Impacts of Vegetation Removal on Urban Mediterranean Stream Hydrology and Hydraulics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation and Stream Reach Data
2.3. Hydrologic Engineering Center’s River Analysis System
2.3.1. Parameterization
2.3.2. Model Calibration and Validation
3. Results
3.1. Precipitation and Stream Temperature
3.2. Baseline Simulations
3.3. Calibration and Validation
4. Discussion
4.1. Canopy Loss and Stream Hydraulics
4.2. Vegetation Restoration and Implications for Ecosystem Services
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, B.J.; Franklin, J.; Syphard, A.; Regan, H.M.; Flint, L.E.; Flint, A.L. Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem. Int. J. Geogr. Inf. Sci. 2013, 28, 1561–1589. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.W.; Krygier, J.T. Effects of clear-cutting on stream temperature. Water Resour. Res. 1970, 6, 1133–1139. [Google Scholar] [CrossRef]
- Beechie, T.; Imaki, H.; Greene, J.; Wade, A.; Wu, H.; Pess, G.; Roni, P.; Kimball, J.; Stanford, J.; Kiffney, P.; et al. Restoring salmon habitat for a changing climate. River Res. Appl. 2012, 29, 939–960. [Google Scholar] [CrossRef]
- Garner, G.; Malcolm, I.A.; Sadler, J.P.; Hannah, D.M. What causes cooling water temperature gradients in a forested stream reach? Hydrol. Earth Syst. Sci. 2014, 18, 5361–5376. [Google Scholar] [CrossRef]
- Anderson, J.W.; Beschta, R.L.; Boehne, P.L.; Bryson, D.; Gill, R.; Howes, S.; McIntosh, B.A.; Purser, M.D.; Rhodes, J.J.; Zakel, J. Comprehensive approach to restoring habitat conditions needed to protect threatened salmon species in a severely degraded river—The Upper Grande Ronde River Anadromous Fish Habitat Protection, Restoration and Monitoring Plan. Gen. Tech. Rep. RM 1993. [Google Scholar]
- Rogers, J.B.; Stein, E.D.; Beck, M.W.; Ambrose, R.F. The impact of climate change induced alterations of streamflow and stream temperature on the distribution of riparian species. PLoS ONE 2020, 15, e0242682. [Google Scholar] [CrossRef]
- Schoelynck, J.; de Groote, T.; Bal, K.; Vandenbruwaene, W.; Meire, P.; Temmerman, S. Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography 2012, 35, 760–768. [Google Scholar] [CrossRef]
- Mathews, L.E.H.; Kinoshita, A.M. Urban Fire Severity and Vegetation Dynamics in Southern California. Remote Sens. 2020, 13, 19. [Google Scholar] [CrossRef]
- White, M.D.; Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California. Landsc. Urban Plan. 2006, 74, 125–138. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Gandara, M.L. Evaluating the Potential Impacts of Homelessness on the Water Quality and Riparian Habitat of the Santa Ana River; Oregon State University: Corvallis, OR, USA, 2020; pp. 18–43. [Google Scholar]
- Crouch, A. Culver City Residents near Ballona Creek Concerned about Fires at Homeless Encampments; NBC Los Angeles: Los Angeles, CA, USA, 2022. [Google Scholar]
- Giessow, J.; Casanova, J.; Leclerc, R.; MacArthur, R.; Fleming, G.; Giessow, J. Arundo Donax (Giant Reed): Distribution and Impact Report; California Invasive Plant Council (Cal-IPC): Berkeley, CA, USA, 2011; pp. 1–240. [Google Scholar]
- Kiss, T.; Nagy, J.; Fehérváry, I.; Vaszkó, C. (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Sci. Total Environ. 2019, 686, 931–945. [Google Scholar] [CrossRef]
- Douglas, I.; Alam, K.; Maghenda, M.; Mcdonnell, Y.; Mclean, L.; Campbell, J. Unjust waters: Climate change, flooding and the urban poor in Africa. Environ. Urban. 2008, 20, 187–205. [Google Scholar] [CrossRef]
- Stover, J.E.; Keller, E.A.; Dudley, T.L.; Langendoen, E.J. Fluvial geomorphology, root distribution, and tensile strength of the invasive giant reed, Arundo donax and its role on stream bank stability in the Santa Clara River, Southern California. Geosciences 2018, 8, 304. [Google Scholar] [CrossRef]
- Coffman, G.C. Factors Influencing Invasion of Giant reed (Arundo Donax) in Riparian Ecosystems of Mediterranean-Type Climate Regions; Diss. University of California: Los Angeles, CA, USA, 2007. [Google Scholar]
- Smith, D.; Queally, J.; Molina, G. 24 fires a day: Surge in flames at LA homeless encampments a growing crisis. Los Angeles Times, 12 May 2021. [Google Scholar]
- Cook, C.D.K. Aquatic Plant Book; SPB Academic Publishing: Amsterdam, The Netherlands, 1990. [Google Scholar]
- DiTomaso, J.M.; Healy, E.A. Aquatic and Riparian Weeds of the West; UCANR Publications: Ontario, CA, USA, 2003; Volume 3421. [Google Scholar]
- Perdue, R.E. Arundo donax—Source of musical reeds and industrial cellulose. Econ. Bot. 1958, 12, 368–404. [Google Scholar] [CrossRef]
- Coffman, G.C.; Ambrose, R.F.; Rundel, P.W. Wildfire promotes dominance of invasive giant reed (Arundo donax) in riparian ecosystems. Biol. Invasions 2010, 12, 2723–2734. [Google Scholar] [CrossRef]
- California Invasive Plant Council, Arundo donax Distribution and Impact Report. 2011. Available online: https://www.cal-ipc.org/wp-content/uploads/2017/11/Arundo_Distribution_Impact_Report_Cal-IPC_March-2011_small.pdf (accessed on 24 April 2022).
- Minnich, R.A. Chaparral fire history in San Diego County and adjacent northern Baja California: An evaluation of natural fire regimes and the effects of suppression management. In The California Chaparral: Paradigms Reexamined; Natural History Museum: Los Angeles, CA, USA, 1989; pp. 37–47. [Google Scholar]
- Brooks, M.L. Alien annual grasses and fire in the Mojave Desert. Madroño 1999, 46, 13–19. [Google Scholar]
- Iverson, M.E.; Jackson, N.E.; Frandsen, P.; Douthit, S. The impact of Arundo donax on water resources. In Proceedings of Arundo Donax Workshop; Jackson, N.E., Frandsen, P., Douthit, S., Eds.; UCANR: Ontario, CA, USA, 1993; Volume 19. [Google Scholar]
- Kinoshita, A.M.; Mladenov, N.; Lambert, J.; Zink, T. Restoration of Alvarado Creek Upper Reach 1; unpublished; San Diego State University: San Diego, CA, USA, 2022. [Google Scholar]
- Stromberg, J.C. Restoration of riparian vegetation in the south-western United States: Importance of flow regimes and fluvial dynamism. J. Arid. Environ. 2001, 49, 17–34. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.-M.; Muller, E.; Décamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Bren, L.J. Riparian zone, stream, and floodplain issues: A review. J. Hydrol. 1993, 150, 277–299. [Google Scholar] [CrossRef]
- Alkin, Q.; Kinoshita, A.M. A Case Study of Soil Moisture and Infiltration after an Urban Fire. Fire 2020, 3, 22. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Beauchamp, V.B.; Dixon, M.D.; Lite, S.J.; Paradzick, C. Importance of low-flow and high-flow characteristics to restoration of riparian vegetation along rivers in arid south-western United States. Freshw. Biol. 2007, 52, 651–679. [Google Scholar] [CrossRef]
- Cortès, M.; Llasat, M.C.; Gilabert, J.; Llasat-Botija, M.; Turco, M.; Marcos, R.; Vide, J.P.M.; Falcón, L. Towards a better understanding of the evolution of the flood risk in Mediterranean urban areas: The case of Barcelona. Nat. Hazards 2017, 93, 39–60. [Google Scholar] [CrossRef]
- MESOWEST Station Interface. Available online: https://mesowest.utah.edu/cgi-bin/droman/meso_base_dyn.cgi?stn=D3640&unit=0&hours=24&time=GMT (accessed on 18 January 2022).
- US Department of Commerce, NOAA. PF Map: Contiguous Us, US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service. Available online: https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html (accessed on 7 November 2005).
- U.S. Geological Survey. 1 Meter Digital Elevation Models (DEMs)-USGS National Map 3DEP Downloadable Data Collection; U.S. Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- NLCD 2019 Land Cover (CONUS). Data | Multi-Resolution Land Characteristics (MRLC) Consortium. Available online: https://www.mrlc.gov/data?f%5B0%5D=category%3Aland+cover&f%5B1%5D=region%3Aconus (accessed on 20 November 2021).
- HEC-RAS Mapper User’s Manual-Version 6.1. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_Mapper_User’s_Manual.pdf (accessed on 22 March 2022).
- Moriasi, D.N.; Zeckoski, R.W.; Arnold, J.G.; Baffaut, C.; Malone, R.W.; Daggupati, P.; Guzman, J.A.; Saraswat, D.; Yuan, Y.; Wilson, B.N.; et al. Hydrologic and water quality models: Key calibration and validation topics. Trans. ASABE 2015, 58, 1609–1618. [Google Scholar]
- David, A.; Schmalz, B. A systematic analysis of the interaction between rain-on-grid-simulations and spatial resolution in 2D hydrodynamic modeling. Water 2021, 13, 2346. [Google Scholar] [CrossRef]
- Janda-Timba, J. Individual Hydrologic & Hydraulic Assessment (IHHA) Report-Alvarado Channel (Upper Portion). Rick Eng. 2015. [Google Scholar]
- HEC-RAS Application Guide. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/rasappguide/latest/mannings-n-calibration-example-24 (accessed on 15 April 2022).
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef]
- Rothacher, J. Does Harvest in West Slope Douglas-Fir Increase Peak Flow in Small Forest Streams? Pacific Northwest Forest and Range Experiment Station, US Department of Agriculture, Forest Service: Washington, DC, USA, 1973; Volume 163. [Google Scholar]
- Harr, R.D.; Harper, W.C.; Krygier, J.T.; Hsieh, F.S. Changes in storm hydrographs after road building and clear-cutting in the Oregon Coast Range. Water Resour. Res. 1975, 11, 436–444. [Google Scholar] [CrossRef]
- Tague, C.L.; Moritz, M.; Hanan, E. The changing water cycle: The eco-hydrologic impacts of forest density reduction in Mediterranean (seasonally dry) regions. WIREs Water 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Jones, J.A. Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon. Water Resour. Res. 2000, 36, 2621–2642. [Google Scholar] [CrossRef]
- Dan Moore, R.; Wondzell, S.M. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 763–784. [Google Scholar] [CrossRef]
- Karr, J.R.; Schlosser, I.J. Water Resources and the Land-Water Interface: Water resources in agricultural watersheds can be improved by effective multidisciplinary planning. Science 1978, 201, 229–234. [Google Scholar] [CrossRef]
- Valdecantos, A.; Baeza, M.J.; Vallejo, V.R. Vegetation Management for Promoting Ecosystem Resilience in Fire-Prone Mediterranean Shrublands. Restor. Ecol. 2008. [Google Scholar] [CrossRef]
- Broadmeadow, S.; Nisbet, T.R. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
Vegetation Condition | Model Type | Manning’s n | |||
---|---|---|---|---|---|
Channel | Floodplain | Riparian | Hillside | ||
2019 Canopy 2021 No Canopy | Uncalibrated Calibrated Uncalibrated Calibrated | 0.08 0.11 0.05 0.10 | 0.08 0.11 0.05 0.10 | 0.15 0.23 0.10 0.20 | 0.08 0.11 0.05 0.10 |
Event # | Date | Max I-60 (mm/h) | Recurrence Interval | Total Rainfall (mm) | Type |
---|---|---|---|---|---|
1 | 28 Nov 2019 | 8.4 | <1 year | 37.6 | Validation |
2 | 04 Dec 2019 | 8.6 | <1 year | 36.3 | Calibration |
3 | 26 Dec 2019 | 10.9 | <1 year | 33.5 | Calibration |
4 | 29 Jan 2021 | 5.3 | <1 year | 26.4 | Calibration |
5 | 03 Mar 2021 | 5.1 | <1 year | 18.8 | Validation |
6 | 14 Dec 2021 | 13.7 | 2 year | 38.6 | Calibration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckermann, T.K.; Hunt, D.S.; Kinoshita, A.M. Impacts of Vegetation Removal on Urban Mediterranean Stream Hydrology and Hydraulics. Hydrology 2022, 9, 170. https://doi.org/10.3390/hydrology9100170
Eckermann TK, Hunt DS, Kinoshita AM. Impacts of Vegetation Removal on Urban Mediterranean Stream Hydrology and Hydraulics. Hydrology. 2022; 9(10):170. https://doi.org/10.3390/hydrology9100170
Chicago/Turabian StyleEckermann, Trevor K., Danielle S. Hunt, and Alicia M. Kinoshita. 2022. "Impacts of Vegetation Removal on Urban Mediterranean Stream Hydrology and Hydraulics" Hydrology 9, no. 10: 170. https://doi.org/10.3390/hydrology9100170
APA StyleEckermann, T. K., Hunt, D. S., & Kinoshita, A. M. (2022). Impacts of Vegetation Removal on Urban Mediterranean Stream Hydrology and Hydraulics. Hydrology, 9(10), 170. https://doi.org/10.3390/hydrology9100170