Quantifying Groundwater Resources for Municipal Water Use in a Data-Scarce Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Methodology
3. Results
3.1. Groundwater Recharge Assessment
3.2. Comparison with the Flow Rates of the Santissima Aqueduct
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoll, S.; Franssen, H.J.H.; Barthel, R.; Kinzelbach, W. What can we learn from long-term groundwater data to improve climate change impact studies? Hydrol. Earth Syst. Sci. 2011, 15, 3861–3875. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. Impact of climate change on groundwater recharge in dry areas: An ecohydrology approach. J. Hydrol. 2011, 407, 175–183. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- Taylor, R.G.; Todd, M.C.; Kongola, L.; Maurice, L.; Nahozya, E.; Sanga, H.; MacDonald, A.M. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Chang. 2013, 3, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Moeck, C.; von Freyberg, J.; Schirmer, M. Groundwater recharge predictions in contrasted climate: The effect of model complexity and calibration period on recharge rates. Environ. Model. Softw. 2018, 103, 74–89. [Google Scholar] [CrossRef]
- Von Freyberg, J.; Moeck, C.; Schirmer, M. Estimation of groundwater recharge and drought severity with varying model complexity. J. Hydrol. 2015, 527, 844–857. [Google Scholar] [CrossRef]
- Lerner, D.N.; Issar, A.S.; Simmers, I. Groundwater Recharge. A Guide to Understanding and Estimating Natural Recharge; IAH International Contributions to Hydrogeology: Hannover, Germany, 1990; p. 345. [Google Scholar]
- De Vries, J.J.; Simmers, I. Groundwater recharge: An overview of processes and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Smerdon, B.D.; Drewes, J.E. Groundwater recharge: The intersection between humanity and hydrogeology. J. Hydrol. 2017, 555, 909–911. [Google Scholar] [CrossRef]
- Carletti, A.; Canu, S.; Motroni, A.; Ghiglieri, G. A combined methodology for estimating the potential natural aquifer recharge in an arid environment. Hydrol. Sci. J. 2019, 64, 1727–1745. [Google Scholar] [CrossRef]
- Moeck, C.; Grech-Cumbo, N.; Podgorski, J.; Bretzler, A.; Gurdak, J.J.; Berg, M.; Schirmer, M. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Sci. Total. Environ. 2020, 717, 137042, ISSN 0048-9697. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Post, D.A.; Beck, M.B. From data and theory to environmental model: The case of rainfall-runoff. Environmetrics 1994, 5, 297–314. [Google Scholar] [CrossRef]
- Ivkovic, K.M.; Letcher, R.A.; Croke, B.F.W. Use of a simple surface-groundwater interaction model to inform water management. Aust. J. Earth Sci. 2009, 56, 61–70. [Google Scholar] [CrossRef]
- Croke, B.F.W.; Smith, A.B.; Jakeman, A.J. A One-Parameter Groundwater Discharge Model Linked to the IHACRES Rainfall-Runo_ Model. In Proceedings of the 1st International Congress on Environmental Modelling and Software, Lugano, Switzerland, 24–27 June 2002. [Google Scholar]
- Borzì, I.; Bonaccorso, B.; Fiori, A. A Modified IHACRES Rainfall-Runoff Model for Predicting the Hydrologic Response of a River Basin Connected with a Deep Groundwater Aquifer. Water 2019, 11, 2031. [Google Scholar] [CrossRef] [Green Version]
- Sophocleous, M.; Perkins, S.P. Methodology and application of combined watershed and ground-water models in Kansas. J. Hydrol. 2000, 236, 185–201. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16; U.S. Department of the Interior: Washington, DC, USA; U.S. Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Mohammadi, K. Groundwater Table Estimation Using MODFLOW and Artificial Neural Networks. In Practical Hydroinformatics: Water Science and Technology Library; Abrahart, R.J., See, L.M., Solomatine, D.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 68. [Google Scholar] [CrossRef]
- Brunner, P.; Doherty, J.; Simmons, C.T. Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models. Water Resour. Res. 2012, 48, W07513. [Google Scholar] [CrossRef] [Green Version]
- Friedel, M.J. Coupled inverse modeling of vadose zone water, heat, and solute transport: Calibration constraints, parameter nonuniqueness, and predictive uncertainty. J. Hydrol. 2005, 312, 148–175. [Google Scholar] [CrossRef]
- Hartmann, A.; Gleeson, T.; Wada, Y.; Wagener, T. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc. Natl. Acad. Sci. USA 2017, 114, 2842–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ines, A.V.; Droogers, P. Inverse modelling in estimating soil hydraulic functions: A genetic algorithm approach. Hydrol. Earth Syst. Sci. Discuss. 2002, 6, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Moeck, C.; Brunner, P.; Hunkeler, D. The influence ofmodel structure on groundwater recharge rates in climate-change impact studies. Hydrogeol. J. 2016, 24, 1171–1184. [Google Scholar] [CrossRef] [Green Version]
- Shoeller, H. Les Eaux Souterraines; Masson: Paris, France, 1962. (In French) [Google Scholar]
- Civita MCivita, M.; Manzone, L.; Olivero, G.; Vigna, B. Le sorgenti del Maira. Studio di una risorsa idrica di importanza strategica [The Maira Springs. Study of a strategic water resource]. In Atti 2 Conv. Naz. “Protezione e Gestione delle Acque Sotterranee: Metodologie, Tecnologie e Obiettivi”; Nonatola: Modena, Italy, 1995; Volume 1, pp. 231–238. [Google Scholar]
- Civita, M.; De Maio, M. SINTACS Un sistema parametrico per la valutazione e la cartografia della vulnerabilità degli acquiferi all’inquinamento. In Metodologia e Automazione; Pitagora Editrice: Bologna, Italy, 1997; p. 191. (In Italian) [Google Scholar]
- Civita, M.; De Maio, M. Average groundwater recharge in carbonate aquifers: A GIS processed numerical model. In Proceedings of the 7th Conference on Limestone Hydrology and Fissured Media, Besançon, France, 20–23 September 2001; pp. 93–100. [Google Scholar]
- Koutsoyiannis, D. Seeking Parsimony in Hydrology and Water Resources Technology, European Geosciences Union General Assembly 2009, Geophysical Research Abstracts; European Geosciences Union: Munich, Germany, 2009; Volume 11. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic: San Diego, CA, USA, 1974; p. 508. [Google Scholar]
- Turc, L. Calcul du bilan de l’eau: Evaluation en function des precipitation et des temperatures. IAHS Publ. 1954, 37, 88–200. (In French) [Google Scholar]
- Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.; Shao, Q. Water balance modeling over variable time scales based on the Budyko framework—Model development and testing. J. Hydrol. 2008, 360, 117–131. [Google Scholar] [CrossRef]
- Ferrara, V. The optimal management of groundwater resources in the Peloritani Mountains area (North-East-Sicily). In Proceedings of the International Conference on Water Resources in Mountain Regions, Lausanne, Switzerland, 27 August–1 September 1990. [Google Scholar]
- Ferrara, V. Vulnerabilità All’inquinamento degli Acquiferi dell’Area Peloritani Sicilia Nord-Orientale. Quaderni di Tecniche di Protezione Ambientale, 66; Pitagora Editrice: Bologna, Italy, 1990. (In Italian) [Google Scholar]
- Regione Siciliana. Piano di Gestione del Distretto Idrografioco della Sicilia; PGDI: Regione Sicilia, Italy, 2016. (In Italian) [Google Scholar]
- Borzì, I.; Bonaccorso, B.; Aronica, G.T. The Role of DEM Resolution and Evapotranspiration Assessment in Modeling Groundwater Resources Estimation: A Case Study in Sicily. Water 2020, 12, 2980. [Google Scholar] [CrossRef]
- Civita, M. Idrogeologia Applicata e Ambientale; CEA Editore: Roma, Italy, 2005; ISBN 978-8808087416. (In Italian) [Google Scholar]
- Blöschl, G.; Sivapalan, M.; Wagener, T.; Viglione, A.; Savenije, H. Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Penman, H.L. 1948 Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A Math. Phys. Eng. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Trabucco, A.; Zomer, R.J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information (CGIAR-CSI). Published online, available from the CGIAR-CSI GeoPortal. 2018. Available online: https://cgiarcsi.community (accessed on 13 December 2021).
- Doherty, J.E.; Hunt, R.J. Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-Model Calibration; US Geological Survey: Reston, VA, USA; US Department of the Interior: Washington, DC, USA, 2010. [Google Scholar]
- Condon, L.E.; Maxwell, R.M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 2019, 5, eaav4574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gee, G.W.; Hillel, D. Groundwater recharge in arid regions: Review and critique of estimation methods. Hydrol. Process 1988, 2, 255–266. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H.; Walker, G.R. Recharge from precipitation. In Recharge of Phreatic Aquifers in (Semi-)Arid Areas; Simmers, I., Ed.; IAH International Contributions to Hydrogeoleology 19; A.A. Balkema: Rotterdam, The Netherlands, 1997; pp. 19–111. [Google Scholar]
- Carrera-Hernández, J.J.; Gaskin, S.J. Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J. Hydrol. 2007, 336, 231–249. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Carletti, A.; Pittalis, D. Runoff coefficient and average yearly natural aquifer recharge assessment by physiography-based indirect methods for the island of Sardinia (Italy) and its NW area (Nurra). J. Hydrol. 2014, 519, 1779–1791. [Google Scholar] [CrossRef]
- Shaban, A.; Khawlie, M.; Abdallah, C. Use of remote sensing and GIS to determine recharge potential zones: The case of Occidental Lebanon. Hydrogeol. J. 2006, 14, 433–443. [Google Scholar] [CrossRef]
- Storck, P.; Bowling, L.; Wetherbee, P.; Lettenmaier, D. Application of a GISbased distributed hydrology model for prediction of forest harvest effects on peak stream flow in the Pacific Northwest. Hydrol. Process. 1998, 12, 889–904. [Google Scholar] [CrossRef]
- Vijay, R.; Panchbhai, N.; Gupta, A. Spatio-temporal analysis of groundwater recharge and mound dynamics in an unconfined aquifer: A GIS-based approach. Hydrol. Process. 2007, 21, 2760–2764. [Google Scholar] [CrossRef]
- Seiller, G.; Anctil, F.J. How do potential evapotranspiration formulas influence hydrological projections? Hydrol. Sci. J. 2016, 61, 2249–2266. [Google Scholar] [CrossRef] [Green Version]
- Hulme, M.; Carter, T.R.; Viner, D. Representing Uncertainty in Climate Change Scenarios and Impact Studies: ECLAT-2 Workshop Report no. 1; Climatic Research Unit: Norwich, UK, 1999. [Google Scholar]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W. Evaporation into the Atmosphere: Theory, History and Applications; Springer: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Singh, V.P. Hydrologic Systems: Watershed Modeling; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; Volume 2. [Google Scholar]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; American Society of Civil Engineers: Reston, VA, USA, 1990. [Google Scholar]
- Morton, F.I. Evaporation research—A critical review and its lessons for the environmental sciences. Crit. Rev. Environ. Sci. Technol. 1994, 24, 237–280. [Google Scholar] [CrossRef]
- Singh, V.P.; Xu, C.-Y. Evaluation and generalization of 13 mass transfer equations for determining free water evaporation. Hydrol. Process. 1997, 11, 311–323. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVicar, T.R.; Roderick, M.L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol. 2010, 386, 186–197. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci. 2007, 11, 983–995. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Can dynamic vegetation information improve the accuracy of Budyko’s hydrological model? J. Hydrol. 2010, 390, 23–34. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J. Hydrol. 2011, 406, 234–244. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J. A simple framework for examining the interannual variability of land surface moisture fluxes. J. Climate 1999, 12, 1911–1917. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M. Annual hydroclimatology of the United States. Water Resour. Res. 2002, 38, 1083. [Google Scholar] [CrossRef]
- Potter, N.J.; Zhang, L. Interannual variability of catchment water balance in Australia. J. Hydrol. 2009, 369, 120–129. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F.; Lim, W.H.; Wang, H.; Liu, W.; Liu, C. The Predictability of annual evapotranspiration and runoff in humid and nonhumid catchments over China: Comparison and quantification. J. Hydrometeor. 2018, 19, 533–545. [Google Scholar] [CrossRef]
- Chen, X.; Alimohammadi, N.; Wang, D. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resour. Res. 2013, 49, 6067–6078. [Google Scholar] [CrossRef] [Green Version]
- Tekleab, S.; Uhlenbrook, S.; Mohamed, Y.; Savenije, H.H.G.; Temesgen, M.; Wenninger, J. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrol. Earth Syst. Sci. 2011, 15, 2179–2193. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Yeh, P.J.-F.; Wu, H.C.; Hu, B.X.; Huang, G.R. Global analysis of the role of terrestrial water storage in the evapotranspiration estimated from the Budyko framework at the annual-to-monthly timescales. J. Hydrometeorol. 2019, 20, 2003–2021. [Google Scholar] [CrossRef]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evaporation. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Wu, C.H.; Yeh, P.J.-F.; Hu, B.X.; Huang, G.R. Controlling factors of errors in the predicted annual and monthly evaporation from the Budyko framework. Adv. Water Resour. 2018, 121, 432–445. [Google Scholar] [CrossRef]
Spring Group | Flow Rate in Mid-July 2018 (L/s) | Flow Rate in Mid-February 2019 (L/s) | Average Flow Rate (L/s) |
---|---|---|---|
Bocche d’Acqua | 34.00 | 69.06 | 51.53 |
Bottino | 5.80 | 11.76 | 8.78 |
Cianciana | 6.70 | 13.58 | 10.14 |
Sciara Cambria | 2.74 | 5.55 | 4.14 |
Faraone-Larioti | 2.80 | 5.64 | 4.22 |
Femminamorta | 2.20 | 4.45 | 3.32 |
Scacciafica | 0.97 | 1.96 | 1.46 |
Cammarone | 0.16 | 0.32 | 0.24 |
Ula Pernice | 0.41 | 0.84 | 0.62 |
Ilici Lunga–Cannizzola | 6.34 | 12.86 | 9.60 |
Pomara–Bertuccio | 2.56 | 5.20 | 3.88 |
Porta | 2.96 | 6.14 | 4.55 |
Santissima | 36.1 | 73.25 | 54.67 |
Corvo Nociara | 1.98 | 4.03 | 3.01 |
Griole-Iaddizzi | 1.39 | 3.20 | 2.29 |
Grillo | 2.53 | 5.12 | 3.82 |
Carbonara Gallery (out of order) | 15.00 | 30.45 | 22.72 |
Station Code | Elevation (m a.s.l.) | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fiumedinisi (248) | 440.00 | 130.33 | 122.00 | 121.04 | 71.95 | 28.55 | 23.29 | 12.56 | 26.59 | 126.27 | 164.39 | 157.22 | 160.81 | 95.42 |
Messina (251) | 420.00 | 123.08 | 108.37 | 110.75 | 55.62 | 38.73 | 37.98 | 14.27 | 27.62 | 88.20 | 114.64 | 140.90 | 141.18 | 83.44 |
S Pier Niceto (249) | 460.00 | 98.17 | 94.32 | 83.46 | 56.28 | 29.69 | 27.01 | 10.56 | 30.86 | 84.43 | 94.00 | 118.40 | 116.88 | 70.34 |
Torregrotta (261) | 26.00 | 120.65 | 116.05 | 93.08 | 62.75 | 29.92 | 23.19 | 7.35 | 35.52 | 73.58 | 95.64 | 102.46 | 131.40 | 74.30 |
Antillo (313) | 796.00 | 185.37 | 202.58 | 161.59 | 66.44 | 28.19 | 22.44 | 12.03 | 22.63 | 121.16 | 209.54 | 233.39 | 183.66 | 120.75 |
Variable | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall | 2.010 | 2.184 | 1.640 | 0.778 | 0.317 | 0.226 | 0.100 | 0.338 | 1.161 | 2.003 | 2.198 | 2.197 |
Evapotranspiration | 0.551 | 0.600 | 0.714 | 0.618 | 0.316 | 0.226 | 0.100 | 0.337 | 0.852 | 0.819 | 0.644 | 0.460 |
Effective rainfall | 1.459 | 1.584 | 0.926 | 0.160 | 0.002 | 0.000 | 0.000 | 0.001 | 0.309 | 1.184 | 1.554 | 1.737 |
Infiltration rate | 1.240 | 1.347 | 0.787 | 0.136 | 0.001 | 0.000 | 0.000 | 0.000 | 0.263 | 1.006 | 1.321 | 1.476 |
Month | Conveyed Flows (L/s) (1) | Effective Infiltration (EI) (L/s) (2) | Rainfall (L/s) (3) | Cumulative Conveyed Volumes (Mm3) (4) | Cumulative EI Volumes (Mm3) (5) | Differences between (5) and (4) (Mm3) (6) |
---|---|---|---|---|---|---|
October | 132.356 | 375.621 | 747.785 | 0.355 | 1.006 | 0.652 |
November | 147.438 | 493.236 | 820.559 | 0.711 | 2.199 | 1.488 |
December | 161.544 | 551.165 | 820.114 | 1.144 | 3.676 | 2.532 |
January | 177.186 | 462.877 | 750.312 | 1.603 | 4.875 | 3.272 |
February | 207.863 | 502.741 | 815.555 | 2.160 | 6.222 | 4.062 |
March | 221.922 | 293.933 | 612.230 | 2.735 | 6.984 | 4.249 |
April | 209.500 | 50.684 | 290.352 | 3.296 | 7.119 | 3.823 |
May | 209.533 | 0.498 | 118.412 | 3.857 | 7.121 | 3.263 |
June | 208.711 | 0.023 | 84.475 | 4.398 | 7.121 | 2.722 |
July | 178.444 | 0.000 | 37.462 | 4.876 | 7.121 | 2.245 |
August | 151.467 | 0.173 | 126.063 | 5.269 | 7.121 | 1.852 |
September | 136.267 | 98.183 | 433.651 | 5.634 | 7.384 | 1.750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borzì, I.; Bonaccorso, B. Quantifying Groundwater Resources for Municipal Water Use in a Data-Scarce Region. Hydrology 2021, 8, 184. https://doi.org/10.3390/hydrology8040184
Borzì I, Bonaccorso B. Quantifying Groundwater Resources for Municipal Water Use in a Data-Scarce Region. Hydrology. 2021; 8(4):184. https://doi.org/10.3390/hydrology8040184
Chicago/Turabian StyleBorzì, Iolanda, and Brunella Bonaccorso. 2021. "Quantifying Groundwater Resources for Municipal Water Use in a Data-Scarce Region" Hydrology 8, no. 4: 184. https://doi.org/10.3390/hydrology8040184
APA StyleBorzì, I., & Bonaccorso, B. (2021). Quantifying Groundwater Resources for Municipal Water Use in a Data-Scarce Region. Hydrology, 8(4), 184. https://doi.org/10.3390/hydrology8040184