Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Ouémé Catchment Description
2.1.2. Ouémé Catchment Hydrological Soils Groups, Land Use and Land Cover Types
2.2. Data
2.3. Methods
2.3.1. Climate Models Bias Correction
2.3.2. Rainfall Runoff Modeling
2.3.3. Climate Change Impacts on Water Resources in Ouémé Catchment
3. Results
3.1. Climate Models Bias Correction
3.1.1. Rainfall
3.1.2. Temperature Projection
3.2. Rainfall Runoff Modeling
3.2.1. Model Calibration
3.2.2. Hydrological Model Performance
3.2.3. Comparison of Observation and Simulation Flow Duration Curve
3.3. Climate Change Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge CB2 2RU: Cambridge, UK, 2003. [Google Scholar]
- Sonneveld, B.G.J.S.; Keyzer, M.A.; Adegbola, P.; Pande, S. The Impact of Climate Change on Crop Production in West Africa: An Assessment for the Oueme River Basin in Benin. Water Resour. Manag. 2012, 26, 553–579. [Google Scholar] [CrossRef]
- Roudier, P. Vulnérabilité des Ressources en eau Superficielle d’un Bassin Soudano-Sahélien Dans un Contexte de Changement Climatique: Approche par Indicateurs. Master’s Thesis, University of Montpellier, Montpellier, France, 2008. [Google Scholar]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef]
- Stanzel, P.; Kling, H.; Bauer, H. Climate change impact on West African rivers under an ensemble of CORDEX climate projections. Clim. Serv. 2018, 11, 36–48. [Google Scholar] [CrossRef]
- Riede, J.O.; Posada, R.; Fink, A.H.; Kaspar, F. What is on the 5th IPCC Report for West Africa? In Adaptation to Climate Change and Variability in Rural West Africa; Springer: Cham, Switzerland, 2016; pp. 7–24. [Google Scholar]
- Agobie, O.; Harcourt, P. Impacts of Urban Land use changes on flood events in Warri, Delta State Nigeria. Int. J. Eng. Res. Appl. 2014, 4, 48–60. [Google Scholar]
- Akpoti, K.; Antwi, E.O.; Kabo-bah, A.T. Impacts of Rainfall Variability Land Use and Land Cover Change on Stream Flow of the Black Volta. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef]
- Igué, A.M.; Houndagba, C.J.; Gaiser, T.; Stahr, K. Land Use/Cover Map and its Accuracy in the Oueme Basin of Benin (West Africa). Conf. Int. Agric. Res. Dev. 2006, 1, 4. [Google Scholar]
- Stefanidis, K.; Kostara, A.; Papastergiadou, E. Implications of Human Activities, Land use Changes and Climate Variability in Mediterranean Lakes of Greece. Water 2016, 8, 483. [Google Scholar] [CrossRef]
- Koneti, S.; Sunkara, S.L.; Roy, P.S. Hydrological Modeling with Respect to Impact of Land-Use and Land-Cover Change on the Runoff Dynamics in Godavari River Basin Using the HEC-HMS Model. ISPRS Int. J. Geo Inf. 2018, 7, 206. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.M.; Salim, R.W. Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Charron, I. A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions; Ouranos Inc.: Montreal, QC, Canada, 2016. [Google Scholar]
- Giertz, S.; Diekkrüger, B.; Jaeger, A.; Schopp, M. An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Ouémé catchment in Benin. Adv. Geosci. 2006, 9, 3–13. [Google Scholar] [CrossRef]
- Case, M. Climate Change Impacts on East Africa. A Review of the Scientific Literature; WWF-World Wide Fund For Nature: Gland, Switzerland, 2006. [Google Scholar] [CrossRef]
- Oyerinde, G.T.; Hountondji, F.C.C.; Lawin, A.E.; Odofin, A.J.; Afouda, A.; Diekkrüger, B. Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa. Climate 2017, 5, 8. [Google Scholar] [CrossRef]
- Mbaye, M.L.; Hagemann, S.; Haensler, A.; Stacke, T.; Gaye, A.T.; Afouda, A. Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). Am. J. Clim. Chang. 2015, 4, 77–93. [Google Scholar] [CrossRef] [Green Version]
- M’Po, Y.N.T.M.; Lawin, A.E.; Oyerinde, G.T.; Yao, B.K.; Afouda, A.A. Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé. Hydrology 2017, 4, 58–71. [Google Scholar] [CrossRef]
- Obada, E.; Alamou Adéchina, E.; Zandagba, E.J.; Biao, I.E.; Chabi, A. Comparative study of seven bias correction methods applied to three Regional Climate Models in Mekrou catchment (Benin, West Africa). Int. J. Curr. Eng. Technol. 2016, 6, 1831–1840. [Google Scholar]
- Biao, I.E.; Alamou, A.E.; Afouda, A. Improving rainfall–runoff modelling through the control of uncertainties under increasing climate variability in the Ouémé River basin (Benin, West Africa). Hydrol. Sci. J. 2016, 61, 2902–2915. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Daliakopoulos, I.N.; Tsanis, I.K. A method to preserve trends in quantile mapping bias correction of climate modeled temperature. Earth Syst. Dyn. 2017, 8, 889–900. [Google Scholar] [CrossRef] [Green Version]
- Foughali, A.; Tramblay, Y.; Bargaoui, Z.; Carreau, J.; Ruelland, D. Hydrological Modeling in Northern Tunisia with Regional Climate Model Outputs: Performance Evaluation and Bias-Correction in Present Climate Conditions. Climate 2015, 3, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Rathjens, H.; Bieger, K.; Srinivasan, R.; Arnold, J.G. CMhyd User Manual Documentation for Preparing Simulated Climate Change Data for Hydrologic Impact Studies. 2016. Available online: http://swat.tamu.edu/software/cmhyd/ (accessed on 12 March 2019).
- Emmanuel, L.; N’Tcha, M.P.; Biaou, C.; Komi, K.; Hounguè, R.; Yao, K.; Afouda, A. Mid-Century Daily Discharge Scenarios Based on Climate and Land Use Change in Ouémé River Basin at Bétérou Outlet. Hydrology 2018, 5, 69. [Google Scholar] [CrossRef]
- Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A.Y. Impact of climate change on water resources in a tropical West African catchment using an ensemble of climate simulations. Hydrol. Earth Syst. Sci. 2016, 21, 1–37. [Google Scholar] [CrossRef]
- Geleta, C.D.; Gobosho, L. Climate Change Induced Temperature Prediction and Bias Correction in Finchaa Watershed. Agric. Environ. Sci. 2018, 18, 324–337. [Google Scholar] [CrossRef]
- Sorteberg, A. Challenges in Bias Correction of Climate Projections What are the Challenges; BjerknesCentre for Climate Research: Bergen, Norway, 2015. [Google Scholar]
- Box, G.E.P. Sampling and Bayes’ Inference in Scientific Modelling and Robustness. J. R. Stat. Soc. Ser. A 1980, 143, 383–430. [Google Scholar] [CrossRef]
- Field, E.H. “All Models Are Wrong, but Some Are Useful”. Seism. Res. Lett. 2015, 86, 291–293. [Google Scholar] [CrossRef]
- Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Gebre, S.L. Application of the HEC-HMS Model for Runoff Simulation of Upper Blue Nile River Basin. J. Waste Water Treat. Anal. 2015, 6, 6. [Google Scholar] [CrossRef]
- Sampath, D.S.; Weerakoon, S.B.; Herath, S. HEC-HMS model for runoff simulation in a tropical catchment with intra-basin diversions case study of the Deduru Oya river basin, Sri Lanka. Engineer 2015, 48, 1–9. [Google Scholar] [CrossRef]
- Sok, K.; Oeurng, C. Application of HEC-HMS Model to Assess Streamflow and Water Resources Availability in Stung Sangker Catchment of Mekong’ Tonle Sap Lake Basin in Cambodia. Earth Sci. 2016, 1–16. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Gaur, M.L. Rainfall-Runoff Modeling using HEC-HMS, Remote Sensing and Geographical Information System in Middle Gujarat, India; Shete, D.T., Ed.; Excel India Publishers: New Delhi, India, 2013; p. 9. [Google Scholar]
- Xu, H.; Luo, Y. Climate change and its impacts on river discharge in two climate regions in China. Hydrol. Earth Syst. Sci. 2015, 19, 4609–4618. [Google Scholar] [CrossRef]
- Sintondji, L.O.; Dossou-yovo, E.R.; Agbossou, E.K. Modelling the hydrological balance of the Okpara catchment at the Kaboua outlet in Benin. Lab. Hydraul. Water Control. 2013, 3, 182–197. [Google Scholar]
- Bossa, Y.A. Multi-Scale Modeling of Sediment and Nutrient Flow Dynamics in the Ouémé Catchment(Benin)—Towards an Assessment of Global Change Effects on Soil Degradation and Water Quality; University of Bonn: Bonn, Germany, 2012; p. 130. [Google Scholar]
- Zhang, B.; Shrestha, N.K.; Daggupati, P.; Rudra, R.; Shukla, R. Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada. Sustainability 2018, 10, 2897. [Google Scholar] [CrossRef]
- Hounkpè, J.; Diekkrüger, B.; Afouda, A.A.; Sintondji, L.O. Land use change increases flood hazard: A multi-modelling approach to assess change in flood characteristics driven by socio-economic land use change scenarios. Nat. Hazards 2019, 1–30. [Google Scholar] [CrossRef]
- Dhami, B.S.; Pandey, A. Comparative Review of recently developed hydrologic models Bir Singh Dhami and Ashish Pandey Hec-HMS. J. Indian Water Resour. Soc. 2013, 33, 34–42. [Google Scholar]
- Otieno, H. Comparative Study on Water Resources Assessment between Kenya and England. In Proceedings of the International Conference on Hydroinformatics, HIC 2014, New York, NY, USA, 17–21 August 2014. [Google Scholar]
- Zannou, A.B.Y. Analyse et Modélisation du Cycle Hydrologique Continenetal Pour la Gestion Intégrée des Ressources en Eau au Bénin. Cas du Bassin de L’ouémé à Bétérou; Université d’Abomey-Calavi: Cotonou, Benin, 2011. [Google Scholar]
- Biao, E.I. Assessing the Impacts of Climate Change on River Discharge Dynamics in Oueme River Basin. Hydrology 2017, 4, 16. [Google Scholar] [CrossRef]
- FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized World Soil Database; Version 1.2; IIASA: Laxenburg, Austria, 2009. [Google Scholar]
- US Army Corps of Engineers. HEC-HMS Hydrologic Modeling System; US Army Corps of Engineers: Washington, DC, USA, 2000. [Google Scholar]
- Tappan, G.G.; Cushing, W.M.; Cotillon, S.E.; Mathis, M.L.; Hutchinson, J.A.; Dalsted, K.J. West Africa Land Use Land Cover Time Series; U.S. Geological Survey: Reston, WV, USA, 2017.
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves; US Government Printing Office: Washington, DC, USA, 1960.
- Lawin, A.E.; Hounguè, N.R.; Biaou, C.A.; Badou, D.F. Statistical Analysis of Recent and Future Rainfall and Temperature Variability in the Mono River Watershed. Climate 2019, 7, 8. [Google Scholar] [CrossRef]
- Badou, D.F.; Kapangaziwiri, E.; Diekkrüger, B.; Hounkpè, J.; Afouda, A. Evaluation of recent hydro-climatic changes in four tributaries of the Niger River Basin (West Africa). Hydrol. Sci. J. 2016, 62, 715–728. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M. Package hydroGOF: Goodness-Of-Fit Functions for Comparison of Simulated and Observed Hydrological Time Series 2017, 76. Available online: http://hzambran.github.io/hydroGOF/ (accessed on 13 August 2019).
- Nash, J.E.; Sutchliffe, J.V. River flow forecasting through conceptual models. Part 1-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; Gonz, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Pandit, A.; Regan, J. Chapter23 what is the Impervious Area Curve Number? J. Water Manag. Model. 1998, 6062, 433–449. [Google Scholar] [CrossRef]
- Awa, W.; Ou, A.; Raude, J.M. Continuous Modeling of the Mkurumudzi River Catchment in Kenya Using the HEC-HMS Conceptual Model: Calibration, Validation, Model Performance Evaluation and Sensitivity Analysis. Hydrology 2018, 5, 44. [Google Scholar] [CrossRef]
- Tegegne, G.; Park, D.K.; Kim, Y. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J. Hydrol. Reg. Stud. 2017, 14, 49–66. [Google Scholar] [CrossRef]
- Hounguè, R.; Lawin, E.; Moumouni, S.; Afouda, A.A. Change in Climate Extremes and Pan Evaporation Influencing Factors over Ouémé Delta in Bénin. Climate 2019, 7, 22. [Google Scholar] [CrossRef]
- Essou, G.R.C.; Brissette, F. Climate Change Impacts on the Ouémé River, Benin, West Africa. Earth Sci. Clim. Chang. 2013, 4, 161. [Google Scholar] [CrossRef]
- ECREEE. GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region, Country Report for Benin; ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE): Praia, Cabo Verde, 2017; p. 19. [Google Scholar]
Land Use Types | Area Percentage | Percentage of Change | |||
---|---|---|---|---|---|
1975 | 2000 | 2013 | 1975–2000 | 2000–2013 | |
Forest | 1.2 | 0.7 | 0.6 | −0.5 | −0.2 |
Savanna | 77.0 | 64.6 | 60.4 | −12.4 | −4.2 |
Wetland—flood plain | 0.4 | 0.6 | 0.8 | 0.2 | 0.2 |
Plantation | 0.3 | 0.4 | 1.8 | 0.1 | 1.3 |
Agriculture | 7.1 | 23.1 | 31.4 | 16.0 | 8.3 |
Water bodies | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 |
Settlements | 0.2 | 0.5 | 0.9 | 0.3 | 0.4 |
Irrigated agriculture | 0.0 | 0.0 | 0.2 | 0.0 | 0.1 |
Gallery forest | 5.1 | 4.7 | 4.1 | −0.4 | −0.6 |
Degraded forest | 0.7 | 0.1 | 0.2 | -0.6 | 0.1 |
Woodland | 6.4 | 3.0 | 1.9 | −3.4 | −1.0 |
Cropland and fallow with oil palms | 1.5 | 2.4 | 2.8 | 0.9 | 0.5 |
Station Name | Longitude (Degree) | Latitude (Degree) | Station Name | Longitude (Degree) | Latitude (Degree) |
---|---|---|---|---|---|
ABOMEY | 1.98 | 7.18 | INA | 2.73 | 9.97 |
AGOUNA | 1.7 | 7.55 | KETOU | 2.61 | 7.36 |
AKLAMPA | 2.02 | 8.55 | KOUANDE | 1.68 | 10.33 |
BANTE | 1.88 | 8.42 | OKPARA | 2.73 | 9.47 |
BASSILA | 1.67 | 9.02 | PARAKOU_AIRPORT ** | 2.6 | 9.35 |
BEMBEREKE | 2.67 | 10.2 | PENESSOULOU | 1.55 | 9.23 |
BETEROU | 2.27 | 9.2 | PIRA | 1.72 | 8.65 |
BIRNI | 1.52 | 9.98 | SAVALOU | 1.98 | 7.93 |
BOHICON ** | 2.07 | 7.17 | SAVE ** | 2.47 | 8.03 |
BONOU | 2.5 | 6.93 | TCHAOUROU | 2.6 | 8.87 |
DASSA_ZOUME | 2.17 | 7.75 | TCHETTI | 1.67 | 7.82 |
DJOUGOU | 1.67 | 9.7 | ZAGNANADO | 2.33 | 7.25 |
GOUKA | 1.95 | 8.13 |
Model Name | Institute | Driven Model |
---|---|---|
CanRCM4 | Canadian Centre for Climate Modeling and Analysis | CCCma-CanESM2_CCCma |
RACMO22T | Royal Netherlands Meteorological Institute, De Bilt, The Netherlands | ICHEC-EC-EARTH |
HIRHAM5 | Danish Meteorological Institute | NCC-NorESM1-M |
REMO2009 | Helmholtz-Zentrum Geesthacht, Climate Service Centre, Max Planck Institute for Meteorology | MPI-ESM-LR |
Efficiency Coefficient | Definition and Utility | Optimal Value | Expression |
---|---|---|---|
Nash–Sutcliffe Efficiency (NSE) [51] | NSE is a normalized statistic that determines the relative magnitude of the residual variance or noise compared to measured data variance. It runs from –inf to 1. | Value of 1 | |
rPearson (r) [52] | rPearson estimates the degree to which two series are correlated and runs from 0 to 1 | Value of 1 | |
Percent bias (PBIAS) [53] | Percent bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller than their observed ones. Positive values indicate overestimation bias, whereas negative values indicate underestimation bias. | Value of 0 | |
Kling–Gupta Efficiency (KGE) [54] | KGE provides a diagnostically interesting decomposition of the Nash–Sutcliffe Efficiency (NSE), which facilitates the analysis of the relative importance of its different components such as correlation, bias and variability in the context of hydrological modeling | Value of 1 | where r = rPearson, α is the ratio between simulated variance and observed variance, and β is the bias (the ratio between simulated mean and observed mean) |
Where Si simulated discharge, Oi observed discharge, N sample size |
KGE | PBIAS | |||
---|---|---|---|---|
Before | After | Before | After | |
REMO | 0.01 | 0.95 | 60.7 | −4.6 |
RACMO22T | 0.73 | 0.99 | 23.6 | −0.8 |
HIRHAM | −0.06 | 0.98 | 71.7 | −1.6 |
CanRCM4 | 0.50 | 0.98 | 46.5 | −1.1 |
KGE | PBIAS | |||
---|---|---|---|---|
Before | After | Before | After | |
REMO | −0.08 | 0.89 | 60.7 | −4.6 |
RACMO22T | 0.70 | 0.91 | 23.6 | −0.8 |
HIRHAM | −0.22 | 0.89 | 71.7 | −1.6 |
CanRCM4 | 0.50 | 0.88 | 46.5 | −1.1 |
KGE | PBIAS | |||
---|---|---|---|---|
Before | After | Before | After | |
REMO | 0.86 | 0.98 | −5.9 | −0.1 |
RACMO22T | 0.50 | 0.98 | −13.9 | −0.03 |
HIRHAM | 0.74 | 0.99 | −5.2 | −0.1 |
CanRCM4 | 0.94 | 0.99 | 2.9 | 0.02 |
Parameter | Optimized Value | Unit |
---|---|---|
Recession—Initial Discharge | 31.373 | m3/S |
Recession Constant | 0.9314 | |
Recession—Threshold Discharge | 4.9428 | m3/S |
Curve Number | 35.721 | |
Initial Abstraction | 0 | mm |
Lag Time | 23,292 | min |
Simple Canopy—Initial Storage | 1 | % |
Simple Canopy—Max Storage | 116.93 | mm |
Simple Surface—Initial Storage | 35 | % |
Simple Surface—Max Storage | 598.6 | mm |
Statistics | Canopy—Max Storage | Lag Time | Surface—Max Storage |
---|---|---|---|
Mean | 115.2 | 23,286.6 | 599.1 |
Number of trials of observations | 500.0 | 500.0 | 500.0 |
Minimum | 85.1 | 23,091.0 | 571.0 |
Maximum | 129.8 | 23,487.0 | 630.9 |
Amplitude | 44.7 | 396.0 | 59.9 |
1st Quartile | 109.7 | 23,251.8 | 592.7 |
Median | 116.1 | 23,286.0 | 598.7 |
3rd Quartile | 122.0 | 23,324.0 | 605.4 |
Mean | 8.2 | 60.2 | 10.0 |
Standard deviation | 0.1 | 0.0 | 0.0 |
Variation coefficient | 0.1 | 0.1 | 0.1 |
Variable | Observed | RCP 4.5 | RCP 8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
Tau | Sen’s Slope | p-Value | Tau | Sen’s Slope | p-Value | Tau | Sen’s Slope | p-Value | |
Rainfall | 0.22 | 4.42 | 0.05 | −0.18 | −1.33 | 0.02 | 0.21 | 1.89 | 0.01 |
Discharge | 0.22 | 9.56 | 0.05 | −0.37 | −6.58 | 0.00 | 0.09 | 1.59 | 0.23 |
Temperature | 0.46 | 0.03 | 0.00 | 0.67 | 0.03 | 0.00 | 0.73 | 0.03 | 0.00 |
PET | 0.03 | 0.07 | 0.79 | 0.63 | 4.51 | 0.00 | 0.66 | 4.92 | 0.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawin, A.E.; Hounguè, R.; N’Tcha M’Po, Y.; Hounguè, N.R.; Attogouinon, A.; Afouda, A.A. Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin). Hydrology 2019, 6, 72. https://doi.org/10.3390/hydrology6030072
Lawin AE, Hounguè R, N’Tcha M’Po Y, Hounguè NR, Attogouinon A, Afouda AA. Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin). Hydrology. 2019; 6(3):72. https://doi.org/10.3390/hydrology6030072
Chicago/Turabian StyleLawin, Agnidé Emmanuel, Rita Hounguè, Yèkambèssoun N’Tcha M’Po, Nina Rholan Hounguè, André Attogouinon, and Akambi Abel Afouda. 2019. "Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin)" Hydrology 6, no. 3: 72. https://doi.org/10.3390/hydrology6030072
APA StyleLawin, A. E., Hounguè, R., N’Tcha M’Po, Y., Hounguè, N. R., Attogouinon, A., & Afouda, A. A. (2019). Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin). Hydrology, 6(3), 72. https://doi.org/10.3390/hydrology6030072