Integrating Remote and In-Situ Data to Assess the Hydrological Response of a Post-Fire Watershed
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Storm Severity Analysis
3.2. Framework of the Integrated Approach
3.2.1. Detecting Burned Areas and Fire Severity
3.2.2. Measurements of Soil Infiltration Capacity
3.2.3. Rainfall-Runoff Simulation Strategy
3.2.4. Setup of the Integrated Approach in the Study Area
4. Results
4.1. Storm Severity
4.2. Burned Area
4.3. Soil Infiltration Response to Burn Severity
4.4. Hydrological Impact of Storm on Watershed Runoff in Pre- and Post-Fire Condition
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stoof, C.R.; Vervoort, R.W.; Iwema, J.; van den Elsen, E.; Ferreira, A.J.D.; Ritsema, C.J. Hydrological Response of a Small Catchment Burned by Experimental Fire. Hydrol. Earth Syst. Sci. 2012, 16, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Lavabre, J.; Torres, D.S.; Cernesson, F. Changes in the Hydrological Response of a Small Mediterranean Basin a Year after a Wildfire. J. Hydrol. 1993, 142, 273–299. [Google Scholar] [CrossRef]
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 0-471-16356-2. [Google Scholar]
- Inbar, M.; Tamir, M.; Wittenberg, L. Runoff and Erosion Processes After a Forest Fire in Mount Carmel, a Mediterranean Area. Geomorphology 1998, 24, 17–33. [Google Scholar] [CrossRef]
- Shakesby, R.; Doerr, S. Wildfire as a Hydrological and Geomorphological Agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current Research Issues Related to Post-Wildfire Runoff and Erosion Processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Soulis, K.X.; Generali, K.A.; Papadaki, C.; Theodoropoulos, C.; Psomiadis, E. Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology 2021, 8, 15. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellency in Soils: A Historical Overview. J. Hydrol. 2000, 231–232, 4–32. [Google Scholar] [CrossRef]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, W.G.; Troxell, H.C. Forests and Stream Flow. Trans. Am. Soc. Civ. Eng. 1934, 99, 1–30. [Google Scholar] [CrossRef]
- Anderson, H.W. Fire Effects on Water Supply, Floods, and Sedimentation. Proc. Tall Timbers Fire Ecol. Conf. 1976, 15, 249–260. [Google Scholar]
- Hessling, M. Hydrological Modelling and a Pair Basin Study of Mediterranean Catchments. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 1999, 24, 59–63. [Google Scholar] [CrossRef]
- Loáiciga, H.A.; Pedreros, D.; Roberts, D. Wildfire-Streamflow Interactions in a Chaparral Watershed. Adv. Environ. Res. 2001, 5, 295–305. [Google Scholar] [CrossRef]
- Conedera, M.; Peter, L.; Marxer, P.; Forster, F.; Rickenmann, D.; Re, L. Consequences of Forest Fires on the Hydrogeological Response of Mountain Catchments: A Case Study of the Riale Buffaga, Ticino, Switzerland. Earth Surf. Process. Landf. 2003, 28, 117–129. [Google Scholar] [CrossRef]
- Rulli, M.C.; Rosso, R. Hydrologic Response of Upland Catchments to Wildfires. Adv. Water Resour. 2007, 30, 2072–2086. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Moffet, C.A.; Spaeth, K.E.; Hardegree, S.P.; Clark, P.E.; Williams, C.J. Fire Effects on Rangeland Hydrology and Erosion in a Steep Sagebrush-dominated Landscape. Hydrol. Process. 2008, 22, 2916–2929. [Google Scholar] [CrossRef]
- Seibert, J.; McDonnell, J.J.; Woodsmith, R.D. Effects of Wildfire on Catchment Runoff Response: A Modelling Approach to Detect Changes in Snow-Dominated Forested Catchments. Hydrol. Res. 2010, 41, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Versini, P.A.; Velasco, M.; Cabello, A.; Sempere-Torres, D. Hydrological Impact of Forest Fires and Climate Change in a Mediterranean Basin. Nat. Hazards 2013, 66, 609–628. [Google Scholar] [CrossRef]
- Rulli, M.C.; Bozzi, S.; Spada, M.; Bocchiola, D.; Rosso, R. Rainfall Simulations on a Fire Disturbed Mediterranean Area. J. Hydrol. 2006, 327, 323–338. [Google Scholar] [CrossRef]
- Rosso, R.; Rulli, M.C.; Bocchiola, D. Transient Catchment Hydrology after Wildfires in a Mediterranean Basin: Runoff, Sediment and Woody Debris. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Youberg, A.M.; Loverich, J.B.; Kellogg, M.J.; Fuller, J.E. Before the Fire: Assessing Post-Wildfire Flooding and Debris-Flowhazards for Pre-Disaster Mitigation. Nat. Hazards Earth Syst. Sci. Discuss. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wieting, C.; Ebel, B.A.; Singha, K. Quantifying the Effects of Wildfire on Changes in Soil Properties by Surface Burning of Soils from the Boulder Creek Critical Zone Observatory. J. Hydrol. Reg. Stud. 2017, 13, 43–57. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A. Post-Fire, Rainfall Intensity-Peak Discharge Relations for Three Mountainous Watersheds in the Western USA. Hydrol. Process. 2001, 15, 2981–2993. [Google Scholar] [CrossRef]
- Marqués, M.A.; Mora, E. The Influence of Aspect on Runoff and Soil Loss in a Mediterranean Burnt Forest (Spain). Catena 1992, 19, 333–344. [Google Scholar] [CrossRef]
- Cerda, A.; Imeson, A.C.; Calvo, A. Fire and Aspect Induced Differences on the Erodibility and Hydrology of Soils at La Costera, Valencia, Southeast Spain. Catena 1995, 24, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-Fire Hydrological and Erosional Responses of a Mediterranean Landscpe: Seven Years of Catchment-Scale Dynamics. Catena 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Fowler, H.J.; Ali, H.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Cabi, N.S.; Chan, S.; Dale, M.; et al. Towards Advancing Scientific Knowledge of Climate Change Impacts on Short-Duration Rainfall Extremes. Philos. Trans. R. Soc. A 2021, 379, 20190542. [Google Scholar] [CrossRef]
- Konstantinidis, P.; Tsiourlis, G.; Xofis, P. Effect of Fire Season, Aspect and Pre-Fire Plant Size on the Growth of Arbutus Unedo L. (Strawberry Tree) Resprouts. For. Ecol. Manag. 2006, 225, 359–367. [Google Scholar] [CrossRef]
- Lari, S.; Frattini, P.; Crosta, G.B. Integration of Natural and Technological Risks in Lombardy, Italy. Nat. Hazards Earth Syst. Sci. 2009, 9, 2085–2106. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Sangati, M.; Zanon, F. Regional Frequency Analysis of Extreme Precipitation in the Eastern Italian Alps and the August 29, 2003 Flash Flood. J. Hydrol. 2007, 345, 149–166. [Google Scholar] [CrossRef]
- Braca, G.; Bussettini, M.; Lastoria, B.; Mariani, S. Linee Guida Per L’analisi e L’elaborazione Statistica Di Base Delle Serie Storiche Di Dati Idrologici; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2013; p. 166. [Google Scholar]
- Bell, F.C. Generalized Rainfall-Duration-Frequency Relationships. J. Hydraul. Div. 1969, 95, 311–328. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. GeoCBI: A Modified Version of the Composite Burn Index for the Initial Assessment of the Short-Term Burn Severity from Remotely Sensed Data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index, and Remote Sensing of Severity, the Normalized Burn Index. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; General Technical Report RMRS GTR-164-CD; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006; pp. 1–51. [Google Scholar]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing Post-Fire Vegetation Recovery Using Red–near Infrared Vegetation Indices: Accounting for Background and Vegetation Variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef] [Green Version]
- METER Group, Inc. Mini Disk Infiltrometer; METER Group, Inc.: Pullman, WA, USA, 2020. [Google Scholar]
- van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R. Determination of Soil Sorptivity and Hydraulic Conductivity from the Disk Infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- McCuen, R.H. Hydrologic Analysis and Design, 2nd ed.; Pearson Education/Prentice Hall: Upper Saddle River, NJ, USA, 1998; ISBN 978-0-13-134958-2. [Google Scholar]
- Mishra, S.K.; Singh, V.P. Validity and Extension of the SCS-CN Method for Computing Infiltration and Rainfall-Excess Rates. Hydrol. Process. 2004, 18, 3323–3345. [Google Scholar] [CrossRef]
- Mockus, V. Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook; U.S. Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1964; Volume 4, p. 28. [Google Scholar]
- Ponce, V.M.; Hawkins, R.H. Runoff Curve Number: Has It Reached Maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- USDA National Resources Conservation Service. National Engineering Handbook: Part 630-Hydrology; U.S. Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Yuan, Y.; Mitchell, J.K.; Hirschi, M.C.; Cooke, R.A.C. Modified SCS Curve Number Method for Predicting Subsurface Drainage Flow. Trans. ASAE 2001, 44, 1673–1682. [Google Scholar] [CrossRef]
- Jain, M.K.; Mishra, S.K.; Suresh Babu, P.; Venugopal, K.; Singh, V.P. Enhanced Runoff Curve Number Model Incorporating Storm Duration and a Nonlinear Ia-S Relation. J. Hydrol. Eng. 2006, 11, 631–635. [Google Scholar] [CrossRef]
- Jain, M.K.; Mishra, S.K.; Suresh Babu, P.; Venugopal, K. On the Ia–S Relation of the SCS-CN Method. Hydrol. Res. 2006, 37, 261–275. [Google Scholar] [CrossRef]
- Caletka, M.; Šulc Michalková, M.; Karásek, P.; Fučík, P. Improvement of SCS-CN Initial Abstraction Coefficient in the Czech Republic: A Study of Five Catchments. Water 2020, 12, 1964. [Google Scholar] [CrossRef]
- Krajewski, A.; Sikorska-Senoner, A.E.; Hejduk, A.; Hejduk, L. Variability of the Initial Abstraction Ratio in an Urban and an Agroforested Catchment. Water 2020, 12, 415. [Google Scholar] [CrossRef] [Green Version]
- Gericke, O.J.; Smithers, J.C. Review of Methods Used to Estimate Catchment Response Time for the Purpose of Peak Discharge Estimation. Hydrol. Sci. J. 2014, 59, 1935–1971. [Google Scholar] [CrossRef]
- Ravazzani, G.; Boscarello, L.; Cislaghi, A.; Mancini, M. Review of Time-of-Concentration Equations and a New Proposal in Italy. J. Hydrol. Eng. 2019, 24, 04019039. [Google Scholar] [CrossRef]
- de Almeida, I.K.; Almeida, A.K.; Anache, J.A.A.; Steffen, J.L.; Alves Sobrinho, T.A. Estimation on Time of Concentration of Overland Flow in Watersheds: A Review. Geociências 2014, 33, 661–671. [Google Scholar]
- Woodward, D.E. Chapter 15. Time of Concentration. In Hydrology National Engineering Handbook; Hoeft, C.C., Humpal, A., Cerrelli, G., Eds.; USDA: Washington, DC, USA, 2010; p. 29. [Google Scholar]
- Galli, A.; Peruzzi, C.; Beltrame, L.; Cislaghi, A.; Masseroni, D. Evaluating the Infiltration Capacity of Degraded vs. Rehabilitated Urban Greenspaces: Lessons Learnt from a Real-World Italian Case Study. Sci. Total Environ. 2021, 787, 147612. [Google Scholar] [CrossRef]
- USDA National Resources Conservation Service. Urban Hydrology for Small Watersheds TR55; U.S. Department of Agriculture: Washington, DC, USA, 1986; p. 164. [Google Scholar]
- Leopardi, M.; Scorzini, A.R. Effects of Wildfires on Peak Discharges in Watersheds. iForest 2015, 8, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Higginson, B.; Jarnecke, J. Salt Creek BAER-2007 Burned Area Emergency Response; Hydrology Specialist Report; Uinta National Forest: Provo, UT, USA, 2007; p. 11. [Google Scholar]
- Foltz, R.B.; Robichaud, P.R.; Rhee, H. A Synthesis of Postfire Road Treatments for BAER Teams: Methods, Treatment Effectiveness, and Decisionmaking Tools for Rehabilitation; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008; p. RMRS-GTR-228. [Google Scholar]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil Hydrophobicity Variations with Depth and Particle Size Fraction in Burned and Unburned Eucalyptus Globulus and Pinus Pinaster Forest Terrain in the Águeda Basin, Portugal. Catena 1996, 27, 25–47. [Google Scholar] [CrossRef]
- Hendrayanto; Kosugi, K.; Takahisa, M. Scaling Hydraulic Properties of Forest Soils. Hydrol. Process. 2000, 14, 521–538. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire Effects on Infiltration Rates after Prescribed Fire in Northern Rocky Mountain Forests, USA. J. Hydrol. 2000, 231–232, 220–229. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Zema, D.A.; González-Romero, J.; Moya, D.; De las Heras, J. Changes in Soil Hydraulic Conductivity after Prescribed Fires in Mediterranean Pine Forests. J. Environ. Manag. 2019, 232, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Stoof, C.R.; Ferreira, A.J.D.; Mol, W.; Van den Berg, J.; De Kort, A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ferreira, C.S.S.; Ritsema, C.J. Soil Surface Changes Increase Runoff and Erosion Risk after a Low–Moderate Severity Fire. Geoderma 2015, 239–240, 58–67. [Google Scholar] [CrossRef]
- Grangeon, T.; Vandromme, R.; Cerdan, O.; Girolamo, A.M.D.; Lo Porto, A. Modelling Forest Fire and Firebreak Scenarios in a Mediterranean Mountainous Catchment: Impacts on Sediment Loads. J. Environ. Manag. 2021, 289, 112497. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated Fires in Mediterranean Europe Due to Anthropogenic Warming Projected with Non-Stationary Climate-Fire Models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Rajczak, J.; Schär, C. Projections of Future Precipitation Extremes over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10–773. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for Declining Forest Resilience to Wildfires under Climate Change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Soulis, K.X. Estimation of SCS Curve Number Variation Following Forest Fires. Hydrol. Sci. J. 2018, 63, 1332–1346. [Google Scholar] [CrossRef]
Parameter | WS10 Western Sub-Basin | WS11 Eastern Sub-Basin |
---|---|---|
Area (km2) | 1.26 | 1.34 |
Perimeter (m) | 8051 | 8751 |
Length of the main water stream (m) | 2752.58 | 3426.99 |
Mean slope of the watershed (%) | 45.07 ± 13.68 | 46.67 ± 15.84 |
Mean slope of the main water stream (%) | 22.87 | 20.74 |
Minimum elevation (m) | 475.72 | 475.00 |
Mean elevation (m) | 841.56 ± 197.84 | 854.85 ± 198.77 |
Maximum elevation (m) | 1221.02 | 1226.03 |
Sensor Code | Site | East * | North * | Distance from the Watershed Outlet (m) | Elevation (m asl) |
---|---|---|---|---|---|
8152 | Arcisate | 491,501 | 5,076,955 | 9451 | 334.66 |
9091 | Castronno | 486,058 | 5,066,146 | 12,658 | 365.76 |
8150 | Cuveglio | 480,047 | 5,083,338 | 5564 | 276.71 |
14,131 | Lavena Ponte Tresa | 488,398 | 5,090,913 | 14,193 | 273.53 |
8583 | Laveno Mombello | 471,939 | 5,084,222 | 11,848 | 950.00 |
8587 | Laveno Mombello | 470,425 | 5,084,109 | 13,121 | 194.37 |
8163 | Luino | 480,079 | 5,094,539 | 16,488 | 194.38 |
19,356 | Porto Ceresio | 491,668 | 5,082,687 | 10,550 | 279.99 |
22,022 | Porto Valtravaglia | 477,812 | 5,087,930 | 10,664 | 872.17 |
10,666 | Valganna | 485,317 | 5,084,612 | 7179 | 657.55 |
14,527 | Varano Borghi | 477,631 | 5,068,133 | 11,007 | 239.47 |
8228 | Varese | 486,300 | 5,075,452 | 4983 | 407.17 |
1111 | Luvinate | 481,511 | 5,076,293 | 1985 | 408.97 |
Land Use | A | B | C | D |
---|---|---|---|---|
Deciduous broadleaf | 42 | 66 | 79 | 85 |
Evergreen coniferous | 34 | 60 | 73 | 79 |
Mixed forest | 38 | 62 | 75 | 81 |
HSR Method | |
High burn severity | CNpost = CNpre + 15 |
Moderate burn severity | CNpost = CNpre + 10 |
Low burn severity | CNpost = CNpre + 5 |
DS Method | |
High burn severity with water repellent soils | CNpost = 95 |
High burn severity without water repellent soils | CNpost = 90 to 91 |
Moderate burn severity with water repellent soils | CNpost = 90 |
Moderate burn severity without water repellent soils | CNpost = 85 |
Low burn severity | CNpost = CNpre + 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folador, L.; Cislaghi, A.; Vacchiano, G.; Masseroni, D. Integrating Remote and In-Situ Data to Assess the Hydrological Response of a Post-Fire Watershed. Hydrology 2021, 8, 169. https://doi.org/10.3390/hydrology8040169
Folador L, Cislaghi A, Vacchiano G, Masseroni D. Integrating Remote and In-Situ Data to Assess the Hydrological Response of a Post-Fire Watershed. Hydrology. 2021; 8(4):169. https://doi.org/10.3390/hydrology8040169
Chicago/Turabian StyleFolador, Luca, Alessio Cislaghi, Giorgio Vacchiano, and Daniele Masseroni. 2021. "Integrating Remote and In-Situ Data to Assess the Hydrological Response of a Post-Fire Watershed" Hydrology 8, no. 4: 169. https://doi.org/10.3390/hydrology8040169
APA StyleFolador, L., Cislaghi, A., Vacchiano, G., & Masseroni, D. (2021). Integrating Remote and In-Situ Data to Assess the Hydrological Response of a Post-Fire Watershed. Hydrology, 8(4), 169. https://doi.org/10.3390/hydrology8040169