivalent Estimated in Central Japan by High-Resolution Simulations Using Different Land-Surface Models. SOLA 2013, 9, 148–152. [Google Scholar] [CrossRef]
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in Snowfall versus Rainfall in the Western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef]
- Đurin, B.; Kranjčić, N.; Kanga, S.; Singh, S.K.; Sakač, N.; Pham, Q.B.; Hunt, J.; Dogančić, D.; Di Nunno, F. Application of Rescaled Adjusted Partial Sums (RAPS) Method in Hydrology—An Overview. Adv. Civ. Archit. Eng. 2022, 13, 58–72. [Google Scholar] [CrossRef]
- Đurin, B.; Plantak, L.; Bonacci, O.; Di Nunno, F. A Unique Approach to Hydrological Behavior along the Bednja River (Croatia) Watercourse. Water 2023, 15, 589. [Google Scholar] [CrossRef]
- Basarin, B.; Lukić, T.; Pavić, D.; Wilby, R.L. Trends and Multi—Annual Variability of Water Temperatures in the River Danube, Serbia. Hydrol. Process. 2016, 30, 3315–3329. [Google Scholar] [CrossRef]
- Šrajbek, M.; Đurin, B.; Sušilović, P.; Singh, S.K. Application of the RAPS Method for Determining the Dependence of Nitrate Concentration in Groundwater on the Amount of Precipitation. Earth 2023, 4, 266–277. [Google Scholar] [CrossRef]
- Burn, D.H.; Hag Elnur, M.A. Detection of Hydrologic Trends and Variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, C. Analysis of Annual and Seasonal Precipitation Variation in the Qinba Mountain Area, China. Sci. Rep. 2020, 10, 961. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, C.; Wu, G.; Pan, L. Haihe River Discharge to Bohai Bay, North China: Trends, Climate, and Human Activities. Hydrol. Res. 2016, 48, 1058–1070. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. An Introduction to Structural Equation Modeling. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–29. ISBN 978-3-030-80518-0. [Google Scholar]
- Tian, P.; Liu, S.; Zhao, X.; Sun, Z.; Yao, X.; Niu, S.; Crowther, T.W.; Wang, Q. Past Climate Conditions Predict the Influence of Nitrogen Enrichment on the Temperature Sensitivity of Soil Respiration. Commun. Earth Environ. 2021, 2, 251. [Google Scholar] [CrossRef]
- Meng, Y.; Li, S.; Wang, S.; Meiners, S.J.; Jiang, L. Scale-Dependent Changes in Ecosystem Temporal Stability over Six Decades of Succession. Sci. Adv. 2023, 9, eadi1279. [Google Scholar] [CrossRef]
- Han, J.; Liu, Z.; Woods, R.; McVicar, T.R.; Yang, D.; Wang, T.; Hou, Y.; Guo, Y.; Li, C.; Yang, Y. Streamflow Seasonality in a Snow-Dwindling World. Nature 2024, 629, 1075–1081. [Google Scholar] [CrossRef]
- Kopp, R.E.; Gilmore, E.A.; Shwom, R.L.; Adams, H.; Adler, C.; Oppenheimer, M.; Patwardhan, A.; Russill, C.; Schmidt, D.N.; York, R. ‘Tipping Points’ Confuse and Can Distract from Urgent Climate Action. Nat. Clim. Change 2024, 15, 29–36. [Google Scholar] [CrossRef]
- Yamashita, Y.; Kawamura, R.; Iizuka, S.; Hatsushika, H. Explosively Developing Cyclone Activity in Relation to Heavy Snowfall on the Japan Sea Side of Central Japan. J. Meteorol. Soc. Jpn. Ser. II 2012, 90, 275–295. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T.; Qi, Z.; Li, L. Spatiotemporal Variation of Snowfall to Precipitation Ratio and Its Implication on Water Resources by a Regional Climate Model over Xinjiang, China. Water 2018, 10, 1463. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Li, Z.; Chen, Y.; Duan, W.; Amory, C.; De Maeyer, P. Shifting in the Global Flood Timing. Sci. Rep. 2022, 12, 18853. [Google Scholar] [CrossRef]
- Getirana, A.; Kumar, S.; Konapala, G.; Nie, W.; Locke, K.; Loomis, B.; Birkett, C.; Ricko, M.; Simard, M. Climate and Human Impacts on Hydrological Processes and Flood Risk in Southern Louisiana. Water Resour. Res. 2023, 59, e2022WR033238. [Google Scholar] [CrossRef]
- Swarnkar, S.; Mujumdar, P. Increasing Flood Frequencies under Warming in the West-Central Himalayas. Water Resour. Res. 2023, 59, e2022WR032772. [Google Scholar] [CrossRef]
- Liu, Q.; Charette, M.A.; Henderson, P.B.; McCorkle, D.C.; Martin, W.; Dai, M. Effect of Submarine Groundwater Discharge on the Coastal Ocean Inorganic Carbon Cycle. Limnol. Oceanogr. 2014, 59, 1529–1554. [Google Scholar] [CrossRef]
- Katazakai, S.; Zhang, J. A Quarter-Century of Nutrient Load Reduction Leads to Halving River Nutrient Fluxes and Increasing Nutrient Limitation in Coastal Waters of Central Japan. Environ. Monit. Assess. 2021, 193, 573. [Google Scholar] [CrossRef]
- Hyman-Rabeler, K.A.; Loheide II, S.P. Drivers of Variation in Winter and Spring Groundwater Recharge: Impacts of Midwinter Melt Events and Subsequent Freezeback. Water Resour. Res. 2023, 59, e2022WR032733. [Google Scholar] [CrossRef]
- Curtis, S. Means and Long-Term Trends of Global Coastal Zone Precipitation. Sci. Rep. 2019, 9, 5401. [Google Scholar] [CrossRef]
- Gunawardana, C.; McDonald, W. Impacts of Land Use Changes on Discharge and Water Quality in Rivers and Streams: Case Study of the Continental United States. JAWRA J. Am. Water Resour. Assoc. 2024, 60, 725–740. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Klaar, M.; Chen, A.; Gudmundsson, L.; Holden, J. Anthropogenic Climate Change Has Influenced Global River Flow Seasonality. Science 2024, 383, 1009–1014. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mishra, A.K. Deep Learning in Hydrology and Water Resources Disciplines: Concepts, Methods, Applications, and Research Directions. J. Hydrol. 2024, 628, 130458. [Google Scholar] [CrossRef]
Items | Length (km) | Basin Area (km2) | Gauges | Longitude | Latitude | Elevation (m a.s.l.) |
---|---|---|---|---|---|---|
Kurobe River | 86 | 689 | Aimoto | 137.5547° E | 36.8594° N | 123.8 |
Joganji River | 56 | 368 | Kameiwa | 137.3430° E | 36.5756° N | 237.46 |
Jinzu River | 120 | 2720 | Jinzu ohasi | 137.2041° E | 36.7014° N | −0.09 |
Shou River | 115 | 1180 | Daimon | 137.0436° E | 36.7350° N | −0.04 |
Oyabe River | 68 | 682 | Nagae | 136.9830° E | 36.7583° N | −0.10 |
Weather station | Toyama | 137.2016° E | 36.7083° N | 8.60 |
Month | Kurobe River | Joganji River | Jinzu River | ||||||
1985–1992 | 1993–2020 | change | 1985–1992 | 1993–2020 | Change | 1985–1992 | 1993–2020 | Change | |
m3/s | % | m3/s | % | m3/s | % | ||||
Jan | 6.41 | 15.90 | 148.1 | 3.90 | 7.44 | 90.7 | 142.70 | 128.21 | −10.2 |
Feb | 6.15 | 17.41 | 183.0 | 4.12 | 7.23 | 75.4 | 148.23 | 138.43 | −6.6 |
Mar | 8.16 | 22.85 | 180.0 | 6.62 | 12.02 | 81.5 | 220.64 | 220.96 | 0.1 |
Apr | 17.75 | 45.24 | 155.0 | 17.50 | 29.19 | 66.8 | 278.18 | 310.99 | 11.8 |
May | 36.35 | 97.04 | 167.0 | 25.71 | 44.10 | 71.5 | 190.85 | 211.59 | 10.9 |
Jun | 42.90 | 100.56 | 134.4 | 24.96 | 31.56 | 26.4 | 168.72 | 146.45 | −13.2 |
Jul | 56.20 | 113.57 | 102.1 | 34.73 | 38.24 | 10.1 | 250.56 | 259.61 | 3.6 |
Aug | 10.21 | 41.88 | 310.1 | 8.16 | 18.49 | 126.7 | 128.23 | 163.38 | 27.4 |
Sep | 13.82 | 31.53 | 128.1 | 14.45 | 17.41 | 20.5 | 212.07 | 192.49 | −9.2 |
Oct | 10.09 | 24.38 | 141.7 | 10.49 | 16.78 | 59.9 | 149.50 | 159.72 | 6.8 |
Nov | 10.40 | 22.83 | 119.6 | 7.07 | 14.95 | 111.3 | 136.79 | 142.60 | 4.2 |
Dec | 7.10 | 17.46 | 145.9 | 4.27 | 8.99 | 110.8 | 131.53 | 145.03 | 10.3 |
Shou River | Oyabe River | River Average | |||||||
1985–1992 | 1993–2020 | change | 1985–1992 | 1993–2020 | change | 1985–1992 | 1993–2020 | change | |
m3/s | % | m3/s | % | m3/s | % | ||||
Jan | 16.76 | 28.79 | 71.8 | 69.55 | 69.12 | −0.6 | 47.86 | 49.89 | 4.2 |
Feb | 22.06 | 30.80 | 39.6 | 68.79 | 67.26 | −2.2 | 49.87 | 52.23 | 4.7 |
Mar | 58.70 | 63.34 | 7.9 | 71.93 | 66.12 | −8.1 | 73.21 | 77.06 | 5.3 |
Apr | 71.47 | 72.45 | 1.4 | 56.70 | 60.40 | 6.5 | 88.32 | 103.66 | 17.4 |
May | 26.63 | 50.70 | 90.4 | 56.93 | 55.48 | −2.5 | 67.29 | 91.78 | 36.4 |
Jun | 24.35 | 22.41 | −8.0 | 56.74 | 54.67 | −3.6 | 63.54 | 71.13 | 12.0 |
Jul | 55.02 | 60.71 | 10.4 | 70.76 | 66.56 | −5.9 | 93.45 | 107.74 | 15.3 |
Aug | 11.00 | 35.19 | 220.0 | 45.33 | 56.30 | 24.2 | 40.59 | 63.05 | 55.3 |
Sep | 40.50 | 42.78 | 5.6 | 58.17 | 58.11 | −0.1 | 67.80 | 68.46 | 1.0 |
Oct | 20.98 | 36.55 | 74.2 | 42.39 | 43.09 | 1.7 | 46.69 | 56.10 | 20.2 |
Nov | 16.99 | 25.72 | 51.4 | 53.81 | 54.60 | 1.5 | 45.01 | 52.14 | 15.8 |
Dec | 19.84 | 32.92 | 66.0 | 62.77 | 71.22 | 13.5 | 45.10 | 55.12 | 22.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Han, J.; Liu, J.; Zhao, Y. The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan. Hydrology 2025, 12, 187. https://doi.org/10.3390/hydrology12070187
Zhang B, Han J, Liu J, Zhao Y. The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan. Hydrology. 2025; 12(7):187. https://doi.org/10.3390/hydrology12070187
Chicago/Turabian StyleZhang, Bing, Jingyan Han, Jianbo Liu, and Yong Zhao. 2025. "The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan" Hydrology 12, no. 7: 187. https://doi.org/10.3390/hydrology12070187
APA StyleZhang, B., Han, J., Liu, J., & Zhao, Y. (2025). The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan. Hydrology, 12(7), 187. https://doi.org/10.3390/hydrology12070187