Multimodal MRI for Estimating Her-2 Gene Expression in Endometrial Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Data
2.3. MRI Imaging
2.4. Imaging Analysis
2.5. Pathological Analysis
2.6. Statistical Analysis
3. Results
3.1. General Clinicopathological Data Comparison
3.2. The Consistency Analysis of Each Parameter Measured by Two Observers
3.3. Comparison of the Differences in the Parameters between the Two Groups
3.4. The Identification Efficiency of Each Parameter and Comparison
3.5. Correlation Analysis of the Parameters
3.6. Regression Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Diver, E.J.; Foster, R.; Rueda, B.R.; Growdon, W.B. The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. Oncologist 2015, 20, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Kong, X.B.; Sun, Y.; Li, Z.Q. Value of HER-2, Cyr61 and IGFBP3 expression in predicting the prognosis in elderly patients with endometrial cancer. Pract. Geriatr. 2022, 36, 697–701. [Google Scholar]
- Tymon-Rosario, J.; Siegel, E.R.; Bellone, S.; Harold, J.; Adjei, N.; Zeybek, B.; Mauricio, D.; Altwerger, G.; Menderes, G.; Ratner, E.; et al. Trastuzumab tolerability in the treatment of advanced (stage III–IV) or recurrent uterine serous carcinomas that overexpress HER2/neu. Gynecol. Oncol. 2021, 163, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, J.; Zhang, F.; Yang, M.; Zhang, Z.; Liu, J.; Zhang, Y.; Hilbert, T.; Kober, T.; Cheng, J.; et al. Novel T2 Mapping for Evaluating Cervical Cancer Features by Providing Quantitative T2 Maps and Synthetic Morphologic Images: A Preliminary Study. J. Magn. Reson. Imaging 2020, 52, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Payen, J.-F.; Wilson, D.A.; Traystman, R.J.; van Zijl, P.C.M. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med. 2003, 9, 1085–1090. [Google Scholar] [CrossRef]
- Tian, S.; Chen, A.; Li, Y.; Wang, N.; Ma, C.; Lin, L.; Wang, J.; Liu, A. The combined application of amide proton transfer imaging and diffusion kurtosis imaging for differentiating stage Ia endometrial carcinoma and endometrial polyps. Magn. Reson. Imaging 2023, 99, 67–72. [Google Scholar] [CrossRef]
- Jin, X.; Yan, R.; Li, Z.; Zhang, G.; Liu, W.; Wang, H.; Zhang, M.; Guo, J.; Wang, K.; Han, D. Evaluation of Amide Proton Trans-fer-Weighted Imaging for Risk Factors in Stage I Endometrial Cancer: A Comparison with Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging. Front. Oncol. 2022, 12, 876120. [Google Scholar] [CrossRef]
- Ma, C.; Tian, S.; Song, Q.; Chen, L.; Meng, X.; Wang, N.; Lin, L.; Wang, J.; Liu, A.; Song, Q. Amide Proton Transfer-Weighted Imaging Combined with Intravoxel Incoherent Motion for Evaluating Microsatellite Instability in Endometrial Cancer. J. Magn. Reson. Imaging 2022, 57, 493–505. [Google Scholar] [CrossRef]
- Jensen, J.H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005, 53, 1432–1440. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, P.; Feng, Y.; Zhou, N.; Chen, W.; Zhu, L.; Hu, Y.; Zhou, Z. Diffusion kurtosis imaging for assessing endometrial fibrosis: A preliminary clinical study. Abdom. Radiol. 2022, 47, 1448–1456. [Google Scholar] [CrossRef]
- Malek, M.; Rahmani, M.; Pourashraf, M.; Amanpour-Gharaei, B.; Zamani, N.; Farsi, M.; Ahmadinejad, N.; Raminfard, S. Pre-diction of lymphovascular space invasion in cervical carcinoma using diffusion kurtosis imaging. Cancer Treat. Res. Commun. 2022, 31, 100559. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Impli-cations. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Song, Y.M.; Xue, H.Q.; Sun, H.; Li, Y.Q.; Qian, X.L.; Jiao, J.; Li, K.P.; Zhang, H.; Guo, X.J. Pathological features and immune microenvironment in HER-2 intratumoral heterogeneous breast cancers. Zhonghua Zhong Liu Za Zhi 2023, 45, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Leone, R.D.; Powell, J.D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 2020, 20, 516–531. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, J.; Sun, K.; Nie, C.; Chen, B.; Wang, J.; Xu, W.; Wang, S.; Liu, Y.; Chen, X. Expression of Human Epidermal Growth Factor Receptor-2 Status and Programmed Cell Death Protein-1 Ligand Is Associated with Prognosis in Gastric Cancer. Front. Oncol. 2021, 10, 580045. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Cai, Y.H.; Li, H. Research Progress on Molecular Mechanism and Molecular Typing of Endometrial Carcinoma. J. Int. Obs. Gynecol. 2022, 49, 10–14. [Google Scholar]
- An, H.J.; Song, D.H.; Kim, Y.-M.; Jo, H.C.; Baek, J.C.; Park, J.E. Significance of HER2 and VEGFR2 in Early-stage Endometrial Cancer. In Vivo 2022, 36, 723–730. [Google Scholar] [CrossRef]
- Li, F.; Liu, S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front. Immunol. 2022, 13, 1083462. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, N.; Beom, S.H.; Kim, H.S.; Lee, C.-K.; Rha, S.Y.; Chung, H.C.; Yun, M.; Cho, A.; Jung, M. The prognostic value of volume-based parameters using 18F-FDG PET/CT in gastric cancer according to HER2 status. Gastric Cancer 2018, 21, 213–224. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, J.; Han, Y.; Liu, Q.; Liu, J.; Yuan, X.; Li, J.; Li, J.; Wang, X. Role of T2 mapping of magnetic resonance imaging in the differentiation of endometrial cancer and benign endometrial lesions. Diagn. Interv. Radiol. 2023, 29, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.F.; Liu, A.L.; Ren, X.; Chen, L.H.; Wang, N.; Lin, L.J.; Wang, J.Z.; Zhang, Y.; Zhang, T. Evaluation of Her-2 gene expression in endometrialcarcinoma by amide proton transfer weighted and fat quantitative. Chin. J. Magn. Reson. Imaging 2021, 12, 70–73. [Google Scholar]
- Yu, Y.; Song, X.; Zeng, Z.; Wang, L.; Zhang, L.; Zhao, H.; Zheng, Z. Amide proton transfer weighted MRI in differential diagnosis of ovarian masses with cystic components: A preliminary study. Magn. Reson. Imaging 2023, 103, 216–223. [Google Scholar] [CrossRef]
- Togao, O.; Yoshiura, T.; Keupp, J.; Hiwatashi, A.; Yamashita, K.; Kikuchi, K.; Suzuki, Y.; Suzuki, S.O.; Iwaki, T.; Hata, N.; et al. Amide proton transfer imaging of adult diffuse gliomas: Correlation with histopathological grades. Neuro Oncol. 2014, 16, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Heo, H.Y.; Knutsson, L.; van Zijl, P.C.M.; Jiang, S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J. Magn. Reson. Imaging. 2019, 50, 347–364. [Google Scholar] [CrossRef]
- Ray, K.J.; Simard, M.A.; Larkin, J.R.; Coates, J.; Kinchesh, P.; Smart, S.C.; Higgins, G.S.; Chappell, M.A.; Sibson, N.R. Tumor pH and Protein Concentration Contribute to the Signal of Amide Proton Transfer Magnetic Resonance Imaging. Cancer Res. 2019, 79, 1343–1352. [Google Scholar] [CrossRef]
- Fu, F.; Meng, N.; Huang, Z.; Sun, J.; Wang, X.; Shang, J.; Fang, T.; Feng, P.; Wang, K.; Han, D.; et al. Identification of histo-logical features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging. Quant. Imaging Med. Surg. 2022, 12, 1311–1323. [Google Scholar] [CrossRef]
- Li, Y.; Lin, C.Y.; Qi, Y.F.; Wang, X.Q.; Chen, B.; Zhou, H.L.; Ren, J.; Yang, J.J.; Xiang, Y.; He, Y.L.; et al. Non-invasive Differentiation of Endometrial Adenocarcinoma from Benign Lesions in the Uterus by Utilization of Amide Proton Transfer-Weighted MRI. Mol. Imaging Biol. 2021, 23, 446–455. [Google Scholar] [CrossRef]
- Meng, N.; Fang, T.; Feng, P.; Huang, Z.; Sun, J.; Wang, X.; Shang, J.; Wang, K.; Han, D.; Wang, M. Amide Proton Trans-fer-Weighted Imaging and Multiple Models Diffusion-Weighted Imaging Facilitates Preoperative Risk Stratification of Early-Stage Endometrial Carcinoma. J. Magn. Reson. Imaging 2021, 54, 1200–1211. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Wang, X.; Lin, C.; Qi, Y.; Chen, B.; Zhou, H.; Wu, Q.; Ren, J.; Zhao, J.; et al. Using amide proton transfer-weighted MRI to non-invasively differentiate mismatch repair deficient and proficient tumors in endometrioid endometrial adenocarcinoma. Insights Imaging 2021, 12, 182. [Google Scholar] [CrossRef]
- Xiao, W.; Dong, X.; Zhao, H.; Han, S.; Nie, R.; Zhang, X.; An, R. Expression of MIF and c-erbB-2 in endometrial cancer. Mol. Med. Rep. 2016, 13, 3828–3834. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Sun, H.; Zhang, S.; Wang, X.; Guo, Q. Amide proton transfer imaging to evaluate the grading of squamous cell carcinoma of the cervix: A comparative study using 18F FDG PET. J. Magn. Reson. Imaging 2018, 50, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.X.; Cheung, M.M. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010, 23, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cao, B.; Tan, Q.; Liu, K.; Jiang, S.; Zhou, J. Prediction of muscle invasion of bladder cancer: A comparison between DKI and conventional DWI. Eur. J. Radiol. 2021, 136, 109522. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.P.; Hou, H.M.; Xu, X.Y.; Yu, J. Advances in magnetic resonance diffusion kurtosis imaging study of common mental disorders. Chin. J. Magn. Reson. Imaging 2019, 10, 379–383. [Google Scholar]
- Meng, H.; Guo, X.; Zhang, D. Multimodal magnetic resonance imaging in the diagnosis of cervical cancer and its correlation with the differentiation process of cervical cancer. BMC Med. Imaging 2023, 23, 144. [Google Scholar] [CrossRef]
- Wang, T.; Li, W.W. Prediction of the expression of Her-2 in breast cancer based on intravoxel incoherent motion and diffusion kurtosis imaging. J. Med. Imaging 2022, 32, 46–50. [Google Scholar]
- Zhang, J.; Ge, Y.; Zhang, H.; Wang, Z.; Dou, W.; Hu, S. Quantitative T2 Mapping to Discriminate Mucinous from Nonmucinous Adenocarcinoma in Rectal Cancer: Comparison with Diffusion-weighted Imaging. Magn. Reson. Med. Sci. 2021, 21, 593–598. [Google Scholar] [CrossRef]
- Ma, C.J.; Tian, S.F.; Chen, L.H.; Song, Q.L.; Song, Q.W.; Ling, L.J.; Liu, A.L. Quantitative assessment of microsatellite instability in endometrial cancer by T2 mapping combined with mDixon-Quant multiparameter imaging. Chin. J. Magn. Reson. Imaging 2022, 13, 48–54. [Google Scholar]
- Fujima, N.; Shimizu, Y.; Yoneyama, M.; Nakagawa, J.; Kameda, H.; Harada, T.; Hamada, S.; Suzuki, T.; Tsushima, N.; Kano, S.; et al. The utility of diffusion-weighted T2 mapping for the prediction of histological tumor grade in patients with head and neck squamous cell carcinoma. Quant. Imaging Med. Surg. 2022, 12, 4024–4032. [Google Scholar] [CrossRef]
- Berchuck, A.; Rodriguez, G.; Kinney, R.B.; Soper, J.T.; Dodge, R.K.; Clarke-Pearson, D.L.; Bast, R.C., Jr. Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am. J. Obstet. Gynecol. 1991, 164, 15–21. [Google Scholar] [CrossRef] [PubMed]
Parameters | Scan Time (min s) | TR (ms) | TE (ms) | Matrix | FOV (mm2) | Thickness (mm) | Gap (mm) |
---|---|---|---|---|---|---|---|
T2WI | 1 min 27 s | 3363 | 87 | 312 × 312 | 250 × 250 | 4.0 | 1.0 |
DWI | 1 min 11 s | 2615 | 61 | 60 × 70 | 220 × 220 | 4.0 | 1.0 |
3D APTw | 4 min 5 s | 5174 | 8 | 64 × 45 | 130 × 130 | 5.0 | 1.0 |
DKI | 5 min 19 s | 1904 | 84 | 129 × 118 | 380 × 356 | 5.0 | 1.0 |
T2 mapping | 17 s | 1157 | 100 | 192 × 115 | 70 × 319 | 7.0 | 2.0 |
Clinicopathological Features | Her-2 (+) (n = 24) | Her-2 (−) (n = 30) | p |
---|---|---|---|
Age (year) | 58.7 ± 10.3 | 58.3 ± 8.9 | 0.897 a |
Size (cm) | |||
FIGO stage | 0.891 b | ||
I | 18 | 22 | |
II | 2 | 3 | |
III | 3 | 5 | |
IV | 1 | 0 | |
Menopausal conditions | 0.483 b | ||
Before | 3 | 7 | |
After | 21 | 23 | |
Irregular vaginal bleeding | 1.000 b | ||
Yes | 22 | 27 | |
No | 2 | 3 | |
Differentiation degree | 0.003 b | ||
High | 2 | 13 | |
Medium | 11 | 13 | |
Low | 11 | 4 | |
Lymphovascular interstitial infiltration | 0.839 c | ||
Yes | 7 | 8 | |
No | 17 | 22 | |
CA-199 | 0.267 c | ||
Positive Negative | 8 16 | 6 24 | |
CA-125 | 0.546 c | ||
Positive Negative | 4 20 | 7 23 | |
HE4 | 0.851 c | ||
Positive Negative | 15 9 | 18 12 |
Observer 1 | Observer 2 | ICC | |
---|---|---|---|
Her-2 (+) patients (n = 24) | |||
APT (%) | 2.92 ± 0.37 | 3.01 ± 0.37 | 0.798 |
MK | 0.63 ± 0.14 | 0.64 ± 0.15 | 0.964 |
MD (μm2/ms) | 0.734 ± 0.21 | 0.75 ± 0.20 | 0.980 |
T2 (ms) | 81.21 ± 9.48 | 81.20 (76.09, 89.50) | 0.812 |
Her-2 (−) patients (n = 30) | |||
APT (%) | 2.36 ± 0.50 | 2.46 ± 0.49 | 0.896 |
MK | 0.63 ± 0.17 | 0.61 ± 0.16 | 0.976 |
MD (μm2/ms) | 0.88 ± 0.21 | 0.89 ± 0.20 | 0.957 |
T2 (ms) | 91.11 (82.54, 99.95) | 90.26 (82.78, 104.18) | 0.987 |
Parameters | Her-2 (+) Patients (n = 24) | Her-2 (−) Patients (n = 30) | t/z | p |
---|---|---|---|---|
APT (%) | 2.99 ± 0.32 | 2.41 ± 0.46 | 4.999 | <0.001 |
MK | 0.63 ± 0.14 | 0.64 ± 0.16 | −0.195 | 0.846 |
MD (μm2/ms) | 0.72 ± 0.19 | 0.86 ± 0.12 | −2.771 | 0.008 |
T2 (ms) | 80.33 (75.00, 88.49) | 90.58 (82.71, 102.78) | −2.768 | 0.006 |
Parameters | AUC (95%CI) | Sensitivity (%) | Specificity (%) | Cutoff |
---|---|---|---|---|
APT | 0.824 (0.696, 0.914) | 87.5 | 66.7 | 2.45% |
MD | 0.695 (0.555, 0.813) | 75.0 | 60.0 | 0.82 μm2/ms |
T2 | 0.721 (0.582, 0.834) | 62.6 | 80.0 | 81.81 ms |
APT + MD | 0.824 (0.696, 0.914) | 79.2 | 76.7 | - |
APT + T2 | 0.858 (0.737, 0.938) | 95.8 | 63.3 | - |
MD + T2 | 0.782 (0.649, 0.883) | 75.0 | 80.0 | - |
APT + MD + T2 | 0.860 (0.738, 0.939) | 95.8 | 63.3 | - |
APT | MD | T2 | APT + MD | APT + T2 | MD + T2 | APT + MD + T2 | |
---|---|---|---|---|---|---|---|
APT | 0.0773 | 0.2016 | 1.0000 | 0.1402 | 0.5612 | 0.1332 | |
MD | 0.7691 | 0.0543 | 0.0219 | 0.1274 | 0.0181 | ||
T2 | 0.2030 | 0.0288 | 0.1478 | 0.0281 | |||
APT + MD | 0.1601 | 0.5453 | 0.1375 | ||||
APT + T2 | 0.1801 | 0.7276 | |||||
MD + T2 | 0.1637 |
Parameters | Univariate Analyses | Multivariate Analyses | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Differentiation degree | 0.285 (0.113, 0.724) | 0.008 | 0.412 (0.122 1.385) | 0.152 |
APT (%) | 1.352 (1.147, 1.592) | <0.001 | 1.273 (1.056, 1.534) | 0.011 |
MK | 0.876 (0.968, 1.038) | 0.876 | / | / |
MD (10−3 mm2/s) | 0.965 (0.936, 0.995) | 0.023 | 1.004 (0.964, 1.045) | 0.865 |
T2 (ms) | 0.934 (0.885, 0.985) | 0.012 | 0.941 (0.880, 1.007) | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tian, S.; Ma, C.; Chen, L.; Qin, J.; Wang, N.; Lin, L.; Liu, A. Multimodal MRI for Estimating Her-2 Gene Expression in Endometrial Cancer. Bioengineering 2023, 10, 1399. https://doi.org/10.3390/bioengineering10121399
Li X, Tian S, Ma C, Chen L, Qin J, Wang N, Lin L, Liu A. Multimodal MRI for Estimating Her-2 Gene Expression in Endometrial Cancer. Bioengineering. 2023; 10(12):1399. https://doi.org/10.3390/bioengineering10121399
Chicago/Turabian StyleLi, Xiwei, Shifeng Tian, Changjun Ma, Lihua Chen, Jingwen Qin, Nan Wang, Liangjie Lin, and Ailian Liu. 2023. "Multimodal MRI for Estimating Her-2 Gene Expression in Endometrial Cancer" Bioengineering 10, no. 12: 1399. https://doi.org/10.3390/bioengineering10121399
APA StyleLi, X., Tian, S., Ma, C., Chen, L., Qin, J., Wang, N., Lin, L., & Liu, A. (2023). Multimodal MRI for Estimating Her-2 Gene Expression in Endometrial Cancer. Bioengineering, 10(12), 1399. https://doi.org/10.3390/bioengineering10121399