Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Inoculum, and Media
2.2. Design of Experiments
2.3. Bioreactor Culture Conditions
2.4. Analytical Methods
3. Results and Discussion
3.1. Construction of Response Surface Models
3.2. Optimization of Carbon and Nitrogen Levels in the Culture Medium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, L.R.; Yellapu, S.K.; Tyagi, R.D.; Drogui, P. Cost, Energy and GHG Emission Assessment for Microbial Biodiesel Production through Valorization of Municipal Sludge and Crude Glycerol. Bioresour. Technol. 2020, 297, 122404. [Google Scholar] [CrossRef] [PubMed]
- Ageitos, J.M.; Vallejo, J.A.; Veiga-Crespo, P.; Villa, T.G. Oily Yeasts as Oleaginous Cell Factories. Appl. Microbiol. Biotechnol. 2011, 90, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Crognale, S.; Liuzzi, F.; D’Annibale, A.; De Bari, I.; Petruccioli, M. Cynara Cardunculus a Novel Substrate for Solid-State Production of Aspergillus Tubingensis Cellulases and Sugar Hydrolysates. Biomass Bioenergy 2019, 127, 105276. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Wastewater Sludge as Raw Material for Microbial Oils Production. Appl. Energy 2014, 135, 192–201. [Google Scholar] [CrossRef]
- Lamichhane Upadhyaya, K.; Mondala, A.; Hernandez, R.; French, T.; Green, M.; McFarland, L.; Holmes, W. Biocrude Production by Activated Sludge Microbial Cultures Using Pulp and Paper Wastewaters as Fermentation Substrate. Environ. Technol. 2013, 34, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Mondala, A.; Hernandez, R.; Holmes, W.; French, T.; McFarland, L.; Sparks, D.; Haque, M. Enhanced Microbial Oil Production by Activated Sludge Microorganisms via Co-Fermentation of Glucose and Xylose. AIChE J. 2013, 59, 4036–4044. [Google Scholar] [CrossRef]
- Seo, Y.H.; Lee, I.G.; Han, J.I. Cultivation and Lipid Production of Yeast Cryptococcus Curvatus Using Pretreated Waste Active Sludge Supernatant. Bioresour. Technol. 2013, 135, 304–308. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Chatzifragkou, A.; Kopsahelis, N.; Papanikolaou, S.; Kookos, I.K. Design and Techno-Economic Evaluation of Microbial Oil Production as a Renewable Resource for Biodiesel and Oleochemical Production. Fuel 2014, 116, 566–577. [Google Scholar] [CrossRef]
- Angerbauer, C.; Siebenhofer, M.; Mittelbach, M.; Guebitz, G.M. Conversion of Sewage Sludge into Lipids by Lipomyces starkeyi for Biodiesel Production. Bioresour. Technol. 2008, 99, 3051–3056. [Google Scholar] [CrossRef]
- Caporusso, A.; Capece, A.; De Bari, I. Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Fermentation 2021, 7, 50. [Google Scholar] [CrossRef]
- Dourou, M.; Aggeli, D.; Papanikolaou, S.; Aggelis, G. Critical Steps in Carbon Metabolism Affecting Lipid Accumulation and Their Regulation in Oleaginous Microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 2509–2523. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Wynn, J.P. The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 51, pp. 1–52. ISBN 978-0-12-002653-1. [Google Scholar]
- Abeln, F.; Chuck, C.J. The History, State of the Art and Future Prospects for Oleaginous Yeast Research. Microb. Cell Fact 2021, 20, 221. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Tyagi, R.D. Impact of Nitrogen on the Industrial Feasibility of Biodiesel Production from Lipid Accumulated in Oleaginous Yeast with Wastewater Sludge and Crude Glycerol. Energy 2021, 217, 119343. [Google Scholar] [CrossRef]
- Lopes, H.J.S.; Bonturi, N.; Kerkhoven, E.J.; Miranda, E.A.; Lahtvee, P.-J. C/N Ratio and Carbon Source-Dependent Lipid Production Profiling in Rhodotorula toruloides. Appl. Microbiol. Biotechnol. 2020, 104, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Wang, L.; Fang, Z. Two-Stage Process Production of Microbial Lipid by Co-Fermentation of Glucose and N-Acetylglucosamine from Food Wastes with Cryptococcus curvatus. Bioresour. Technol. 2023, 387, 129685. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Fang, H.; Chen, S. Single Cell Oil Production by Trichosporon cutaneum from Steam-Exploded Corn Stover and Its Upgradation for Production of Long-Chain α,ω-Dicarboxylic Acids. Biotechnol. Biofuels 2017, 10, 202. [Google Scholar] [CrossRef]
- Ivančić Šantek, M.; Miškulin, E.; Petrović, M.; Beluhan, S.; Šantek, B. Effect of Carbon and Nitrogen Source Concentrations on the Growth and Lipid Accumulation of Yeast Trichosporon oleaginosus in Continuous and Batch Culture: Effect of Carbon and Nitrogen Source Concentrations on the Growth and Lipid Accumulation of Yeast. J. Chem. Technol. Biotechnol. 2017, 92, 1620–1629. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Y.; Chen, J.; Imanaka, T.; Bao, J.; Hua, Q. Analysis of Metabolic Fluxes for Better Understanding of Mechanisms Related to Lipid Accumulation in Oleaginous Yeast Trichosporon cutaneum. Bioresour. Technol. 2013, 130, 144–151. [Google Scholar] [CrossRef]
- Leiva-Candia, D.E.; Pinzi, S.; Redel-Macías, M.D.; Koutinas, A.; Webb, C.; Dorado, M.P. The Potential for Agro-Industrial Waste Utilization Using Oleaginous Yeast for the Production of Biodiesel. Fuel 2014, 123, 33–42. [Google Scholar] [CrossRef]
- Bracharz, F.; Beukhout, T.; Mehlmer, N.; Brück, T. Opportunities and Challenges in the Development of Cutaneotrichosporon oleaginosus ATCC 20509 as a New Cell Factory for Custom Tailored Microbial Oils. Microb. Cell Fact 2017, 16, 178. [Google Scholar] [CrossRef]
- Shaigani, P.; Fuchs, T.; Graban, P.; Prem, S.; Haack, M.; Masri, M.; Mehlmer, N.; Brueck, T. Mastering Targeted Genome Engineering of GC-Rich Oleaginous Yeast for Tailored Plant Oil Alternatives for the Food and Chemical Sector. Microb. Cell Fact 2023, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Hofmeyer, T.; Hackenschmidt, S.; Nadler, F.; Thürmer, A.; Daniel, R.; Kabisch, J. Draft Genome Sequence of Cutaneotrichosporon curvatus DSM 101032 (Formerly Cryptococcus curvatus), an Oleaginous Yeast Producing Polyunsaturated Fatty Acids. Genome Announc. 2016, 4, e00362-16. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Bohnen, F.; Mehlmer, N.; Brueck, T. Multi-Factorial-Guided Media Optimization for Enhanced Biomass and Lipid Formation by the Oleaginous Yeast Cutaneotrichosporon oleaginosus. Front. Bioeng. Biotechnol. 2019, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Blackburn, J.W.; Liang, Y. Fermentation Optimization for the Production of Lipid by Cryptococcus Curvatus: Use of Response Surface Methodology. Biomass Bioenergy 2012, 47, 410–417. [Google Scholar] [CrossRef]
- Mishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.-W. Rapid Quantification of Microalgal Lipids in Aqueous Medium by a Simple Colorimetric Method. Bioresour. Technol. 2014, 155, 330–333. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Mitra, M.; Maiti, M.K. Recent Advances in Lipid Metabolic Engineering of Oleaginous Yeasts. Biotechnol. Adv. 2021, 53, 107722. [Google Scholar] [CrossRef]
- Takaku, H.; Matsuzawa, T.; Yaoi, K.; Yamazaki, H. Lipid Metabolism of the Oleaginous Yeast Lipomyces starkeyi. Appl. Microbiol. Biotechnol. 2020, 104, 6141–6148. [Google Scholar] [CrossRef]
- Ratledge, C. Fatty Acid Biosynthesis in Microorganisms Being Used for Single Cell Oil Production. Biochimie 2004, 86, 807–815. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Chang, K.-S.; Lee, C.-F.; Hsu, C.-L.; Huang, C.-W.; Jang, H.-D. Microbial Lipid Production by Oleaginous Yeast Cryptococcus sp. in the Batch Cultures Using Corncob Hydrolysate as Carbon Source. Biomass Bioenergy 2015, 72, 95–103. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Wu, D.; Li, J.; Tyagi, R.D.; Surampalli, R.Y. Economical Lipid Production from Trichosporon oleaginosus via Dissolved Oxygen Adjustment and Crude Glycerol Addition. Bioresour. Technol. 2019, 273, 288–296. [Google Scholar] [CrossRef]
- Evans, C.T.; Ratledge, C. Effect of Nitrogen Source on Lipid Accumulation in Oleaginous Yeasts. Microbiology 1984, 130, 1693–1704. [Google Scholar] [CrossRef]
- Evans, C.T.; Ratledge, C. A Comparison of the Oleaginous Yeast, Candida curvata, Grown on Different Carbon Sources in Continuous and Batch Culture. Lipids 1983, 18, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.T.; Ratledge, C. Influence of Nitrogen Metabolism on Lipid Accumulation by Rhodosporidium toruloides CBS 14. Microbiology 1984, 130, 1705–1710. [Google Scholar] [CrossRef]
Factors | Performance Criteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exp. Runs | Glucose (g/L) | (NH4)2SO4 (g/L) | C/N | Biomass (g/L) | Lipid Content (% wt.) | Lipid Free Biomass (g/L) | Lipids (g/L) | YX/G (g/g) | YL/G (g/g) | Residual G * (g/L) | Residual N * (g/L) |
1 | 20 | 1 | 38 | 9.7 | 41 ± 4 | 5.8 ± 0.4 | 4.0 ± 0.4 | 0.49 | 0.20 | 0.0 | 0 |
2 | 20 | 3 | 13 | 7.1 | 17 ± 1 | 5.8 ± 0.1 | 1.2 ± 0.1 | 0.35 | 0.06 | 0.0 | 0.42 |
3 | 20 | 5 | 8 | 8.0 | 16 ± 1 | 6.7 ± 0.1 | 1.3 ± 0.1 | 0.40 | 0.06 | 0.0 | 1.89 |
4 | 85 | 1 | 161 | 10.4 | 63 ± 5 | 3.9 ± 0.5 | 6.6 ± 0.5 | 0.12 | 0.08 | 60.9 | 0.42 |
5 | 85 | 3 | 54 | 7.06 | 17 ± 1 | 5.9 ± 0.6 | 1.2 ± 0.1 | 0.08 | 0.01 | 57.57 | 0.76 |
6 | 85 | 3 | 54 | 7.30 | 16 ± 1 | 6.1 ± 0.6 | 1.2 ± 0.1 | 0.09 | 0.01 | 59.47 | 0.88 |
7 | 85 | 3 | 54 | 6.65 | 16 ± 1 | 5.6 ± 0.5 | 1.0 ± 0.1 | 0.08 | 0.01 | 62.07 | 0.99 |
8 | 85 | 3 | 54 | 6.96 | 17 ± 1 | 5.8 ± 0.6 | 1.2 ± 0.1 | 0.08 | 0.01 | 63.6 | 0.98 |
9 | 85 | 3 | 54 | 6.99 | 17 ± 1 | 5.8 ± 0.6 | 1.2 ± 0.1 | 0.08 | 0.01 | 61.1 | 0.90 |
10 | 85 | 5 | 33 | 7.1 | 19 ± 1 | 5.7 ± 0.1 | 1.4 ± 0.1 | 0.08 | 0.02 | 60.70 | 3.21 |
11 | 150 | 1 | 283 | 7.3 | 61 ± 3 | 2.7 ± 0.2 | 4.5 ± 0.2 | 0.05 | 0.03 | 138.0 | 0.67 |
12 | 150 | 3 | 95 | 4.0 | 19 ± 3 | 3.2 ± 0.0 | 0.8 ± 0.1 | 0.03 | 0.01 | 136.0 | 2.02 |
13 | 150 | 5 | 57 | 3.8 | 20 ± 1 | 3.1 ± 0.1 | 0.8 ± 0.1 | 0.03 | 0.01 | 134.7 | 3.95 |
Source | Biomass | Lipid Content | Lipid-Free Biomass | ||||
---|---|---|---|---|---|---|---|
R2 = 0.9884, Adj. R2 = 0.9802 | R2 = 0.9671, Adj. R2 = 0.9436 | R2 = 0.9257, Adj. R2 = 0.8726 | |||||
DF | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Model | 5 | 119.64 | 0.000 | 41.16 | 0.000 | 17.44 | 0.001 |
Linear | 2 | 212.70 | 0.000 | 63.00 | 0.000 | 34.98 | 0.000 |
X1 | 1 | 240.69 | 0.000 | 7.38 | 0.030 | 62.73 | 0.000 |
X2 | 1 | 184.70 | 0.000 | 118.62 | 0.000 | 7.23 | 0.031 |
Square | 2 | 80.72 | 0.000 | 37.64 | 0.000 | 8.40 | 0.014 |
X12 | 1 | 96.31 | 0.000 | 0.80 | 0.401 | 7.23 | 0.031 |
X22 | 1 | 125.44 | 0.000 | 69.22 | 0.000 | 3.37 | 0.109 |
2-Way Interaction | 1 | 11.37 | 0.012 | 4.51 | 0.071 | 0.42 | 0.536 |
X1X2 | 1 | 11.37 | 0.012 | 4.51 | 0.071 | 0.42 | 0.536 |
Error | 7 | - | - | - | - | - | - |
Lack-of-Fit | 3 | 1.39 | 0.367 | 91.21 | 0.000 | 15.10 | 0.012 |
Pure Error | 4 | ||||||
Total | 12 | Significance level: a = 95% |
Culture Conditions | Process Response | Predicted Value | Measured Value |
---|---|---|---|
Glucose, 45 g/L (NH4)2SO4, 1 g/L | Biomass (g/L) | 10.68 | 12.87 ± 0.22 |
Lipid content (% g/g) | 50 | 70 ± 1 | |
Lipid free biomass (g/L) | 5.29 | 3.86 ± 0.04 | |
YX/G (g/g) | 0.24 | 0.29 | |
YL/G (g/g) | 0.12 | 0.20 | |
Residual G (g/L) | - | 0 | |
Residual N (g/L) | - | 0 |
Factors | Performance Criteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Exp. Runs | Glucose (g/L) | (NH4)2SO4 (g/L) | C/N | Biomass (g/L) | Lipid Content (% wt.) | Lipid Free Biomass (g/L) | Lipids (g/L) | YX/G (g/g) | YL/G (g/g) | Residual G * (g/L) | Residual N * (g/L) |
14 | 30 | 1 | 57 | 13.0 | 66 ± 1 | 4.4 ± 0.2 | 8.5 ± 0.3 | 0.43 | 0.28 | 0.0 | 0.0 |
15 | 40 | 1 | 76 | 15.3 | 69 ± 2 | 4.7 ± 0.3 | 10.6 ± 0.3 | 0.38 | 0.27 | 0.0 | 0.0 |
16 | 40 | 2 | 38 | 8.7 | 32 ± 4 | 5.9 ± 0.4 | 2.8 ± 0.4 | 0.22 | 0.07 | 15 | 0.0 |
17 | 60 | 2 | 57 | 7.7 | 35 ± 2 | 5.0 ± 0.1 | 2.7 ± 0.1 | 0.13 | 0.06 | 15 | 0.0 |
Run | Glucose (g/L) | (NH4)2SO4 (g/L) | C/N |
---|---|---|---|
1 | 20 | 1 | 38 |
2 | 45 | 1 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisis, V.; Tsave, O.; Papanikolaou, C.; Pantazopoulou, E.; Chatzidoukas, C. Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology. Bioengineering 2023, 10, 1359. https://doi.org/10.3390/bioengineering10121359
Parisis V, Tsave O, Papanikolaou C, Pantazopoulou E, Chatzidoukas C. Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology. Bioengineering. 2023; 10(12):1359. https://doi.org/10.3390/bioengineering10121359
Chicago/Turabian StyleParisis, Vasileios, Olga Tsave, Christina Papanikolaou, Erasmia Pantazopoulou, and Christos Chatzidoukas. 2023. "Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology" Bioengineering 10, no. 12: 1359. https://doi.org/10.3390/bioengineering10121359
APA StyleParisis, V., Tsave, O., Papanikolaou, C., Pantazopoulou, E., & Chatzidoukas, C. (2023). Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology. Bioengineering, 10(12), 1359. https://doi.org/10.3390/bioengineering10121359