Estimation of Spatial and Temporal Groundwater Balance Components in Khadir Canal Sub-Division, Chaj Doab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WetSpass-M Model
2.3. Model Inputs
2.3.1. Input Data Preparation
Topography and Soil Map
LULC and Soil Sampling
Soil Sample Collection and Analysis
Meteorological Data Collection
3. Results and Discussion
3.1. Validation of WetSpass-M Model
3.2. Temporal and Spatial Distribution of Simulated Water Balance Components
3.3. Water Balance Components under Different LULC and Soil Types
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LULC Type | Water Balance Components (mm) | Min | MX | RANGE | MEAN | % | STD |
---|---|---|---|---|---|---|---|
Build up | Rainfall | 438.0 | 479.0 | 40.9 | 451.3 | 100 | 12.1 |
Evapotranspiration | 137.3 | 164.9 | 27.6 | 148.0 | 32.7 | 5.7 | |
Runoff | 127.4 | 192.2 | 64.9 | 195.0 | 43.6 | 7.6 | |
Recharge | 121.1 | 173.3 | 52.2 | 105.0 | 23.7 | 5.0 | |
Agriculture | Rainfall | 424.0 | 479.5 | 55.5 | 455.9 | 100 | 10.7 |
Evapotranspiration | 208.9 | 250.9 | 42.0 | 233.5 | 51.1 | 9.9 | |
Runoff | 56.5 | 123.1 | 66.7 | 107.7 | 23.6 | 6.5 | |
Recharge | 102.4 | 151.4 | 49.1 | 114.8 | 25.3 | 5.6 | |
Shrub | Rainfall | 439.2 | 469.6 | 30.4 | 457.3 | 100 | 6.2 |
Evapotranspiration | 262.1 | 287.2 | 25.1 | 272.4 | 59 | 9.0 | |
Runoff | 37.2 | 68.8 | 31.5 | 65.6 | 16.3 | 3.1 | |
Recharge | 99.1 | 129.0 | 29.9 | 108.5 | 24.7 | 4.9 | |
Reference | Rainfall | 424.0 | 467.4 | 43.4 | 446.0 | 100 | 9.6 |
Evapotranspiration | 134.4 | 162.2 | 27.7 | 149.5 | 33.5 | 6.4 | |
Runoff | 65.8 | 137.4 | 71.6 | 117.2 | 26.5 | 8.2 | |
Recharge | 166.2 | 218.5 | 52.3 | 178.6 | 40 | 5.2 |
Soil Type | Water Balance Components (mm) | MIN | MAX | RANGE | MEAN | % | STD |
---|---|---|---|---|---|---|---|
Sandy loam | Rainfall | 424.0 | 463.8 | 39.8 | 449.3 | 100 | 8.3 |
Evapotranspiration | 134.4 | 264.8 | 130.3 | 220.9 | 49.2 | 12.9 | |
Runoff | 41.3 | 192.2 | 150.9 | 107.6 | 23.8 | 11.3 | |
Recharge | 112.3 | 218.5 | 106.2 | 119.9 | 27 | 8.5 | |
Loam | Rainfall | 434.6 | 479.5 | 44.8 | 459.6 | 100 | 10.1 |
Evapotranspiration | 142.7 | 287.2 | 144.6 | 237.0 | 51.5 | 17.7 | |
Runoff | 37.2 | 191.6 | 154.4 | 110.1 | 23.9 | 13.7 | |
Recharge | 99.1 | 214.2 | 115.1 | 113.3 | 24.6 | 8.4 |
References
- NRC (National Research Council). Water Implications of Biofuels Production in the United States; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Ahmad, H.M.N.; Kaleem Ullah, K.; Qureshi, A.S. Controlling Groundwater Table through Localize sub-surface Evaporation Basin: A Case Study of Rachna Doab. Irriag. Drain. 2002, 51, 61–72. [Google Scholar]
- Dezső, J.; Lóczy, D.; Salem, A.; Gábor, N. Floodplain connectivity. In The Drava River: Environmental Problems and Solutions; Springer Science + Media: Cham, Switzerland, 2019; pp. 215–230. [Google Scholar]
- Bakhsh, A.; Ahamd, R.N.; Awan, A. A Use of Groundwater and Energy in Pakistan: Issue and Options. In One Day Seminar, Theme: Water and DessertsWater Management Research Center; University of Agriculture Faisalabad: Punjab, Pakistan, 2004. [Google Scholar]
- Ahmad, M.U.; Bastiaanssen, W.G.; Feddes, R.A. A new technique to estimated groundwater use at irrigated areas by combining remote sensing and water balance approaches Rachna Doab, Pakistan. Hydrol. J. 2005, 13, 653–664. [Google Scholar] [CrossRef]
- Shah, T. Groundwater economy of South-Asia: An Assessment of size, significant and socio-ecological impacts. In Agriculture and Groundwater Revolution. Opportunities and Threats to Development; Giordano, M., Villholth, K.G., Eds.; CABI Publication: Islamabad, Pakistan, 2007; p. 36. [Google Scholar]
- Basharat, M. Integarion of Canal and Groundwater to Improve Cost and Quality of Groundwater in Canal Command. Ph.D. Thesis, Center of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore, Pakistan, 2012. [Google Scholar]
- Qureshi, A.S.; Sarwae, A. Sustainable groundwater management in Pakistan: Challenges and Opportunities. Irrig. Drain. 2010, 59, 107–116. [Google Scholar] [CrossRef]
- Dezső, J.; Salem, A.; Lóczy, D.; Slowik, M.; Dávid, P. Randomly layered fluvial sediments influenced groundwater-surface water interaction. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Vienna, Austria, 27 June–6 July 2017; Volume 17, pp. 331–338. [Google Scholar]
- Wang, B.; Jin, M.; Nimmo, J.R.; Yang, L.; Wang, W. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers. J. Hydrol. 2008, 356, 209–222. [Google Scholar] [CrossRef]
- Moon, S.; Woo, N.C.; Lee, K.S. Statistical analysis of hydrograph and water-table fluctuation to estimate groundwater recharge. Hydrology 2004, 292, 198–209. [Google Scholar] [CrossRef]
- Manghi, F.; Mortazavi, B.; Crother, C.; Hamdi, M.R. Estimating regional groundwater recharge using a hydrological budget method. Water Resour. Manag. 2009, 23, 2475–2489. [Google Scholar] [CrossRef]
- Salem, A.; Dezso, J.; Lóczy, D.; El-Rawy, M.; Słowik, M. Modeling surface water-groundwater interaction in an oxbow of the Drava floodplain. In Proceedings of the 13th International Conference on Hydroinformatics (HIC 2018), Palermo, Italy, 1–6 July 2018; Volume 3, pp. 1832–1840. [Google Scholar]
- Batelaan, O.; de Smedt, F. Wetspass: A flexible, GIS based, distributed recharge methodology for regional groundwater modelling. In Impact of Human Activity on Groundwater Dynamics; Gehrels, H., Peters, J., Leibundgut, C., Eds.; International Association of Hydrological Sciences: Wallingford, UK, 2001; pp. 11–17. [Google Scholar]
- Abdollahi, K.; Bashir, I.; Verbeiren, B.; Harouna, M.R.; Griensven, A.V.; Husmans, M.; Batelaan, O. A distributed monthly water balance model: Formulation and application on Black Volta Basin. Environ. Earth Sci. 2017, 76, 198. [Google Scholar] [CrossRef]
- Karlovic, I.; Markovic, T.; Vujnovic, T.; Larva, O. Development of a Hydrogeological Conceptual Model of the Varaždin Alluvial Aquifer. Hydrology 2021, 8, 19. [Google Scholar] [CrossRef]
- Abu-Saleem, A. Estimation of Water Balance Components in the Hasa Basin with GIS Based–WetSpass Model. Master’s Thesis, Al Balqa Applied University, Salt, Jordan, 2010; p. 61. [Google Scholar]
- Al Kuisi, M.; El-Naqa, A. GIS based spatial groundwater recharge estimation in the Jafr basin, Jordan–Application of WetSpass models for arid regions. Rev. Mex. De Cienc. Geol. 2013, 30, 96–109. [Google Scholar]
- Gebremeskel, G.; Kebede, A. Spatial estimation of long-term seasonal and annual groundwater resources: Application of WetSpass model in the Werii watershed of the Tekeze River Basin, Ethiopia. Phys. Geogr. 2017, 38, 338–359. [Google Scholar] [CrossRef]
- Gebreyohannes, T.; Smedt, F.; Walraevens, K.; Gebresilassie, S. Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J. Hydrol. 2013, 499, 110–123. [Google Scholar] [CrossRef]
- Zarei, M.; Ghazavi, R.; Vali, A.; Abdollahi, K. Estimating Groundwater Recharge, Evapotranspiration and Surface Runoff using Land-use data: A Case Study in Northeast Iran. Biol. Forum Int. J. 2016, 8, 196–202. [Google Scholar]
- Armanuos, A.M.; Negm, A.; Yoshimura, C.; Saavedra Valeriano, O.C. Application of WetSpass model to estimate groundwater recharge variability in the Nile Delta aquifer. Arab. J Geosci. 2016, 9, 553. [Google Scholar] [CrossRef]
- Salem, A.; Dezso, J.; Mustafa, E.R. Assessment of Groundwater Recharge, Evaporation, and Runoff in the Drava Basin in Hungary with the WetSpass Model. Hydrology 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Dezső, J.; El-Rawy, M.; loczy, D.; Halmai, Á. Estimation of groundwater recharge distribution using Gis based WetSpass model in the Cun-Szaporca oxbow, Hungary. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Albena, Bulgaria, 28 June–7 July 2019; Volume 19, pp. 169–176. [Google Scholar]
- Salem, A.; Dezső, J.; El-Rawy, M.; Lóczy, D. Hydrological Modeling to Assess the Efficiency of Groundwater Replenishment through Natural Reservoirs in the Hungarian Drava River Floodplain. Water 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Awan, N.M. Surface Water Hydrology, Vol. 1; National Book Foundation: Islamabad, Pakistan, 1981. [Google Scholar]
- Batelaan, O.; De Smedt, F. GIS-based recharge estimation by coupling surface-subsurface water balances. J. Hydrol. 2007, 337, 337–355. [Google Scholar] [CrossRef]
- Armanuos, A.M.; Negm, A. Assessment of the variations of local parameters of Wetspass model: Case study Nile Delta aquifer. Procedia Eng. 2016, 154, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2019; (accessed on 12 February 2021). [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Available online: https://earthexplorer.usgs.gov/ (accessed on 10 January 2021).
- Available online: https://lpdaac.usgs.gov/datasetdiscovery/modis/modisproductstable/mcd12q1 (accessed on 12 February 2021).
- Ashraf, A.; Ahmad, Z. Regional groundwater flow modelling of Upper Chaj Doab of Indus Basin, Pakistan using finite element model (Feflow) and geoinformatics. Geophys. J. 2008, 1, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Black, C.; Evans, A.; Ensminger, D.D.; White, L.E.; Clark, J.L. Methods of Soil Analysis; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Arefaine, T.; Nedaw, D.; Gebreyohannes, T. Groundwater Recharge, Evapotranspiration and Surface Runoff Estimation Using WetSpass Modeling Method in Illala Catchment, Northern Ethiopia. Momona Ethiop. J. Sci. (MEJS) 2012, 4, 96–110. [Google Scholar]
- Dawes, W.R.; Gilfedder, M.; Stauffacher, M. Assessing the variability of recharge reduction for dry land salinity control vanilla Eyre, Peninsula, Australian. J. Soil Res. 2012, 40, 1407–1424. [Google Scholar] [CrossRef]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaana, O. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors. J. Hydrol. Reg. Study 2015, 4, 349–368. [Google Scholar] [CrossRef] [Green Version]
ID | Input Parameters | Source | Resolution |
---|---|---|---|
1 | Rainfall | Pakistan Meteorological Department and own processing | 100 × 100 m |
2 | ET | Pakistan Meteorological Department and own processing | 100 × 100 m |
3 | Wind speed | Pakistan Meteorological Department and own processing | 100 × 100 m |
4 | Temperature | Pakistan Meteorological Department and own processing | 100 × 100 m |
5 | DEM and Slop | https://earthexplorer.usgs.gov/, (accessed on 15 November 2021) [31] and own processing and own Processing | 100 × 100 m |
6 | LULC maps | https://lpdaac.usgs.gov/datasetdiscovery/modis/modisproductstable/mcd12q1, (accessed on 15 November 2021) [32] and own processing | 100 × 100 m |
7 | Soil texture | FAO soil maps and own processing | 100 × 100 m |
8 | Groundwater depth | Punjab Irrigation Department and own processing | 100 × 100 m |
9 | Soil lookup tables | WetSpass-M Model | 100 × 100 m |
10 | LULC lookup tables | WetSpass-M Model | |
11 | Runoff lookup tables | WetSpass-M Model |
Period | Water Balance Components (mm) | MIN | MAX | RANGE | MEAN | STD |
---|---|---|---|---|---|---|
Annual | Rainfall | 424.0 | 479.5 | 55.5 | 455.7 | 10.7 |
Evapotranspiration | 134.4 | 287.2 | 152.8 | 231 | 17.9 | |
Runoff | 37.2 | 192.2 | 155.0 | 109.1 | 12.9 | |
Recharge | 99.1 | 218.5 | 119.4 | 115.6 | 9.0 | |
Summer | Rainfall | 236.7 | 262.0 | 25.3 | 251.0 | 4.9 |
Evapotranspiration | 68.5 | 141.5 | 73.0 | 114.5 | 8.5 | |
Runoff | 32.5 | 135.7 | 103.2 | 83.7 | 8.3 | |
Recharge | 44.1 | 105.6 | 61.4 | 52.8 | 4.5 | |
Autumn | Rainfall | 65.4 | 82.0 | 16.5 | 73.2 | 3.7 |
Evapotranspiration | 22.4 | 53.7 | 31.3 | 41.3 | 4.2 | |
Runoff | 2.4 | 26.7 | 24.3 | 11.2 | 2.5 | |
Recharge | 17.4 | 39.8 | 22.4 | 20.7 | 1.9 | |
Winter | Rainfall | 41.8 | 46.2 | 4.4 | 44.0 | 0.9 |
Evapotranspiration | 18.1 | 36.7 | 18.6 | 28.8 | 1.9 | |
Runoff | 0.4 | 10.7 | 10.4 | 4.7 | 0.9 | |
Recharge | 7.1 | 22.6 | 15.5 | 10.5 | 1.3 | |
Spring | Rainfall | 79.6 | 93.2 | 13.7 | 87.3 | 2.7 |
Evapotranspiration | 22.3 | 60.8 | 38.5 | 47.4 | 4.5 | |
Runoff | 1.2 | 24.8 | 23.6 | 8.9 | 2.2 | |
Recharge | 25.6 | 53.9 | 28.4 | 31 | 2.5 | |
Monthly | Rainfall | 35.9 | 40.5 | 4.6 | 38.5 | 0.9 |
Evapotranspiration | 11.2 | 23.9 | 12.7 | 19.4 | 1.5 | |
Runoff | 3.1 | 16.0 | 12.9 | 9.3 | 1.1 | |
Recharge | 8.3 | 18.2 | 10.0 | 9.8 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M.; Salem, A.; Singh, V.P.; Arshad, M. Estimation of Spatial and Temporal Groundwater Balance Components in Khadir Canal Sub-Division, Chaj Doab, Pakistan. Hydrology 2021, 8, 178. https://doi.org/10.3390/hydrology8040178
Aslam M, Salem A, Singh VP, Arshad M. Estimation of Spatial and Temporal Groundwater Balance Components in Khadir Canal Sub-Division, Chaj Doab, Pakistan. Hydrology. 2021; 8(4):178. https://doi.org/10.3390/hydrology8040178
Chicago/Turabian StyleAslam, Muhammad, Ali Salem, Vijay P. Singh, and Muhammad Arshad. 2021. "Estimation of Spatial and Temporal Groundwater Balance Components in Khadir Canal Sub-Division, Chaj Doab, Pakistan" Hydrology 8, no. 4: 178. https://doi.org/10.3390/hydrology8040178
APA StyleAslam, M., Salem, A., Singh, V. P., & Arshad, M. (2021). Estimation of Spatial and Temporal Groundwater Balance Components in Khadir Canal Sub-Division, Chaj Doab, Pakistan. Hydrology, 8(4), 178. https://doi.org/10.3390/hydrology8040178