Determinants of Evapotranspiration in Urban Rain Gardens: A Case Study with Lysimeters under Temperate Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Context of the Study Area
2.2. Experimental Set Up, Data Acquisition, and Validation
2.2.1. Experimental Set Up
- The reference configuration (lysimeters 1 and 6) includes the internal water storage (IWS; i.e., the drainage at the bottom of the lysimeter, which is located just above the alveolar product), with an herbaceous stratum (6 plants of Carex sylvatica and Deschampsia cespitosa, which are native to the Paris region). This configuration is considered as the reference because of the Paris subsoil context (heterogeneous and sensitive areas of gypsum or former mines, etc.), and the importance to anticipate the impact of waterproof systems on climate change;
- Lysimeters 2 and 7 differ from the reference by a modification of the vegetation with a shrub layer (3 Cotoneaster lacteus plants per lysimeter). These plants are from China and are often used in Paris plantations;
- Lysimeters 3 and 4 differ from the reference by the lack of IWS, i.e., the water is evacuated at the bottom of the alveolar product;
- Lysimeter 8 is similar to the reference but without vegetation (spontaneous vegetation is removed twice a year);
- Lysimeter 5 is similar to the reference but with spontaneous vegetation.
2.2.2. Data Acquisition and Validation
2.3. Methods
2.3.1. Water Balance
2.3.2. Evaluation of Measurement Uncertainty
2.3.3. Comparison Tools
2.3.4. Evapotranspiration Formulas
3. Results
3.1. Estimated Evapotranspiration
3.1.1. Comparison of the Replicas
3.1.2. Comparison between Different Configurations
3.2. Determinants of ET in Lysimeters
- Impact of the storage in the lysimeter structure.
- The effect of vegetation
- Meteorological factors
- The impact of shading
- The global incident radiation is modified by the evolution of the shading. The shading is variable on the lysimeters, both during the day and seasonally. Shading effect is clearly visible in summer around mid-afternoon on the global radiation measurement with strong decrease in the value (Figure A4);
- The Wind: the linear correlation between wind speed and ET is found to be weak (Table 6). However, the wind could impact the distribution of rainfall on the lysimeters.
3.3. Evapotranspiration Predictive Equations, ETs Estimated from the Evaporimeter, and the Lysimeters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Assessment of VIP Score from a Partial Least Square (PLS) Model
Appendix B. Figures
Appendix C. Tables
Parameter | Seasons | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | E | Rain |
---|---|---|---|---|---|---|---|---|---|---|---|
Fall | 151 | 197 | 181 | 186 | 166 | 161 | 163 | 207 | 126 | 239 | |
Spring | 145 | 145 | 169 | 169 | 151 | 131 | 154 | 173 | 143 | 198 | |
Summer | 161 | 198 | 203 | 198 | 192 | 192 | 199 | 214 | 185 | 246 | |
Winter | 124 | 152 | 101 | 111 | 138 | 146 | 150 | 151 | 74 | 224 | |
Total | 581 (53%) | 692 (63%) | 654 (59%) | 664 (60.6%) | 647 (59%) | 630 (57.5%) | 666 (60.8%) | 745 (68%) | 528 (48.2%) | 907 (82.7%) | |
Fall | 197 | 231 | 215 | 215 | 183 | 200 | 218 | 231 | - | ||
Spring | 213 | 207 | 229 | 221 | 200 | 161 | 192 | 217 | - | ||
Summer | 195 | 232 | 246 | 249 | 230 | 235 | 251 | 251 | - | ||
Winter | 174 | 196 | 149 | 161 | 163 | 202 | 196 | 209 | - | ||
Total | 779 (71%) | 866 (79%) | 839 (76.6%) | 846 (77.2%) | 776 (71%) | 798 (73%) | 857 (78.2%) | 908 (83%) | - | ||
Fall | 196 | 208 | 205 | 192 | 213 | 202 | 182 | 217 | - | ||
Spring | 186 | 195 | 193 | 193 | 195 | 197 | 200 | 197 | - | ||
Summer | 214 | 215 | 213 | 203 | 217 | 211 | 204 | 221 | - | ||
Winter | 190 | 202 | 190 | 143 | 209 | 180 | 189 | 181 | - | ||
Total | 786 (71.8%) | 820 (75%) | 801 (73%) | 731 (66.7%) | 834 (76%) | 790 (72%) | 775 (70%) | 816 (74%) | - | ||
Fall | 197 | 193 | - | - | 215 | 197 | 196 | 212 | - | ||
Spring | 198 | 188 | - | - | 164 | 191 | 188 | 196 | - | ||
Summer | 200 | 204 | - | - | 204 | 174 | 214 | 205 | - | ||
Winter | 175 | 182 | - | - | 213 | 209 | 189 | 202 | - | ||
Total | 770 (70.2%) | 767 (70%) | - | - | 796 (72.6%) | 771 (70.3%) | 787 (71.8%) | 815 (74.4%) | - |
Lysimeters | Validated Data | Seasonal Comparison | |||||
---|---|---|---|---|---|---|---|
Fall (273 Days) | Winter (272 Days) | Spring (276 Days) | Summer (276 Days) | ||||
Comparison of the Replicas | 1, 6 | wt | 0.87 | 0.35 | 0.333 | 0.42 | 0.511 |
n | (445) | (112/273) | (82/272) | (106/276) | (145/276) | ||
3, 4 | wt | 0.007 | 0.007 | 0.004 | 0.05 | 0.26 | |
n | (600) | (160/273) | (87/272) | (166/276) | (187/276) | ||
2, 7 | wt | 2 × 10−16 | 8.45 × 10−7 | 1.72 × 10−6 | 0.08 | 1.2 × 10−06 | |
n | (583) | (154/273) | (116/272) | (127/276) | (186/276) | ||
Different settings compared to the reference (1 or 6) | 1, 3 | wt | 1.16 × 10−20 | 4.5 × 10−7 | 0.0001 | 0.01 | 5 × 10−12 |
n | (464) | (113/273) | (58/272) | (135/276) | (186/276) | ||
1, 4 | wt | 1.15 × 10−62 | 4.14 × 10−20 | 1.04 × 10−15 | 3.98 × 10−12 | 1.01 × 10−19 | |
n | (460) | (117/273) | (57/272) | (133/272) | (153/272) | ||
1, 5 (data) | wt | 0.1 | 0.0061 | 1.78 × 10−6 | 0.15 | 0.17 | |
n | (475) | (121/273) | (86/272) | (118/276) | (150/276) | ||
1, 2 | wt | 0.098 | 0.046 | 0.3844 | 0.81 | 0.36 | |
n | (503) | (136/273) | (89/272) | (121/276) | (157/276) | ||
1, 8 | wt | 2 × 10−8 | 8 × 10−5 | 0.134 | 2 × 10−4 | 0.01 | |
n | (515) | (136/273) | (86/272) | (134/276) | (159/276) | ||
6, 7 | wt | 0.001 | 0.59 | 0.288 | 5 × 10−6 | 0.97 | |
n | (538) | (125/273) | (111/272) | (123/276) | (179/276) | ||
6, 5 | wt | 0.08 | 0.06 | 0.0037 | 0.89 | 0.34 | |
n | (506) | (122/273) | (94/272) | (122/276) | (168/276) |
Lysimeter (n) | 1 (557) | 2 (674) | 3 (636) | 4 (630) | 5 (624) | 6 (601) | 7 (656) | 8 (718) |
---|---|---|---|---|---|---|---|---|
ET (mm) | 1705.7 | 2295.9 | 1605.3 | 1491.5 | 1846.3 | 1846 | 1919.9 | 1924.6 |
P (mm) | 502 | 637.6 | 643.8 | 613.8 | 650.6 | 614.8 | 556.6 | 752.4 |
4P (mm) | 2008 | 2550.4 | 2575.2 | 2455.2 | 2602.4 | 2459.2 | 2226.4 | 3009.6 |
%ET | 85% | 90% | 62% | 61% | 71% | 75% | 86% | 64% |
Year | Seasons | Days | ET1 | ET2 | ET3 | ET4 | ET5 | ET6 | ET7 | ET8 |
---|---|---|---|---|---|---|---|---|---|---|
2016 to 2017 | Fall | 12 | 28.9 ± 1.8 | 45.2 ± 1.6 | 21.8 ± 1.6 | 27.01 ± 1.4 | 12.7 ± 1.9 | 21.6 ± 2 | 25.9 ± 1.9 | 20.6 ± 1.5 |
Winter | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Spring | 27 | 93.1 ± 2.8 | 118.8 ± 2.4 | 82 ± 2.4 | 87 ± 2.2 | 79.7 ± 2.8 | 104 ± 3 | 83.1 ± 2.8 | 91.7 ± 2.3 | |
Summer | 15 | 76.1 ± 2 | 97.7 ± 1.8 | 60.2 ± 1.8 | 61.8 ± 1.6 | 47.6 ± 2.1 | 70.5 ± 2.2 | 79.5 ± 2.1 | 58.6 ± 1.7 | |
2017 to 2018 | Fall | 39 | 82.8 ± 3.4 | 80.9 ± 2.9 | 41.1 ± 2.9 | 36.8 ± 2.6 | 89.2 ± 3.4 | 70 ± 3.6 | 55 ± 3.4 | 44.3 ± 2.8 |
Winter | 15 | 45.8 ± 2 | 39.7 ± 1.8 | 23.4 ± 1.8 | 15.2 ± 1.6 | 10.1 ± 2.1 | 14.5 ± 2.2 | 22.8 ± 2.1 | 22.8 ± 1.7 | |
Spring | 25 | 108.2 ± 2.7 | 88.6 ± 2.3 | 88 ± 2.3 | 90.1 ± 2.1 | 137 ± 2.7 | 135.9 ± 2.9 | 83.2 ± 2.7 | 110 ± 2.2 | |
Summer | 70 | 234.8 ± 4.5 | 229.9 ± 3.9 | 169 ± 3.9 | 160 ± 3.5 | 321.3 ± 4.6 | 300 ± 4.8 | 205.7 ± 4.6 | 184.9 ± 3.7 | |
2017 to 2018 | Fall | 14 | 44.7 ± 2 | 48.6 ± 1.7 | 22.7 ± 1.7 | 25.9 ± 1.5 | 35 ± 2 | 53.9 ± 2.1 | 45.7 ± 2 | 35.26 ± 1.7 |
Winter | 10 | 22.07 | 14.3 ± 1.7 | 10.9 ± 1.5 | 9.03 ± 1.5 | 19.09 ± 1.7 | 24.8 ± 1.8 | 20.63 ± 1.7 | 9.5 ± 1.4 | |
Spring | 31 | 122.14 ± 3 | 99 ± 2.6 | 103.9 ± 2.6 | 89.44 ± 2.3 | 127.7 ± 3 | 114.5 ± 3.2 | 117.5 ± 3 | 53.5 ± 2.5 | |
Summer | 47 | 207.3 ± 3.7 | 218.8 ± 3.2 | 116 ± 3.2 | 147.7 ± 2.8 | 271.4 ± 3.7 | 150.3 ± 3.9 | 222.3 ± 3.7 | 232.2 ± 3.1 |
Year | Seasons | Days (1 vs. 2) | Rain (P) | ET1 | ET2 | Days (1 vs. 7) | Rain (P) | ET1 | ET7 |
---|---|---|---|---|---|---|---|---|---|
2016–2017 | Fall | 40 | 25.8 | 71.17 | 103.98 | 42 | 23.4 | 67.61 | 65.57 |
Winter | 38 | 28.8 | 37.36 | 74.68 | 49 | 55 | 57.31 | 34.00 | |
Spring | 57 | 59.8 | 212.24 | 274.06 | 51 | 87 | 209.13 | 189.99 | |
Summer | 36 | 37.8 | 193.27 | 216.7 | 34 | 39.2 | 155.91 | 158.99 | |
2017–2018 | Fall | 61 | 58.4 | 110.44 | 125 | 50 | 26.6 | 97.09 | 70.02 |
Winter | 33 | 41.6 | 87.6 | 80 | 29 | 39.6 | 82.01 | 38.02 | |
Spring | 26 | 20.4 | 112.76 | 90 | 31 | 23.6 | 129.87 | 100.30 | |
Summer | 72 | 17.6 | 240 | 232 | 72 | 17.6 | 239.94 | 208.93 | |
2018–2019 | Fall | 33 | 54 | 80.15 | 78.89 | 28 | 52.4 | 68.71 | 96.95 |
Winter | 18 | 5.4 | 33.53 | 22.21 | 24 | 10.2 | 37.74 | 36.18 | |
Spring | 38 | 19.8 | 157.63 | 129.17 | 41 | 15.4 | 179.63 | 175.68 | |
Summer | 49 | 17.2 | 217.12 | 230.57 | 49 | 17.2 | 217.12 | 230.03 | |
2016–2018 | Fall | 136 | 138.8 | 264.47 | 315.93 | 121 | 103 | 233.96 | 234.83 |
Winter | 89 | 75.8 | 158.5 | 176.89 | 102 | 104.8 | 177.06 | 108.21 | |
Spring | 121 | 100 | 482.64 | 493.24 | 123 | 126 | 518.63 | 465.97 | |
Summer | 157 | 72.6 | 650.33 | 679.27 | 155 | 74 | 612.97 | 597.95 | |
Total | 503 | 387.2 | 1555.95 | 1665.34 | 501 | 407.8 | 1542.63 | 1406.97 |
Year | Seasons | Days (1 vs. 5) | P | ET1 | ET5 | Days (1 vs. 8) | P | ET1 | ET8 |
---|---|---|---|---|---|---|---|---|---|
2016–2017 | Fall | 45 | 42 | 81.0 | 35.8 | 39 | 25.8 | 69.9 | 51.7 |
Winter | 38 | 51.6 | 43.7 | 18.1 | 33 | 23.6 | 28.2 | 43.8 | |
Spring | 45 | 66.4 | 187.4 | 162.1 | 60 | 66.8 | 227.3 | 224.2 | |
Summer | 30 | 22.2 | 163.3 | 88.4 | 38 | 39.2 | 205.7 | 156.0 | |
2017–2018 | Fall | 61 | 60.2 | 112.4 | 113.6 | 61 | 50.8 | 114.5 | 72.5 |
Winter | 34 | 44.8 | 89.1 | 22.8 | 30 | 36.8 | 84.8 | 55.0 | |
Spring | 32 | 23.6 | 134.4 | 165.8 | 32 | 23.6 | 134.4 | 139.3 | |
Summer | 72 | 17.6 | 239.9 | 323.8 | 72 | 17.6 | 239.9 | 189.4 | |
2018–2019 | Fall | 15 | 35 | 48.4 | 35.9 | 35 | 56.4 | 79.3 | 70.8 |
Winter | 14 | 9.2 | 29.1 | 24.7 | 23 | 7.2 | 36.8 | 18.8 | |
Spring | 41 | 20.6 | 179.4 | 197.8 | 42 | 20.6 | 184.5 | 82.3 | |
Summer | 48 | 13 | 212.7 | 275.3 | 49 | 17.2 | 217.1 | 234.9 | |
2016–2018 | Fall | 121 | 137.2 | 241.9 | 185.3 | 136 | 133.6 | 264.2 | 195.0 (14.5%) |
Winter | 86 | 105.6 | 161.9 | 65.6 | 86 | 67.6 | 149.8 | 117.6 | |
Spring | 118 | 110.6 | 501.3 | 525.7 | 134 | 111 | 546.1 | 445.7 | |
Summer | 150 | 52.8 | 616.0 | 687.5 | 159 | 746 | 662.7 | 580.3 | |
Total | 475 | 406.2 | 1521.0 | 1464.2 | 515 | 386.2 | 1622.9 | 1338.6 |
Year | Seasons | Days (1 vs. 3) | P | ET1 | ET3 | Days (1 vs. 4) | P | ET1 | ET4 |
---|---|---|---|---|---|---|---|---|---|
2016–2017 | Fall | 26 | 47.6 | 64.9 | 59.0 | 26 | 37 | 59.1 | 54 |
Winter | 13 | 17.6 | 22.4 | 11.7 | 14 | 17.6 | 25.9 | 13 | |
Spring | 64 | 87 | 242.0 | 215.5 | 62 | 73.4 | 236.8 | 207.6 | |
Summer | 38 | 39.2 | 205.7 | 143.6 | 36 | 26.4 | 205.5 | 161.3 | |
2017–2018 | Fall | 53 | 47.6 | 105.3 | 56.4 | 59 | 48.4 | 113.6 | 46 |
Winter | 24 | 30.6 | 73.4 | 34.9 | 21 | 21 | 59.5 | 21.3 | |
Spring | 31 | 22.6 | 133.7 | 110.6 | 31 | 22.6 | 133.7 | 104.3 | |
Summer | 72 | 17.6 | 239.9 | 169.5 | 70 | 9.2 | 234.8 | 160.1 | |
2018–2019 | Fall | 32 | 50 | 75.1 | 44.1 | 30 | 49 | 72.2 | 35.7 |
Winter | 21 | 5 | 36.5 | 19.3 | 22 | 5.2 | 36.5 | 12.8 | |
Spring | 40 | 20.6 | 169.5 | 151.8 | 40 | 20.6 | 169.5 | 124.2 | |
Summer | 48 | 13 | 212.7 | 117.7 | 47 | 13 | 207.3 | 147.7 | |
2016–2018 | Fall | 113 | 145.8 | 248.0 | 162.4 | 117 | 135 | 247.5 | 135.9 |
Winter | 58 | 53.2 | 132.3 | 65.9 | 57 | 43.8 | 122 | 47.2 | |
Spring | 135 | 130.2 | 545.2 | 477.9 | 113 | 116.6 | 540 | 436.2 | |
Summer | 158 | 69.8 | 658.3 | 430.8 | 153 | 48.6 | 647.6 | 469.2 | |
Total | 464 | 399 | 1583.9 | 1137.0 | 460 | 344 | 1557.1 | 1088.4 |
References
- Katsifarakis, K.L.; Vafeiadis, M.; Theodossiou, N. Sustainable Drainage and Urban Landscape Upgrading Using Rain Gardens. Site Selection in Thessaloniki, Greece. Agric. Agric. Sci. Procedia 2015, 4, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Andrés-Doménech, I.; Anta, J.; Perales-Momparler, S.; Rodriguez-Hernandez, J. Sustainable Urban Drainage Systems in Spain: A Diagnosis. Sustainability 2021, 13, 2791. [Google Scholar] [CrossRef]
- Ferrans, P.; Torres, M.N.; Temprano, J.; Rodríguez Sánchez, J.P. Sustainable Urban Drainage System (SUDS) Modeling Supporting Decision-Making: A Systematic Quantitative Review. Sci. Total Environ. 2022, 806, 150447. [Google Scholar] [CrossRef] [PubMed]
- Jato-Espino, D.; Toro-Huertas, E.I.; Güereca, L.P. Lifecycle Sustainability Assessment for the Comparison of Traditional and Sustainable Drainage Systems. Sci. Total Environ. 2022, 817, 152959. [Google Scholar] [CrossRef]
- Ishimatsu, K.; Ito, K.; Mitani, Y.; Tanaka, Y.; Sugahara, T.; Naka, Y. Use of Rain Gardens for Stormwater Management in Urban Design and Planning. Landsc. Ecol. Eng. 2017, 13, 205–212. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Z.; Shibata, S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability 2020, 12, 9982. [Google Scholar] [CrossRef]
- Dussaillant, A.R.; Wu, C.H.; Potter, K.W. Richards Equation Model of a Rain Garden. J. Hydrol. Eng. 2004, 9, 219–225. [Google Scholar] [CrossRef]
- Bortolini, L.; Zanin, G. Reprint of: Hydrological Behaviour of Rain Gardens and Plant Suitability: A Study in the Veneto Plain (North-Eastern Italy) Conditions. Urban For. Urban Green. 2019, 37, 74–86. [Google Scholar] [CrossRef]
- Muthanna, T.M.; Viklander, M.; Thorolfsson, S.T. Seasonal Climatic Effects on the Hydrology of a Rain Garden. Hydrol. Process. 2008, 22, 1640–1649. [Google Scholar] [CrossRef]
- Jennings, A.A.; Berger, M.A.; Hale, J.D. Hydraulic and Hydrologic Performance of Residential Rain Gardens. J. Environ. Eng. 2015, 141, 04015033. [Google Scholar] [CrossRef]
- Denich, C.; Bradford, A. Estimation of Evapotranspiration from Bioretention Areas Using Weighing Lysimeters. J. Hydrol. Eng. 2010, 15, 522–530. [Google Scholar] [CrossRef]
- Hess, A.; Wadzuk, B.; Welker, A. Evapotranspiration in Rain Gardens Using Weighing Lysimeters. J. Irrig. Drain. Eng. 2017, 143, 04017004. [Google Scholar] [CrossRef]
- Wadzuk, B.M.; Hickman, J.M.; Traver, R.G. Understanding the Role of Evapotranspiration in Bioretention: Mesocosm Study. J. Sustain. Water Built Environ. 2015, 1, 04014002. [Google Scholar] [CrossRef]
- Nocco, M.A.; Rouse, S.E.; Balster, N.J. Vegetation Type Alters Water and Nitrogen Budgets in a Controlled, Replicated Experiment on Residential-Sized Rain Gardens Planted with Prairie, Shrub, and Turfgrass. Urban Ecosyst. 2016, 19, 1665–1691. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Wadzuk, B.; Traver, R. Evapotranspiration in Green Stormwater Infrastructure Systems. Sci. Total Environ. 2019, 688, 797–810. [Google Scholar] [CrossRef]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The Evapotranspiration Process in Green Roofs: A Review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- Hess, A.; Wadzuk, B.; Welker, A. Evapotranspiration Estimation in Rain Gardens Using Soil Moisture Sensors. Vadose Zone J. 2021, 20, e20100. [Google Scholar] [CrossRef]
- Saher, R.; Stephen, H.; Ahmad, S. Urban Evapotranspiration of Green Spaces in Arid Regions through Two Established Approaches: A Review of Key Drivers, Advancements, Limitations, and Potential Opportunities. Urban Water J. 2021, 18, 115–127. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote Sensing of Urban Green Spaces: A Review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.Y.; Sanesi, G.; Lafortezza, R. Remote Sensing in Urban Forestry: Recent Applications and Future Directions. Remote Sens. 2019, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- Lubczynski, M.W.; Gurwin, J. Integration of Various Data Sources for Transient Groundwater Modeling with Spatio-Temporally Variable Fluxes—Sardon Study Case, Spain. J. Hydrol. 2005, 306, 71–96. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s standardized reference evapotranspiration equation. Watershed Management and Operations Management. 2000, pp. 1–11. Available online: https://ascelibrary.org/doi/book/10.1061/9780784404997 (accessed on 30 January 2022).
- Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Hess, A.; Wadzuk, B.; Welker, A. Predictive Evapotranspiration Equations in Rain Gardens. J. Irrig. Drain. Eng. 2019, 145, 04019010. [Google Scholar] [CrossRef]
- Nezeys, A.; Reboul, S.; Saison, O.; Baillet, M. Le Plan Pluie à Paris: La Nécessaire Dimension Environnementale. In Stratégie/Strategy-Démarche Intégrée & Développement Durable/Integrated Approach & Sustainable Development; GRAIE: Lyon, France, 2016. [Google Scholar]
- Masson, V.; Lion, Y.; Peter, A.; Pigeon, G.; Buyck, J.; Brun, E. “Grand Paris”: Regional Landscape Change to Adapt City to Climate Warming. Clim. Chang. 2013, 117, 769–782. [Google Scholar] [CrossRef] [Green Version]
- Agence Parisienne du Climat (APC) et Météo-France. Brochure « L’îlot de Chaleur Urbain à Paris, un Microclimat au Cœur de la Ville ». Agence Parisienne du Climat. 2018. Available online: https://www.apc-paris.com/publication/brochure-lilot-chaleur-urbain-a-paris-microclimat-coeur-ville (accessed on 30 January 2022).
- Bertrand-Krajewski, J.-L. (Ed.) Mesures en Hydrologie Urbaine et Assainissement; Éditions Tec & Doc: Paris, France, 2000; ISBN 978-2-7430-0380-7. [Google Scholar]
- Capteurs de Pesage et Pesons—Scaime. Available online: https://fr.scaime.com/capteurs-de-pesage (accessed on 16 November 2021).
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the Variable Importance in Projection (VIP) and of the Selectivity Ratio (SR) Methods for Variable Selection and Interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Gosselin, R.; Rodrigue, D.; Duchesne, C. A Bootstrap-VIP Approach for Selecting Wavelength Intervals in Spectral Imaging Applications. Chemom. Intell. Lab. Syst. 2010, 100, 12–21. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Feng, Y.; Burian, S.; Pardyjak, E. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. Water 2018, 10, 262. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L.; Keen, B.A. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Vannier, O.; Braud, I. Calcul d’une Évapotranspiration de Référence Spatialisée Pour La Modélisation Hydrologique à Partir Des Don-nées de La Réanalyse SAFRAN de Météo-France. Research Report, IRSTEA, France. 2012, p. 22. Available online: https://hal.inrae.fr/hal-02593413 (accessed on 30 January 2022).
- Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Evaluation of Common Evapotranspiration Models Based on Measurements from Two Extensive Green Roofs in New York City. Ecol. Eng. 2015, 84, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Johnston, M.R. Vegetation Type Alters Rain Garden Hydrology through Changes to Soil Porosity and Evapotranspiration. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 2011; pp. 130–139. [Google Scholar]
- Johnston, M.R.; Balster, N.J.; Thompson, A.M. Vegetation Alters Soil Water Drainage and Retention of Replicate Rain Gardens. Water 2020, 12, 3151. [Google Scholar] [CrossRef]
- Le Coustumer, S.; Fletcher, T.D.; Deletic, A.; Barraud, S.; Poelsma, P. The Influence of Design Parameters on Clogging of Stormwater Biofilters: A Large-Scale Column Study. Water Res. 2012, 46, 6743–6752. [Google Scholar] [CrossRef]
- Glaister, B.J.; Fletcher, T.D.; Cook, P.L.M.; Hatt, B.E. Interactions between Design, Plant Growth and the Treatment Performance of Stormwater Biofilters. Ecol. Eng. 2017, 105, 21–31. [Google Scholar] [CrossRef]
- Costello, L.R.; Jones, K.S. WUCOLS, Water Use Classification of Landscape Species: A Guide to the Water Needs of Landscape Plants; University of California Press: Sacramento, CA, USA, 2014; Volume 96. [Google Scholar]
- Romero, C.C.; Dukes, M.D. Residential Benchmarks for Minimal Landscape Water Use; Agricultural and Biological Engineering, Department University of Florida UF Water Institute: Gainesville, FL, USA, 2010; pp. 1–49. [Google Scholar]
- DiGiovanni, K.; Montalto, F.; Gaffin, S.; Rosenzweig, C. Applicability of Classical Predictive Equations for the Estimation of Evapotranspiration from Urban Green Spaces: Green Roof Results. J. Hydrol. Eng. 2013, 18, 99–107. [Google Scholar] [CrossRef]
- DiGiovanni-White, K.; Montalto, F.; Gaffin, S. A Comparative Analysis of Micrometeorological Determinants of Evapotranspiration Rates within a Heterogeneous Urban Environment. J. Hydrol. 2018, 562, 223–243. [Google Scholar] [CrossRef]
- Jahanfar, A.; Drake, J.; Sleep, B.; Gharabaghi, B. A Modified FAO Evapotranspiration Model for Refined Water Budget Analysis for Green Roof Systems. Ecol. Eng. 2018, 119, 45–53. [Google Scholar] [CrossRef]
- Braud, I.; Dantas-Antonino, A.C.; Vauclin, M.; Thony, J.L.; Ruelle, P. A Simple Soil-Plant-Atmosphere Transfer Model (SiSPAT) Development and Field Verification. J. Hydrol. 1995, 166, 213–250. [Google Scholar] [CrossRef]
- Stavropulos-Laffaille, X. Pour Une Analyse Des Impacts Du Changement Climatique Sur l’hydrologie Urbaine: Modélisation Hydro-Microclimatique de Deux Bassins Versants Expérimentaux de l’agglomération Nantaise. Ph.D. Thesis, Ecole Centrale de Nantes, Nantes, France, 2019. [Google Scholar]
Materials | Variables | Accuracy (mm) |
---|---|---|
Bucket flow meter (PRÉCIS-MECANIQUE, 3029/2) | Cumulative exfiltration (l) | 0.008 |
Piezometric sensor (PARATRONIC, EN61000-6-2) | Water level (mm) in the IWS | 1 mm |
Load cells (SKAIM, FT-SK30X-FEG-0603) | Lysimeter’s mass (kg) | 0.36 mm |
Materials | Variables |
---|---|
Temperature and humidity sensor (LSI-LASTEM, DMA672) | Temperature (°C) and Air humidity (HR en %) |
Rain gauge (LSI-LASTEM, DQA131.1) | Rain (mm) |
Evaporimeter (Pan, LSI-LASTEM, DYI010) | Water level (mm) |
Global radiometer iso cl-2 (LSI-LASTEM, DPA053) | Global incoming solar radiation (Watt/m2) |
Anemometer (LSI-LASTEM, DNA202) | Wind speed (m/s) |
Barometer (LSI-LASTEM, DQA24) | Atmospheric pressure (hPa) |
Name | Formulas | Hypotheses |
---|---|---|
Penman [37] | ||
PM (FAO-56) [23] | Well-watered vegetation with a height of 0.12 m, a surface resistance of , a surface emissivity of 1 and an albedo of 0.23. | |
PM (Météo-France) [38] | Well-watered meadow with a surface resistance of , a surface emissivity of 0.95 and an albedo of 0.2. | |
Priestley and Taylor [26] | Defined for saturated soils, the advection coefficient is set to 1.26 [26]. |
ET 1 | ET 2 | ET 3 | ET 4 | ET 5 | ET 6 | ET 7 | ET 8 | |
---|---|---|---|---|---|---|---|---|
0.28 | 0.24 | 0.24 | 0.21 | 0.28 | 0.29 | 0.28 | 0.23 | |
0.54 | 0.47 | 0.47 | 0.42 | 0.55 | 0.58 | 0.54 | 0.45 |
Lysimeters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|
162 | 86 | 438 | 568 | 204 | 199 | 191 | 250 | ||
24% | 13% | 65% | 84% | 30% | 29% | 28% | 37% | ||
−543 | −486 | −492 | −633 | −675 | −577 | −471 | −427 | ||
−80% | −72% | −72% | −93% | −99% | −85% | −69% | −63% | ||
1066 ± 7 | 1082 ± 6 | 740 ± 8 | 750 ± 7 | 1152 ± 8 | 1060 ± 7 | 962 ±8 | 864 ± 8 | ||
157% | 159% | 109% | 110% | 170% | 156% | 142% | 127% |
Lysimeters | ET1 | ET2 | ET3 | ET4 | ET5 | ET6 | ET7 | ET8 |
---|---|---|---|---|---|---|---|---|
0.44 | 0.30 | 0.42 | 0.59 | 0.68 | 0.59 | 0.37 | 0.42 | |
) | 0.38 | 0.39 | 0.29 | 0.41 | 0.50 | 0.48 | 0.42 | 0.38 |
−0.25 | −0.12 | −0.21 | −0.36 | −0.46 | −0.36 | −0.21 | −0.3 | |
0.05 | 0.08 | −0.08 | −0.2 | −0.06 | 0.05 | 0.09 | 0.02 | |
−0.17 | −0.23 | −0.08 | −0.03 | −0.08 | −0.13 | −0.19 | −0.16 |
Seasons (Data) | ET1 | ET2 | ET3 | ET5 | ET8 | E |
---|---|---|---|---|---|---|
Fall (53) | 93 ± 4 | 137 ± 3 | 62 ± 3 | 100.0 ± 4 | 64 ± 3 | 40.1 |
Winter (14) | 34.3 ± 2 | 28 ± 2 | 24 ± 2 | 14 ± 2 | 16 ± 2 | 13 |
Spring (81) | 311 ± 5 | 294 ± 4 | 290 ± 4 | 330 ± 5 | 27 ± 4 | 180 |
Summer (133) | 551 ± 6 | 570 ± 5 | 370 ± 5 | 637 ± 6.3 | 476 ± 5 | 382.4 |
Cumulus (281) | 988 ± 9 | 1029 ± 8 | 746 ± 8 | 1081 ± 9 | 836 ± 8 | 585 |
Mean | 3.5 | 3.6 | 2.6 | 3.8 | 2.9 | 2.1 |
Seasons (Data) | ET1 | ET3 | P | PT | PM (FAO-56) | PM (MF-local) | PM (MF-Pm) |
---|---|---|---|---|---|---|---|
Fall (109) | 240 ± 6 | 154 ± 5 | 78 | 89 | 93 | 141 | 199 |
Winter (55) | 130 ± 4 | 65 ± 3 | 32 | 36 | 39 | 58 | 75 |
Spring (134) | 543 ± 6 | 475 ± 5 | 260 | 312 | 283 | 353 | 536 |
Summer (155) | 646 ± 7 | 414 ± 6 | 364 | 437 | 396 | 515 | 829 |
Cumulus (453) | 1559 ± 11 | 1107 ± 10 | 734 | 874 | 811 | 1066 | 1639 |
mean | 3.4 | 2.4 | 1.6 | 2 | 1.8 | 2.4 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouédraogo, A.A.; Berthier, E.; Durand, B.; Gromaire, M.-C. Determinants of Evapotranspiration in Urban Rain Gardens: A Case Study with Lysimeters under Temperate Climate. Hydrology 2022, 9, 42. https://doi.org/10.3390/hydrology9030042
Ouédraogo AA, Berthier E, Durand B, Gromaire M-C. Determinants of Evapotranspiration in Urban Rain Gardens: A Case Study with Lysimeters under Temperate Climate. Hydrology. 2022; 9(3):42. https://doi.org/10.3390/hydrology9030042
Chicago/Turabian StyleOuédraogo, Ahmeda Assann, Emmanuel Berthier, Brigitte Durand, and Marie-Christine Gromaire. 2022. "Determinants of Evapotranspiration in Urban Rain Gardens: A Case Study with Lysimeters under Temperate Climate" Hydrology 9, no. 3: 42. https://doi.org/10.3390/hydrology9030042
APA StyleOuédraogo, A. A., Berthier, E., Durand, B., & Gromaire, M. -C. (2022). Determinants of Evapotranspiration in Urban Rain Gardens: A Case Study with Lysimeters under Temperate Climate. Hydrology, 9(3), 42. https://doi.org/10.3390/hydrology9030042