Effect of Different Protection on Lateral Ankle during Landing: An Instantaneous Impact Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Experimental Measurement
2.2. Data Acquisition and Analysis
2.3. FE Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mack, R.P. Ankle injuries in athletics. Clin. Sport. Med. 1982, 1, 71–84. [Google Scholar] [CrossRef]
- Anandacoomarasamy, A.; Barnsley, L. Long term outcomes of inversion ankle injuries. Br. J. Sport. Med. 2005, 39, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.D.; Sulsky, S.I.; Amoroso, P.J. Effectiveness of an external-the-boot ankle brace in reducing parachuting related ankle injuries. Inj. Prev. 2005, 11, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumhauer, J.F.; Alosa, D.M.; Renstrom, P.A.F.H.; Trevino, S.; Beynnon, B. A prospective study of ankle injury risk factors. Am. J. Sport. Med. 1995, 23, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Soboroff, S.H.; Pappius, E.M.; Komaroff, A.L. Benefits, risks, and costs of alternative approaches to the evaluation and treatment of severe ankle sprains. Clin. Orthop. Relat. Res. 1984, 183, 160–168. [Google Scholar] [CrossRef]
- Jiang, T.Y.; Tian, S.; Chen, T.H.; Fan, X.Y.; Yao, J.; Wang, L.Z. Protection by Ankle Brace for Lower-Extremity Joints in Half-Squat Parachuting Landing With a Backpack. Front. Bioeng. Biotechnol. 2021, 9, 790595. [Google Scholar] [CrossRef]
- Dickerson, L.C.; Queen, R.M. Foot Posture and Plantar Loading With Ankle Bracing. J. Athl. Train. 2021, 56, 461–472. [Google Scholar] [CrossRef]
- Lysens, D.R.; Steverlynck, A.; van den Auweele, Y.; Lefevre, J.; Renson, L.; Claessens, A.; Ostyn, M. The predictability of sports injuries. Sport. Med. 1984, 1, 6–10. [Google Scholar] [CrossRef]
- Milgrom, C.; Shlamkovitch, N.; Finestone, A.; Arieh, E.; Arie, L.; Yehuda, L.D. Risk factors for the lateral ankle sprain: A prospective study among military recruits. Foot Ankle 1991, 12, 26–30. [Google Scholar] [CrossRef]
- Niu, W.X.; Wang, Y.; Yao, J.; Zhang, M.; Fan, Y.B. Consideration of Gender Differences in Ankle Stabilizer Selection for Half-Squat Parachute Landing. Aviat. Space Environ. Med. 2011, 82, 1118–1124. [Google Scholar] [CrossRef]
- Eirik, K.; Roald, B.; Tron, K. Kinematics and kinetics of an accidental lateral ankle sprain. J. Biomech. 2011, 44, 2576–2578. [Google Scholar]
- Hicks, J.H. The mechanics of the foot, Part I: The joints. J. Anat. 1953, 87, 345–357. [Google Scholar]
- Eamonn, D. Neuromuscular contributions to functional instability of the ankle joint. J. Bodyw. Mov. Ther. 2007, 11, 203–213. [Google Scholar]
- Dewar, R.A.; Arnold, G.P.; Wang, W.; Drew, T.S.; Abboud, R.J. Comparison of 3 ankle braces in reducing ankle inversion in a basketball rebounding task. Foot 2019, 39, 129–135. [Google Scholar] [CrossRef]
- Morrison, K.E.; Kaminski, T.W. Foot characteristics in association with inversion ankle injury. J. Athl. Train. 2007, 42, 135–142. [Google Scholar]
- Amoroso, P.J.; Ryan, J.B.; Bickley, B.; Leitschuh, P.; Taylor, D.C.; Jones, B.H. Braced for impact: Reducing military paratroopers’ ankle sprains using external-the-boot braces. J. Trauma 1998, 45, 575–580. [Google Scholar] [CrossRef]
- Eils, E.; Rosenbaum, D. The main function of ankle braces is to control the joint position before landing. Foot Ankle Int. 2003, 24, 263–268. [Google Scholar] [CrossRef]
- Kobayashi, T.; Saka, M.; Suzuki, E.; Yamazaki, N.; Suzukawa, M.; Akaike, A. The Effects of a Semi-Rigid Brace or Taping on Talocrural and Subtalar Kinematics in Chronic Ankle Instability. Foot Ankle Spec. 2014, 7, 471–477. [Google Scholar] [CrossRef]
- Choisne, J.; Hoch, M.C.; Bawab, S.; Alexander, I.; Ringleb, S.I. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability. J. Orthop. Res. 2013, 31, 1869–1875. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.J.D.; Brittney, M.; Adam, J.Y.; Elizabeth, R.E.; Kang, T.H.; Kenneth, J.L.; Shawn, F. Ankle sprain bracing solutions and future design consideration for civilian and military use. Expert Rev. Med. Devices 2022, 19, 113–122. [Google Scholar] [CrossRef]
- Lin, J.Z.; Lin, Y.A.; Tai, W.H.; Chen, C.Y. Influence of Landing in Neuromuscular Control and Ground Reaction Force with Ankle Instability: A Narrative Review. Bioengineering 2022, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wu, D.; Wu, X.D.; Li, Z.Y.; Yan, B.; Liang, L.L.; He, Y.; Liu, Y. A novel prophylactic Chinese parachute ankle brace. Ann. Transl. Med. 2021, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.C.; Wang, L.Z.; Chen, W.; Du, C.F.; Mo, Z.J.; Fan, Y.B. Parametric study of orthopedic insole of valgus foot on partial foot amputation. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Robinson, R.H. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability. J. Athl. Train. 2009, 44, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.E.; Guskiewicz, K.M. Examination of static and dynamic postural stability in individuals with functionally stable and unstable ankles. Clin. J. Sport Med. 2004, 14, 332–338. [Google Scholar] [CrossRef]
- Guo, J.C.; Wang, L.Z.; Mo, Z.J.; Chen, W.; Fan, Y.B. Biomechanical behavior of valgus foot in children with cerebral palsy: A comparative study. J. Biomech. 2015, 48, 3170–3177. [Google Scholar] [CrossRef]
- Jason, C.; Zhang, M.; Fan, Y.B. Three-dimensional finite element analysis of the foot during standing: A material sensitivity study. J. Biomech. 2005, 38, 1045–1054. [Google Scholar]
- Wright, D.; Rennels, D. A study of the elastic properties of plantar fascia. J. Bone Jt. Surg. Am. Vol. 1964, 46, 482–492. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Liu, G.T.; Lavery, L.A.; Lanctot, D.R.; Schenck, R.C. Biomechanical topography of human articular cartilage in the first metatarsophalangeal joint. Clin. Orthop. Relat. Res. 1998, 34, 269–281. [Google Scholar] [CrossRef]
- Siegler, S.; Block, J.; Schneck, C.D. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 1988, 8, 234–242. [Google Scholar] [CrossRef]
- Lemmon, D.; Shiang, T.Y.; Hashmi, A.; Ulbrecht, J.S.; Cavanagh, P.R. The effect of insoles in the rapeutic footwear: A finite element approach. J. Biomech. 1997, 30, 615–620. [Google Scholar] [CrossRef]
- Knapik, J.J.; Spiess, A.; Swedler, D.; Grie, T.L.; Darakjy, S.S.; Jones, B.H. Systematic Review of the Parachute Ankle Brace: Injury Risk Reduction and Cost Effectiveness. Am. J. Prev. Med. 2010, 38, 182–188. [Google Scholar] [CrossRef]
- Knapik, J.J.; Darakjy, S.; Swedler, D.; Amoroso, P.; Jones, B.H. Parachute ankle brace and extrinsic injury risk factors during parachuting. Aviat. Space Environ. Med. 2008, 79, 408–415. [Google Scholar] [CrossRef]
- Rose, S.L.; Sandra, I.S.; Paul, J.A. Effectiveness of an external ankle brace in reducing parachuting related ankle injuries. Inj. Prev. 2011, 17, 58–61. [Google Scholar]
- David, E.A.; Hugh, J.M.; Dennis, P.D.; James, H.M.; William, E.G. A biomechanical study of human lateral ankle ligaments and autogenous reconstructive grafts. Am. J. Sport. Med. 1985, 13, 377–381. [Google Scholar]
- Terrier, R.; Rose-Dulcina, K.; Toschi, B.; Forestier, N. Impaired control of weight bearing ankle inversion in subjects with chronic ankle instability. Clin. Biomech. 2014, 29, 439–443. [Google Scholar] [CrossRef]
- Schumacher, J.T.; Creedon, J.F.; Pope, R.W. The effectiveness of the parachutist ankle brace in reducing ankle injuries in an airborne ranger battalion. Mil. Med. 2000, 165, 944–948. [Google Scholar] [CrossRef]
- Mei-Dan, O.; Kahn, G.; Zeev, A.; Rubin, A.; Constantini, N.; Even, A. The medial longitudinal arch as a possible risk factor for ankle sprains: A prospective study in 83 female infantry recruits. Foot Ankle Int. 2005, 26, 180–183. [Google Scholar] [CrossRef]
- Mark, R.C.; Richard, A.M.; John, J.B.; Bertram, Z. Strain measurement in lateral ankle ligaments. Am. J. Sport. Med. 1990, 18, 196–200. [Google Scholar]
- Wakeling, J.; Nigg, B. Impact Forces and Muscle Tuning: A New Paradigm. Exerc. Sport Sci. Rev. 2001, 29, 37–41. [Google Scholar]
- Boyer, K.A.; Nigg, B.M. Muscle tuning during running: Implications of an un-tuned landing. J. Biomech. Eng. 2006, 128, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Boyer, K.A.; Nigg, B.M. Muscle activity in the leg is tuned in response to impact force characteristics. J. Biomech. 2004, 37, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
Component | Element Type | Young’s Modulus (MPa) | Poisson’s Ratio | Cross-Sectional Area (mm2) |
---|---|---|---|---|
Bony structures | 3D-tetrahedra | 7300 | 0.3 | — |
Soft tissue | 3D-tetrahedra | Hyperelastic | — | — |
Cartilage | 3D-tetrahedra | 10 | 0.4 | — |
Ankle ligaments | 3D-hexahedron | 0~700 | — | 15~70 |
Other ligaments | Tension-only truss | 260~350 | 0.49 | 28~170 |
Fascia | 3D-hexahedron | 350 | 0.3 | 290.7 |
Shoe sole | 3D-tetrahedra | 913 | 0.37 | — |
Ankle brace | 3D-tetrahedra | 3150 | — | — |
Plantar support | 3D-hexahedron | 25,000 | 0.1 | — |
0.08556 | −0.05841 | 0.03900 | −0.02319 | 0.00851 | 3.65273 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Yang, J.; Wang, Y.; Mo, Z.; Pu, J.; Fan, Y. Effect of Different Protection on Lateral Ankle during Landing: An Instantaneous Impact Analysis. Bioengineering 2023, 10, 34. https://doi.org/10.3390/bioengineering10010034
Guo J, Yang J, Wang Y, Mo Z, Pu J, Fan Y. Effect of Different Protection on Lateral Ankle during Landing: An Instantaneous Impact Analysis. Bioengineering. 2023; 10(1):34. https://doi.org/10.3390/bioengineering10010034
Chicago/Turabian StyleGuo, Junchao, Jiemeng Yang, Yawei Wang, Zhongjun Mo, Jingyu Pu, and Yubo Fan. 2023. "Effect of Different Protection on Lateral Ankle during Landing: An Instantaneous Impact Analysis" Bioengineering 10, no. 1: 34. https://doi.org/10.3390/bioengineering10010034
APA StyleGuo, J., Yang, J., Wang, Y., Mo, Z., Pu, J., & Fan, Y. (2023). Effect of Different Protection on Lateral Ankle during Landing: An Instantaneous Impact Analysis. Bioengineering, 10(1), 34. https://doi.org/10.3390/bioengineering10010034