Hydrological Model for Sustainable Development in the Aral Sea Region
Abstract
:1. Introduction
2. Method
2.1. Evaporation/Precipitation Scenario (EPS)
- Thereby, understanding the Aral Sea evolution is possible through formal description of its hydrologic budget, taking into consideration the main water flows in the Central Asian region. Existing detailed descriptions of the water balance components in the Aral Sea Basin, as it was analyzed by Micklin [9], allow the realistic means for substantially increasing inflow to the Aral Sea Basin;
- Reducing the use of the Amy Darya and Syr Darya Rivers water for irrigation in the drainage basin;
- Elaboration and adoption of economic policies and emerging technologies for improvement and renovation of irrigation systems in all independent republics of Central Asia.
- Create the hydrologic system for the Caspian Sea water evaporation, through additional utilization of the Kara-Bogaz-Gol and natural evaporators-hollows located on the eastern coast of the Caspian Sea;
- Develop the simulation model of the Central Asia water cycle for the dynamic control of water flows and management of the evaporation processes;
- Use the rainmaking technology (i.e., cloud seeding with, for example, silver iodide) for the increase of precipitation above the Aral Sea.
2.2. Evaporation/Precipitation Model (EPM)
3. Results and Discussion
- EPS-1: Only Kara-Bogaz Gol is used as a natural evaporator.
- EPS-2: Kara-Bogaz Gol and other natural evaporators are used.
- EPS-3: In addition to EPS-2, the river water diversion is decreased by 5% and rainmaking technology is used.
- EPS-4: In addition to EPS-2, the river water diversion is decreased by 10% and rainmaking technology is used.
- Reconstruction of existing old irrigation systems;
- Development and introduction of effective irrigation technologies such as drip irrigation;
- Reconstruction of municipal water supply systems, and
- Optimization of the drainage runoffs.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aladin, N.V.; Chlebovich, V.V. (Eds.) Hydrobiological Problems of the Aral Sea; Zoological Institute Publishing: Leningrad, Russia, 1989; p. 145. (In Russian) [Google Scholar]
- Borodin, L.F.; Krapivin, V.F.; Long, B.T. Application of the GIMS technology to the Aral-Caspian aquageosystem monitoring. Probl. Environ. Nat. Resour. 1996, 10, 46–61. (In Russian) [Google Scholar]
- Gaybullaev, B.; Chen, S.-C.; Gaybullaev, G. Changes in water volume of the Aral Sea after 1960. Appl. Water Sci. 2012, 2, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Krapivin, V.F.; Shutko, A.M.; Chukhlantsev, A.A.; Golovachev, S.P. Simulation system for investigation of the Aral-Caspian water regime. J. Terr. Obs. 2008, 1, 60–69. [Google Scholar]
- Krapivin, V.F.; Varotsos, C.A.; Soldatov, V.Y. New Ecoinformatics Tools in Environmental Science: Applications and Decision-Making; Springer: London, UK, 2015; p. 903. [Google Scholar]
- Krapivin, V.F.; Nitu, C.; Varotsos, C.A. Remote Sensing Tools and Ecoinformatics; Matrix Rom: Bucharest, Romania, 2019; p. 332. [Google Scholar]
- Micklin, P.P. The fato ‘Siberial’: Soviet water politics in the Gorbachev era. J. Cent. As. Sur. 1987, 6, 67–88. [Google Scholar] [CrossRef]
- Micklin, P.P. Desiccation of the Aral Sea: A Water Management Disaster in the Soviet Union. Science 1988, 241, 1170–1176. [Google Scholar] [CrossRef] [Green Version]
- Micklin, P.P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- Micklin, P.P. Efforts to revieve the Aral Sea. In The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake; Micklin, P.P., Aladin, N.V., Plotnikov, I., Eds.; Springer: Berlin, Germany, 2014; pp. 361–380. [Google Scholar]
- Micklin, P.P. The Siberian water transfer scheme, Chapter 16. In The Aral Sea; Micklin, P.P., Aladin, N.V., Plotnikov, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 381–404. [Google Scholar]
- Micklin, P.P. The future Aral Sea: Hope and despair. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Ashirbekov, U.A.; Zonn, I.S. The History of Drying Sea; Executive Committee of International Fund for Saving the Aral Sea: Dushanbe, Tajikistan, 2003; p. 86. [Google Scholar]
- Hublaryan, M.G. The Caspian Sea phenomenon. Her. Rus. Acad. Sci. 1995, 65, 616–630. (In Russian) [Google Scholar]
- Pearce, F. How the soviet seas were lost. New Sci. Lond. 1995, 148, 38–42. [Google Scholar]
- Rochon, G.L.; Krapivin, V.F.; Mkrtchyan, F.A. Symulation system to study the Aral-Caspian water regime. In Proceedings of the IX International Symposium, Engineering Ecology, Moscow, Russia, 5–7 December 2017; pp. 99–104. [Google Scholar]
- Zonn, I.S.; Kostianoy, A.G. (Eds.) The Turkmen Lake Altyn Asyr. In The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan; Springer: Berlin, Germany, 2013; pp. 197–231. [Google Scholar]
- Lioubimtseva, E. Impact of climate change on the Aral Sea and its basin. In The Aral Sea. The Devastation and Partial Rehabilitation of a Great Lake; Micklin, P., Aladin, N.V., Plotnikov, I., Eds.; Springer: Berlin, Germany, 2014; pp. 405–427. [Google Scholar]
- Panin, G. Caspian Sea level fluctuations as a consequence of regional climatic change. In Global Change: Enough Water for all? Lozán, J.L., Grassl, H., Hupfer, P., Menzel, L., Schönwiese, C.-D., Eds.; Wissenschaftliche Auswertungen: Hamburg, Germany, 2007; pp. 216–219. [Google Scholar]
- Rizk, J.; Utemuratov, B. Balancing the Use of Water Resources in the Amu Darya Basin; An East West Institute: Brussels, Belgium, 2012; p. 21. [Google Scholar]
- Suleimenova, Z. Water Security in Central Asia and the Caucasus—A Key to Peace and Sustainable; MPFD Working Papers, ESCAP: Bangkok, Thailand, 2018; pp. 1–28. [Google Scholar]
- Dukhovny, V.; Sokolov, V. Lessons on Cooperation Building to Manage Water Conflicts in the Aral Sea Basin; UNESCO: London, UK, 2003; p. 50. [Google Scholar]
- Izquierdo, L.M.; Stangerhaugen, M.; Castillo, D.; Nixon, R.; Jimenez, G. Water Crisis in Central Asia: Key Challenges and Opportunities; Graduate Program in International Affairs, New School University: New York, NY, USA, 2010; p. 64. [Google Scholar]
- Valentini, K.L.; Orolbaev, E.E.; Abylgazieva, A.K. Water Problems of Central Asia; International Strategic Research Institute: Bishkek, Kyrgyzstan, 2004; p. 142. [Google Scholar]
- Glantz, M. Water, climate, and development issues in the Amu Darya basin. Mitig. Adapt. Strateg. Global Change 2005, 10, 23–50. [Google Scholar] [CrossRef]
- Ibrahinzada, M.W.; Sharma, D. Vulnerability assessment of water resources in Amu Darya river basin, Afganistan. Int. J. Environ. Sci. 2012, 2, 802–812. [Google Scholar]
- Spoor, M. The Aral Sea Basin crisis: Transition and environment in Former Soviet Central Asia. Dev. Change 1998, 29, 409–435. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Lebedev, S.A.; Solovyov, D.M. Satellite Monitoring of the Caspian Sea, Kara-Bogaz-Gol Bay, Sarykamysh and Altyn Asyr Lakes, and Amu Darya River. In The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan; Zonn, I.S., Kostianoy, A.G., Eds.; Springer: London, UK, 2014; pp. 197–231. [Google Scholar]
- Sabitov, T.; Murphy, C.B.; Quackenbush, L.J. Hydrologic Modeling of Glaciated Watershed in Central Asia; Elsevier: Amsterdam, The Netherlands, 2018; p. 56. [Google Scholar]
- Chumchean, S.; Bunthai, W. Testing efficacy of rainmaking activities in the northeast of Thailand. In Proceedings of the 10th WMO Scientific Conference on Weather Modification, Bali, Indonesia, 4–6 October 2011; pp. 185–188. [Google Scholar]
- Chumchean, S.; Hanchoowong, R.; Bunthai, W. Comparison between rainmaking and natural rainfall in the northeastern part of Thailand. In Proceedings of the 5th APHW Conference, Hanoi, Vietnam, 8–10 November 2010. [Google Scholar]
- Breckle, S.-W.; Geldyeva, G.V. Dynamics of the Aral Sea in Geological and Historical Times. In Landscape Dynamics in the Southern Aralkum: Using MODIS Time Series for Land Cover Change Analysis; Löw, F., Navratil, P., Bubenzer, O., Eds.; Springer: Berlin, Germany, 2012; pp. 13–35. [Google Scholar]
- Micklin, P.; Aladin, N.V.; Plotnikov, I. (Eds.) The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake; Springer: Chichester, UK, 2014; p. 453. [Google Scholar]
- Gaybullaev, B.; Chen, S.-C.; Gaybullaev, G. The large Aral Sea water balance: A future prospective of a large Aral Sea depending on water volume alteration. Carbonates Evaporites 2014, 29, 211–219. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Letolle, R.; Bergé-Nguyen, M. History of Aral Sea level variability and current scientific debates. Glob. Planet. Chang. 2013, 110, 99–113. [Google Scholar] [CrossRef]
- Gaybullaev, B.; Kuo, Y.-M. Large-scale desiccation of the Aral Sea due to over-exploitation after 1960. J. Mt. Sci. 2012, 9, 538–546. [Google Scholar] [CrossRef]
- Catchcart, R.B.; Badescu, V. Aral Sea partial refill with imported Caspian Sea water. In Engineering Earth; Brunn, S.D., Ed.; Springer: Berlin, Germany, 2011; pp. 1541–1547. [Google Scholar]
- Gippius, F.; Arkhipkin, V.S.; Frolov, A.V. Seasonal variations of evaporation from the Caspian Sea surface with account of wind waves and sea depth. Mosc. Univ. Bull. Geogr. 2016, 5, 86–92. (In Russian) [Google Scholar]
- Aisen, V. Pamir glaciers. In Encyclopedia of Snow, Ice and Glaciers; Sigh, V.P., Singh, P., Eds.; Springer: London, UK, 2011; pp. 1253–1257. [Google Scholar]
- Kondratyev, K.Y.; Krapivin, V.F.; Varotsos, C.A. Natural Disasters as Interactive Components of Global Ecodynamics; Springer: Chichester, UK, 2006; p. 578. [Google Scholar]
- Klein, I.; Gessner, U.; Kuenzer, C. Generation of up to date land cover maps for Central Asia. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer: London, UK, 2014; pp. 329–346. [Google Scholar]
- Small, E.E.; Sloan, L.C. Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J. Geophys. Res. 1999, 104, 6583–6602. [Google Scholar] [CrossRef]
- Krapivin, V.F.; Phillips, G.W. A remote-sensing based expert system to study the Aral-Caspian aquageosystem water regime. Remote Sens. Environ. 2001, 75, 201–215. [Google Scholar] [CrossRef]
- Vogtmann, H.; Dobretsov, N. (Eds.) Environmental Security and Sustainable Land Use—With Special Reference to Central Asia; Springer: Amsterdam, The Netherlands, 2006; p. 380. [Google Scholar]
- Bras, R.L. Hydrology; Addison-Wesley: New York, NY, USA, 1990; p. 643. [Google Scholar]
- Krapivin, V.F.; Phillips, G.W.; Nitu, C. A remote sensing-based modeling system to study the Aral-Caspian water regime. In Proceedings of the 16th International Conference on Control Systems and Computer Science, Bucharest, Romania, 22–25 May 2007; pp. 524–528. [Google Scholar]
- Bortnik, V.N.; Chistyaeva, S.P. Aral Sea. In Hydrometeorology and Hydrochemistry of the Formar Soviet Union Seas; Terziev, F.S., Ed.; Hydrometeoizdat: Leningrad, Russia, 1990; pp. 3–195. (In Russian) [Google Scholar]
- Ibrayev, R.A.; Özsoy, E.; Schrum, C.; Sur, H.I. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Sci. 2010, 6, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Zavialov, P. Phisical Oceanography of the Drying Aral Sea; Springer: Chichester, UK, 2005; p. 149. [Google Scholar]
- Dubovik, O. Multi-scale Targeting of Land Degradation in Northern Uzbekistan Using Satellite Remote Sensing. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2013; p. 119. [Google Scholar]
- Varotsos, C.A.; Nitu, C.; Krapivin, V.F. Global Ecoinformatics: Theory and Applications; Matrix Rom: Bucharest, Romania, 2018; p. 351. [Google Scholar]
- Reyer, C.; Otto, I.M.; Albrecht, T.; Baarsch, F. Climate change impacts in Central Asia and their implications for development. Reg. Environ. Chang. 2015, 15, 1639–1650. [Google Scholar] [CrossRef]
- Borodin, L.F.; Krapivin, V.F.; Kulikov, Y.u.N. Avia-monitoring complex for regional investigations of nature-economic situation. Probl. Desert Dev. 1987, 1, 80–88. (In Russian) [Google Scholar]
- Krapivin, V.F.; Shutko, A.M. Information Technologies for Remote Monitoring of the Environment; Springer: Chichester, UK, 2012; p. 498. [Google Scholar]
- Borodin, L.F.; Bortnik, V.N.; Krapivin, V.F.; Kuznetsov, N.G.; Kulikov, Y.u.N.; Minaeva, E.N. To the assessment of changes, elaboration of models for the functioning and remote sensing of aqua- and geoecosystems in the Aral Sea Basin. Probl. Desert Dev. 1987, 1, 71–80. (In Russian) [Google Scholar]
- Varotsos, C.A.; Krapivin, V.F. A new big data approach based on geoecological information-modeling system. Big Earth Data 2017, 1, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Kondratyev, K.Y.; Krapivin, V.F.; Phillips, G.W. Global Environmental Change: Modelling and Monitoring; Springer: Berlin, Germany, 2002; p. 316. [Google Scholar]
- Kondratyev, K.Y.; Krapivin, V.F.; Savinikh, V.P.; Varotsos, C.A. Global Ecodynamics: A Multidimensional Analysis; Springer: Chichester, UK, 2004; p. 687. [Google Scholar]
- Krapivin, V.F.; Long, B.T.; Rochon, G.L.; Hicks, D.R. A global simulation model as a method for estimation of the role of regional area in global change. In Proceedings of the Second Ho Chi Minh City Conference on Mechanics, Ho Chi Minh City, Vietnam, 24–25 September 1996; pp. 68–69. [Google Scholar]
- Nihoul, J.C.J.; Zavialov, P.O.; Micklin, P.P. Dying and dead seas—Climatic versus anthropic causes. In Proceedings of the NATO Advanced Research Workshop on Dying and Dead Seas—Climatic Versus Anthropic Causes, Liège, Belgium, 7–10 May 2003; p. 383. [Google Scholar]
- Mintzer, I.M. A matter of degrees: The potential for controlling the greenhouse effect. World Resour. Inst. Res. Rep. 1987, 15, 1–70. [Google Scholar]
- Pohl, B.; Kramer, A.; Hull, W.; Blumstein, S.; Abdullaev, I.; Kazbekov, J.; Reznikova, T.; Strikeleva, E.; Interwies, E.; Görlitz, S. Rethinking Water in Central Asia: The Costs of Inaction and Benefits of Water Cooperation; CAREX: Berlin, Germany, 2017; p. 115. [Google Scholar]
Year | Volume, km3 | Area, km2 | River Runoff to Aral Sea, km3 | Evaporation, km3 | Precipitation, km3 | ||
---|---|---|---|---|---|---|---|
Amu Darya | Syr Darya | Total | |||||
1960 | 1089 | 67,499 | 27.6 | 28.4 | 56.0 | 71.1 | 9.4 |
1965 | 1030 | 63,900 | 0.6 | 0.3 | 0.9 | 66.1 | 7.8 |
1970 | 927 | 60,198 | 0.4 | 0.2 | 0.6 | 54.3 | 4.3 |
1975 | 762 | 55,900 | 0 | 0.2 | 0.7 | 57.7 | 4.9 |
1980 | 670 | 52,400 | 0 | 1.2 | 1.2 | 38.5 | 7.1 |
1985 | 468 | 44,398 | 0 | 0.3 | 0.3 | 47.9 | 3.5 |
1990 | 364 | 36,400 | 3.1 | 3.1 | 3.1 | 35.3 | 5.3 |
1995 | 287 | 33,497 | 0.4 | 1.6 | 4.7 | 28.5 | 2.5 |
2000 | 183 | 24,100 | 3.0 | 2.7 | 3.5 | 23.1 | 4.2 |
2005 | 110 | 19,000 | 2.0 | 4.4 | 7.4 | 14.0 | 3.5 |
010 | 81 | 7143 | 2.0 | 2.5 | 4.5 | 11.4 | 3.0 |
2015 | 48 | 6987 | 1.9 | 2.3 | 4.2 | 9.6 | 3.2 |
2018 | 42 | 6348 | 2.1 | 2.4 | 4.5 | 9.7 | 3.3 |
Month | Evaporation, mm/month | Precipitation, mm/month | ||||||
---|---|---|---|---|---|---|---|---|
E1/σCS | E2/σKBG | E6/σNE | E7/σOR | P1/σCS | P2/σKBG | P6/σNE | P7/σOR | |
I | 59 | 81 | 83 | 56 | 122 | 15 | 14 | 12 |
II | 58 | 88 | 91 | 61 | 97 | 13 | 12 | 10 |
III | 61 | 99 | 103 | 72 | 60 | 8 | 8 | 6 |
1V | 64 | 112 | 118 | 88 | 66 | 9 | 9 | 7 |
V | 67 | 139 | 142 | 103 | 71 | 10 | 9 | 9 |
VI | 89 | 204 | 211 | 126 | 102 | 13 | 11 | 10 |
VII | 106 | 206 | 212 | 134 | 116 | 15 | 13 | 12 |
VII | 103 | 211 | 210 | 127 | 129 | 17 | 16 | 13 |
IX | 68 | 141 | 144 | 105 | 158 | 21 | 19 | 16 |
X | 60 | 129 | 133 | 93 | 269 | 35 | 34 | 17 |
XI | 58 | 103 | 105 | 71 | 175 | 23 | 23 | 15 |
XII | 52 | 91 | 94 | 57 | 124 | 16 | 15 | 13 |
Years after Beginning the EPS Realization | Aral Sea Volume, km3 | |||
---|---|---|---|---|
EPS-1 | EPS-2 | EPS-3 | EPS-4 | |
0 | 42.6 | 42.6 | 42.6 | 42.6 |
15 | 78.3 | 117.8 | 171.2 | 209.1 |
30 | 82.4 | 208.9 | 339.3 | 430.9 |
60 | 131.8 | 377.8 | 664.1 | 1015.4 |
70 | 157.6 | 443.5 | 755.3 | 1041.1 |
80 | 169.9 | 457.6 | 846.2 | 1054.3 |
90 | 183.4 | 521.6 | 859.5 | 1068.8 |
100 | 209.7 | 651.4 | 976.3 | 1069.2 |
120 | 235.7 | 780.9 | 1041.7 | 1077.4 |
150 | 287.8 | 784.6 | 1042.8 | 1079.8 |
Area of Evaporators, km2 | Years of the Aral Sea Recovery | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
20,000 | 318 | 243 | 205 | 169 |
30,000 | 273 | 210 | 162 | 148 |
40,000 | 242 | 173 | 144 | 125 |
50,000 | 222 | 147 | 123 | 117 |
60,000 | 207 | 128 | 118 | 104 |
70,000 | 194 | 119 | 109 | 97 |
80,000 | 183 | 113 | 104 | 95 |
90,000 | 181 | 102 | 96 | 92 |
Year | Aral Sea Volume, km3 | EPM Error, % | Historical Data Used in EPM | ||
---|---|---|---|---|---|
River Runoff to Aral Sea, km3/year | Caspian Water Flow to Kara-Bogaz-Gol, km3/year | Observed | Calculated | ||
1957 | 1080.0 | 1080.0 | 0 | 19.4 | 21.8 |
1960 | 1089.0 | 1067.9 | 2 | 42.0 | 24.2 |
1965 | 1030.1 | 999.2 | 3 | 0.3 | 20.3 |
1970 | 927.3 | 1010.4 | 9 | 0.2 | 15.2 |
1973 | 824.2 | 947.6 | 15 | 0.9 | 10.6 |
1975 | 762.4 | 846.3 | 11 | 0.2 | 12.2 |
1977 | 749.2 | 839.1 | 12 | 0.2 | 7.1 |
1980 | 670.4 | 603.4 | 10 | 1.2 | 1.2 |
1982 | 579.8 | 533.4 | 8 | 1.3 | 0 |
1984 | 502.7 | 457.5 | 9 | 0.3 | 2.4 |
1985 | 468.3 | 505.8 | 8 | 0.3 | 4.9 |
1987 | 345.6 | 383.6 | 11 | 1.0 | 6.8 |
1989 | 327.2 | 363.2 | 11 | 3.1 | 9.6 |
1990 | 304.1 | 337.6 | 9 | 3.1 | 13.0 |
1992 | 290.5 | 255.6 | 12 | 10.6 | 16.4 |
1995 | 239.0 | 262.9 | 10 | 4.7 | 22.5 |
1996 | 217.4 | 236.9 | 9 | 6.6 | 25.2 |
1998 | 182.9 | 195.7 | 7 | 31.5 | 28.9 |
2000 | 195.4 | 218.8 | 12 | 9.7 | 17.7 |
2001 | 149.1 | 193.8 | 13 | 3.1 | 16.4 |
2002 | 129.2 | 118.9 | 8 | 13.1 | 12.5 |
2003 | 117.0 | 125.2 | 7 | 20.6 | 15.4 |
2004 | 110.9 | 118.7 | 7 | 15.8 | 24.3 |
2005 | 112.3 | 105.6 | 6 | 7.4 | 25.2 |
2006 | 105.3 | 96.9 | 8 | 5.0 | 20.6 |
2007 | 104.3 | 114.6 | 7 | 7.0 | 23.7 |
2008 | 103.1 | 93.8 | 9 | 6.1 | 22.9 |
2009 | 102.0 | 109.1 | 7 | 5.2 | 21.6 |
2010 | 98.1 | 105.9 | 8 | 4.5 | 20.8 |
2015 | 48.3 | 52.6 | 6 | 2.3 | 19.3 |
2018 | 42.2 | 46.0 | 9 | 2.4 | 22.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krapivin, V.F.; Mkrtchyan, F.A.; Rochon, G.L. Hydrological Model for Sustainable Development in the Aral Sea Region. Hydrology 2019, 6, 91. https://doi.org/10.3390/hydrology6040091
Krapivin VF, Mkrtchyan FA, Rochon GL. Hydrological Model for Sustainable Development in the Aral Sea Region. Hydrology. 2019; 6(4):91. https://doi.org/10.3390/hydrology6040091
Chicago/Turabian StyleKrapivin, Vladimir F., Ferdenant A. Mkrtchyan, and Gilbert L. Rochon. 2019. "Hydrological Model for Sustainable Development in the Aral Sea Region" Hydrology 6, no. 4: 91. https://doi.org/10.3390/hydrology6040091
APA StyleKrapivin, V. F., Mkrtchyan, F. A., & Rochon, G. L. (2019). Hydrological Model for Sustainable Development in the Aral Sea Region. Hydrology, 6(4), 91. https://doi.org/10.3390/hydrology6040091