A Review of Coupled Hydrologic-Hydraulic Models for Floodplain Assessments in Africa: Opportunities and Challenges for Floodplain Wetland Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. General Findings
3.2. The Coupled Modelling
3.3. Coupled Models for Floodplain Management: Opportunities and Challenges
3.4. Model Validation in Africa: Challenges and Opportunities
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Button and Tiner. Ecology of Wetlands; Button and Tiner: Wetlands, Germany, 2009; pp. 507–515. [Google Scholar]
- SANBI. What Is a Wetland? Wetland-Use Booklet 2. South African National Biodiversity Institute, 2016. Available online: http://biodiversityadvisor.sanbi.org/wp-content/uploads/2016/07/What-is-a-wetland.pdf (accessed on 4 April 2020).
- Mitsch, W.; Gosselink, J. Wetlands, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Tiner, R.W. Ecology of Wetlands: Classification Systems; Elsevier: Wetlands, Germany, 2009; pp. 516–525. [Google Scholar]
- Meitzen, K.M. Floodplains. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; pp. 2–6. [Google Scholar]
- Lockaby, B.G.; Conner, W.H.; Mitchell, J. Floodplains. In Ecosystem Ecology; Elsevier: Oxford, UK, 2009; pp. 253–266. [Google Scholar]
- Zimba, H.; Kawawa, B.; Chabala, A.; Phiri, W.; Selsam, P.; Meinhardt, M.; Nyambe, I. Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: A remote sensing-based approach. J. Hydrol. Reg. Stud. 2018, 15, 149–170. [Google Scholar] [CrossRef]
- Papas, P. Index of Wetland Condition Conceptual Framework and Selection of Measures; Technical Report; Victorian Government Department of Sustainability and Environment Melbourne: Melbourne, Australia, 2005.
- Phiri, W.K.; Vanzo, D.; Banda, K.; Nyirenda, E.; Nyambe, I.A. A pseudo-reservoir concept in SWAT model for the simulation of an alluvial floodplain in a complex tropical river system. J. Hydrol. Reg. Stud. 2021, 33, 100770. [Google Scholar] [CrossRef]
- Zhang, G.H. Potential effects of climate change on rainfall erosivity in the Yellow River basin of China. Trans. ASAE 2005, 48, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Srinivasan, R.; Hao, F. Predicting Hydrologic response to Climate Change in the Luohe River Basin Using the SWAT model. American Society of Agricultural and Biological Engineers. Trans. ASABE 2007, 50, 901–910. [Google Scholar] [CrossRef]
- Schumann, G.J.P.; Neal, J.C.; Voisin, N.; Andreadis, K.M.; Pappenberger, F.; Phanthuwongpakdee, N.; Hall, A.C.; Bates, P.D. A first large-scale flood inundation forecasting model. Water Resour. Res. 2013, 49, 6248–6257. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M.S.; Wilson, M.D. Simple Spatially distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
- Hoch, J.M.; Neal, J.C.; Baart, F.; van Beek, R.; Winsemius, H.C.; Bates, P.D.; Bierkens, M.F.P. GLOFRIM v1.0—A globally applicable computational framework for integrated hydrological–hydrodynamic modelling. Geosci. Model Dev. 2017, 10, 3913–3929. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.P.; Asce, F.; Woolhiser, D.A. Mathematical Modelling of Watershed Hydrology. J. Hydrol. Eng. 2002, 7, 270–291. [Google Scholar] [CrossRef] [Green Version]
- Abshire, K.E. Impacts of Hydrologic and Hydraulic Model Connection Schemes on Flood Simulation and Inundation Mapping in the Tar River Basin. Master’s Thesis, Duke University, Durham, NC, USA, 2012. [Google Scholar]
- Wang, Y.; Yang, X. A Coupled Hydrologic–Hydraulic Model (XAJ–HiPIMS) for Flood Simulation. Water 2020, 12, 1288. [Google Scholar] [CrossRef]
- Betrie, G.D.; van Griensven, A.; Mohamed, Y.A.; Popescu, I.; Mynett, A.E.; Hummel, S. Linking SWAT and SOBEK using Open Modeling Interface (OpenMI) for sediment transport simulation in the Blue Nile River basin. Trans. ASABE 2011, 54, 1749–1757. [Google Scholar] [CrossRef]
- Haghizadeh, A.; Shui, L.T.; Mirzaei, M.; Memarian, H. Incorporation of GIS Based Program into Hydraulic Model for Water Level Modeling on River Basin. J. Water Resour. Prot. 2012, 4, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Hoch, J.M.; Eilander, D.; Ikeuci, H.; Baart, F.; Winsemius, H.C. Evaluating the impact of model complexity on flood wave propagation and inundation extent with a hydrologic–hydrodynamic model coupling framework. Nat. Hazards Earth Syst. Sci. 2019, 19, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Lian, Y.; Chan, I.-C.; Singh, J.; Demissie, M.; Knapp, V.; Xie, H. Coupling of hydrologic and hydraulic models for the Illinois River Basin. J. Hydrol. 2007, 344, 210–222. [Google Scholar] [CrossRef]
- Biancamaria, S.; Bates, P.D.; Boone, A.; Mognard, N.M. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. J. Hydrol. 2009, 379, 136–150. [Google Scholar] [CrossRef] [Green Version]
- CEE (Collaboration for Environmental Evidence). Guidelines for Systematic Review and Evidence Synthesis in Environmental Management. Version 4.2. Environmental Evidence. 2013. Available online: www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf (accessed on 5 May 2020).
- Fleischmann, A.; Siqueira, V.; Paris, A.; Collischonn, W.; Paiva, R.; Pontes, P.; Crétaux, J.F.; Bergé-Nguyen, M.; Biancamaria, S.; Gosset, M.; et al. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands. J. Hydrol. 2018, 561, 943–959. [Google Scholar] [CrossRef]
- Komi, K.; Neal, J.; Trigg, M.A.; Diekkrüger, B. Modelling of flood hazard extent in data sparse areas: A case study of the Oti River basin, West Africa. J. Hydrol. Reg. Stud. 2017, 10, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Abdessamed, D.; Abderrazak, B. Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: Case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 2019, 78, 1–17. [Google Scholar] [CrossRef]
- Fleischmann, A.; Siqueira, V.; Paris, A.; Collischonn, W.; Paiva, R.; Gossett, M.; Pontes, P.; Calmant, S.; Biancamaria, S.; Crétaux, J.F.; et al. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin. Geophys. Res. Abstr. 2017, 19, 884. [Google Scholar]
- Birkhead, A.L.; James, C.S.; Kleynhans, M.T. Hydrological and hydraulic modelling of the Nyl River floodplain Part 2: Modelling hydraulic behaviour. Water SA 2007, 33, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Feyissaa, T.A.; Tufa, F.G. Floodplain Modelling of Awetu River Sub-Basin, Jimma, Oromia, Ethiopia. J. Mater. Environ. Sci. 2019, 10, 1030–1042. [Google Scholar]
- Hoch, J.M.; Arjen, V.; Haag, A.V.; van Dam, A.; Winsemius, H.C.; Ludovicus, P.H.; van Beek, L.P.H.; Bierkens, M.F.P. Assessing the impact of hydrodynamics on large scale flood wave propagation—A case study for the Amazon Basin. Hydrol. Earth Syst. Sci. 2017, 21, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Rowberry, M.D.; McCarthy, T.S.; Thompson, M.; Nomnganga, A.; Moyo, L. The spatial and temporal characterisation of flooding within the floodplain wetland of the Nyl River, Limpopo Province, South Africa. Water SA 2011, 37, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Havenga, C.F.B.; Pitman, W.V.; Bailey, A.K. Hydrological and hydraulic modelling of the Nyl River floodplain, Part 1 Background and hydrological modelling. Water SA 2007, 33, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Clilverd, H.M.; Thompson, J.R.; Heppell, C.M.; Sayer, C.D.; Axmacher, J.C. Coupled Hydrological/Hydraulic Modelling of River Restoration Impacts and Floodplain Hydrodynamics. River Res. Appl. 2016, 32, 1927–1948. [Google Scholar] [CrossRef]
- Kleynhans, M.T.; James, C.S.; Birkhead, A.L. Hydrologic and hydraulic modelling of the Nyl River floodplain, Part 3: Applications to assess ecological impact. Water SA 2007, 33, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Poméon, T.; Jackisch, D.; Diekkrüger, B. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol. 2017, 547, 222–235. [Google Scholar] [CrossRef]
- Naumann, G.; Barbosa, P.; Carrao, H.; Singleton, A.; Vogt, J. Monitoring Drought Conditions and Their Uncertainties in Africa Using TRMM Data. J. Appl. Meteorol. Climatol. 2012, 51, 1867–1874. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Mekonnen, D.F. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.S. TRMM satellite estimates of convective processes in central Africa during September, October, November 1998: Implications for elevated Atlantic tropospheric ozone. Geophys. Res. Lett. 2000, 27, 1711–1714. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Some, B.; Mccollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.M.; Gaye, I.; Kpabeba, G.; Ndiaye, O.; et al. Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products. J. Appl. Meteorol. 2003, 42, 1355–1368. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Anornu, G.K.; Kabo-bah, A.; Kortatsi, B.K. Comparability Studies of High and Low Resolution Digital Elevation Models for Watershed Delineation in the Tropics: Case of Densu River Basin of Ghana. Int. J. Coop. Stud. 2012, 1, 9–14. [Google Scholar]
- Athmania, D.; Achour, H. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. Remote Sens. 2014, 6, 4600–4620. [Google Scholar] [CrossRef] [Green Version]
- Falloon, P.D.; Betts, R.A. The impact of climate change on global river flow in HadGEM1 simulations. Atmos. Sci. Lett. 2016, 7, 62–68. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Vaghefi, S.A.; Farzaneh, M.R.; Zehnder, A.J.B.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Feyera, A.H.; Lorenzo, A.; Lees, T.; Peng, J.; Dyer, E.; Dadson, S.J. Streamflow response to climate change in the Greater Horn of Africa. Clim. Chang. 2019, 156, 341–363. [Google Scholar]
- Taye, M.T.; Ntegeka, V.; Ogiramoi, N.P.; Willems, P. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Begou, J.C.; Jomaa, S.; Benabdallah, S.; Bazie, P.; Afouda, A.; Rode, M. Multi-Site Validation of the SWAT Model on the Bani Catchment: Model Performance and Predictive Uncertainty. Water 2016, 8, 178. [Google Scholar] [CrossRef]
- Andersen, J.; Refsgaard, J.C.; Jensen, K.H. Distributed hydrological modelling of the Senegal River Basin—Model construction and validation. J. Hydrol. 2001, 247, 200–214. [Google Scholar] [CrossRef]
- Hughes, D.A.; Kapangaziwiri, E.; Sawunyama, T. Hydrological model uncertainty assessment in southern Africa. J. Hydrol. 2010, 387, 221–232. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Montanari, A. Uncertainty in river discharge observations: A quantitative analysis. Hydrol. Earth Syst. Sci. 2009, 13, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Westerberg, I.; Guerrero, J.L.; Seibert, J.; Beven, K.J.; Halldin, S. Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River, Honduras. Hydrol. Process. 2011, 25, 603–613. [Google Scholar] [CrossRef]
- Coxon, G.; Freer, I.K.W.; Wagener, T.; Woods, R.; Smith, P.J. A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resour. Res. 2015, 51, 5531–5546. [Google Scholar] [CrossRef] [Green Version]
- Makungu, E. A Combined Modelling Approach for Simulating Channel–Wetland Exchanges in Large African River Basins. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2019. [Google Scholar]
- Mwita, E.; Menz, G.; Misana, S.; Becker, M.; Kisanga, D.; Boehme, B. Mapping small wetlands of Kenya and Tanzania using remote sensing techniques. Int. J. Appl. Earth Obs. Geo-Inf. 2013, 21, 173–183. [Google Scholar] [CrossRef]
- Heimhuber, V.; Tulbure, M.G.; Broich, M. Modeling 25 years of spatio-temporal surface water and inundation dynamics on large river basin scale using time series of Earth observation data. Hydrol. Earth Syst. 2016, 20, 2227–2250. [Google Scholar] [CrossRef] [Green Version]
- Trigg, M.A.; Michaelides, K.; Neal, J.C.; Bates, P.D. Surface water connectivity dynamics of a large scale extreme flood. J. Hydrol. 2013, 505, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Neal, J.; Schumann, G.; Bates, P. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Fernández, A.; Reza, M.; Durand, M.; Mark, B.; Moritz, M.; Chul, H.; Neal, J.; Shastry, A.; Laborde, S.; Chian, S.; et al. Testing the skill of numerical hydraulic modeling to simulate spatiotemporal flooding patterns in the Logone floodplain, Cameroon. J. Hydrol. 2016, 539, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Olufiropo, S.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrol. Earth Syst. Sci. 2019, 23, 1113–1144. [Google Scholar] [CrossRef] [Green Version]
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef] [Green Version]
Reference | Form of Coupling | Aim for Application of Coupled Modelling | Basin Applied | Coupled Model |
---|---|---|---|---|
Komi et al., (2017) | One-directional coupling | hydrological modelling; flood inundation modelling; LISFLOOD; LISFLOOD-FP [25] | Oti River | Lisflood & Lisflood-FP |
Abdessamed and Abderrazak (2019) | One-directional coupling | Ain Sefra; hydrological modeling; hydraulic modeling; floods; HEC-HMS; HEC-RAS [26] | Ain Sefra | HEC HMS and HEC RAS |
Fleischmann et al., (2017) | One-directional coupling | flood regulation; hydrologic and hydrodynamic; flood wave attenuation; MGB-IPH l [27] | Upper Niger | MGB-IPH- hydrologic and hydraulic model |
Fleischmann et al., (2018) | Two-directional coupling | Niger River Basin; Niger Inner Delta; two-way coupling; floodplain_hydrodynamics; floodplain infiltration; semi-arid wetlands [24] | Upper Niger | MGB-IPH- hydrologic and hydraulic model |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chomba, I.C.; Banda, K.E.; Winsemius, H.C.; Chomba, M.J.; Mataa, M.; Ngwenya, V.; Sichingabula, H.M.; Nyambe, I.A.; Ellender, B. A Review of Coupled Hydrologic-Hydraulic Models for Floodplain Assessments in Africa: Opportunities and Challenges for Floodplain Wetland Management. Hydrology 2021, 8, 44. https://doi.org/10.3390/hydrology8010044
Chomba IC, Banda KE, Winsemius HC, Chomba MJ, Mataa M, Ngwenya V, Sichingabula HM, Nyambe IA, Ellender B. A Review of Coupled Hydrologic-Hydraulic Models for Floodplain Assessments in Africa: Opportunities and Challenges for Floodplain Wetland Management. Hydrology. 2021; 8(1):44. https://doi.org/10.3390/hydrology8010044
Chicago/Turabian StyleChomba, Innocent C., Kawawa E. Banda, Hessel C. Winsemius, Machaya J. Chomba, Mulema Mataa, Victoria Ngwenya, Henry M. Sichingabula, Imasiku A. Nyambe, and Bruce Ellender. 2021. "A Review of Coupled Hydrologic-Hydraulic Models for Floodplain Assessments in Africa: Opportunities and Challenges for Floodplain Wetland Management" Hydrology 8, no. 1: 44. https://doi.org/10.3390/hydrology8010044
APA StyleChomba, I. C., Banda, K. E., Winsemius, H. C., Chomba, M. J., Mataa, M., Ngwenya, V., Sichingabula, H. M., Nyambe, I. A., & Ellender, B. (2021). A Review of Coupled Hydrologic-Hydraulic Models for Floodplain Assessments in Africa: Opportunities and Challenges for Floodplain Wetland Management. Hydrology, 8(1), 44. https://doi.org/10.3390/hydrology8010044