Enhancement Technique Based on the Breast Density Level for Mammogram for Computer-Aided Diagnosis
Abstract
:1. Introduction
- A breast density-based configuration is incorporated prior to the training detection algorithm.
- An enhancement technique that enhances the textural appearance of the background and mass region by determining the threshold of the dense and non-dense region through a buffer region by manipulating the images’ lower limit cap threshold value.
2. Past Literature
3. Proposed Methodology
3.1. Experimental Setting
3.1.1. Dataset: INbreast
3.1.2. Experimental Setup
3.2. Stage 1: Proposed Image Pre-Processing for SbBDEM
3.2.1. Image Preparation
3.2.2. Lower Limit Contrast Cap Determination
3.2.3. Factorized Otsu’s Thresholding for Breast Density Group Segregation
3.2.4. Blind/Reference-Less Image Spatial Quality Evaluator (BRISQUE)
3.2.5. Evaluation and Analysis of the Proposed Enhancement Technique
3.3. Stage 2: Mass Detection Using Modified YOLOv3
3.3.1. You Only Look Once (YOLO)
3.3.2. YOLOv3 Modification for Mass Detection
3.3.3. Performance Evaluation of the Modified YOLOv3 Using Enhanced Images
3.4. Stage 3: Mass Segmentation, Feature Extraction, and Classification
3.4.1. Mass Segmentation and Evaluation
3.4.2. Feature Extraction
Feature Extraction: Gray-Level Co-Occurrence Matrix (GLCM)
Feature Extraction: Circularity and Mean Intensity
3.4.3. Mass Classification and Evaluation
4. Results and Discussion
4.1. Image Quality and Textural Elements
4.2. Analysis of Modified YOLOv3 Performance
4.3. Performance of Mass Segmentation and Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Iranmakani, S.; Mortezazadeh, T.; Sajadian, F.; Ghaziani, M.; Ghafari, A.; Khezrloo, D.; Musa, A. A Review of Various Modalities in Breast Imaging: Technical Aspects and Clinical Outcomes. Egypt. J. Radiol. Nucl. Med. 2020, 51, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishna, S.; Agarwal, S.; Parikh, P.M.; Kaur, K.; Panwar, S.; Sharma, S.; Dey, A.; Saxena, K.K.; Chandra, M.; Sud, S. Role of Magnetic Resonance Imaging in Breast Cancer Management. South Asian J. Cancer 2018, 7, 69–71. [Google Scholar] [CrossRef]
- Ciritsis, A.; Rossi, C.; Vittoria De Martini, I.; Eberhard, M.; Marcon, M.; Becker, A.S.; Berger, N.; Boss, A. Determination of Mammographic Breast Density Using a Deep Convolutional Neural Network. Br. J. Radiol. 2019, 92, 20180691. [Google Scholar] [CrossRef] [PubMed]
- Advani, S.M.; Zhu, W.; Demb, J.; Sprague, B.L.; Onega, T.; Henderson, L.M.; Buist, D.S.M.; Zhang, D.; Schousboe, J.T.; Walter, L.C.; et al. Association of Breast Density With Breast Cancer Risk Among Women Aged 65 Years or Older by Age Group and Body Mass Index. JAMA Netw. Open 2021, 4, e2122810. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, K.G. Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning. Yonsei Med. J. 2022, 63, S63–S73. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, E.H.; Jun, J.K.; Shin, D.-R.; Park, Y.M.; Kim, H.-W.; Kim, Y.; Kim, K.W.; Lim, H.S.; Park, J.S.; et al. Analysis of Participant Factors That Affect the Diagnostic Performance of Screening Mammography: A Report of the Alliance for Breast Cancer Screening in Korea. Korean J. Radiol. 2017, 18, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wei, J.; Chan, H.-P.; Helvie, M.; Roubidoux, M.; Lu, Y.; Zhou, C.; Hadjiiski, L.; Samala, R. Computer-Aided Assessment of Breast Density: Comparison of Supervised Deep Learning and Feature Based Statistical Learning. Phys. Med. Biol. 2017, 63, 025005. [Google Scholar] [CrossRef]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic Density and the Risk and Detection of Breast Cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Suh, Y.J.; Jung, J.; Cho, B.-J. Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning. J. Pers. Med. 2020, 10, 211. [Google Scholar] [CrossRef]
- Boita, J.; Van Engen, R.E.; Mackenzie, A.; Tingberg, A.; Bosmans, H.; Bolejko, A.; Zackrisson, S.; Wallis, M.G.; Ikeda, D.M.; Van Ongeval, C.; et al. How Does Image Quality Affect Radiologists’ Perceived Ability for Image Interpretation and Lesion Detection in Digital Mammography? Eur. Radiol. 2021, 31, 5335–5343. [Google Scholar] [CrossRef]
- Warren, L.M.; Given-Wilson, R.M.; Wallis, M.G.; Cooke, J.; Halling-Brown, M.D.; Mackenzie, A.; Chakraborty, D.P.; Bosmans, H.; Dance, D.R.; Young, K.C. The Effect of Image Processing on the Detection of Cancers in Digital Mammography. AJR Am. J. Roentgenol. 2014, 203, 387–393. [Google Scholar] [CrossRef]
- Corrias, G.; Micheletti, G.; Barberini, L.; Suri, J.; Saba, L. Texture Analysis Imaging “What a Clinical Radiologist Needs to Know”. Eur. J. Radiol. 2021, 146, 110055. [Google Scholar] [CrossRef]
- Malik, J.; Belongie, S.; Leung, T.; Shi, J. Contour and Texture Analysis for Image Segmentation. Int. J. Comput. Vis. 2001, 43, 7–27. [Google Scholar] [CrossRef]
- Jalab, H.A.; Ibrahim, R.W.; Hasan, A.M.; Karim, F.K.; Al-Shamasneh, A.R.; Baleanu, D. A New Medical Image Enhancement Algorithm Based on Fractional Calculus. Comput. Mater. Contin. 2021, 68, 1467–1483. [Google Scholar] [CrossRef]
- Al-Antari, M.A.; Al-Masni, M.A.; Kim, T.-S. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram. Adv. Exp. Med. Biol. 2020, 1213, 59–72. [Google Scholar] [CrossRef]
- Malebary, S.J.; Hashmi, A. Automated Breast Mass Classification System Using Deep Learning and Ensemble Learning in Digital Mammogram. IEEE Access 2021, 9, 55312–55328. [Google Scholar] [CrossRef]
- Huang, M.-L.; Lin, T.-Y. Considering Breast Density for the Classification of Benign and Malignant Mammograms. Biomed. Signal Process Control 2021, 67, 102564. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International Evaluation of an AI System for Breast Cancer Screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef]
- Bargalló, X.; Santamaría, G.; Del Amo, M.; Arguis, P.; Ríos, J.; Grau, J.; Burrel, M.; Cores, E.; Velasco, M. Single Reading with Computer-Aided Detection Performed by Selected Radiologists in a Breast Cancer Screening Program. Eur. J. Radiol. 2014, 83, 2019–2023. [Google Scholar] [CrossRef]
- He, Z.; Li, Y.; Zeng, W.; Xu, W.; Liu, J.; Ma, X.; Wei, J.; Zeng, H.; Xu, Z.; Wang, S.; et al. Can a Computer-Aided Mass Diagnosis Model Based on Perceptive Features Learned From Quantitative Mammography Radiology Reports Improve Junior Radiologists’ Diagnosis Performance? An Observer Study. Front Oncol 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Oza, P.; Sharma, P.; Patel, S.; Adedoyin, F.; Bruno, A. Image Augmentation Techniques for Mammogram Analysis. J. Imaging 2022, 8, 141. [Google Scholar] [CrossRef]
- Dabass, J.; Dabass, M. Segmentation of Noisy Mammograms Using Hybrid Techniques. In Advances in Communication and Computational Technology. Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; Volume 668, pp. 1371–1382. ISBN 978-981-15-5340-0. [Google Scholar]
- Bandeira Diniz, J.O.; Bandeira Diniz, P.H.; Azevedo Valente, T.L.; Corrêa Silva, A.; De Paiva, A.C.; Gattass, M. Detection of Mass Regions in Mammograms by Bilateral Analysis Adapted to Breast Density Using Similarity Indexes and Convolutional Neural Networks. Comput. Methods Programs Biomed. 2018, 156, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, W.B.; Diniz, E.M.; Silva, A.C.; De Paiva, A.C.; Gattass, M. Detection of Masses in Mammogram Images Using CNN, Geostatistic Functions and SVM. Comput. Biol. Med. 2011, 41, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, N.; Bharti, J. Breast Tumor Detection and Classification Based on Density. Multimed. Tools Appl. 2020, 79, 26467–26487. [Google Scholar] [CrossRef]
- Singh, N.; Suraparaju, V. Breast Cancer Segmentation Using Global Thresholding and Region Merging. Int. J. Comput. Sci. Eng. 2018, 6, 292–297. [Google Scholar] [CrossRef]
- Al-Antari, M.A.; Han, S.-M.; Kim, T.-S. Evaluation of Deep Learning Detection and Classification towards Computer-Aided Diagnosis of Breast Lesions in Digital X-Ray Mammograms. Comput. Methods Programs Biomed. 2020, 196, 105584. [Google Scholar] [CrossRef]
- Laishram, R.; Rabidas, R. WDO Optimized Detection for Mammographic Masses and Its Diagnosis: A Unified CAD System. Appl. Soft Comput. 2021, 110, 107620. [Google Scholar] [CrossRef]
- Ghosh, S.; Biswas, B.; Ghosh, A. Development of Intuitionistic Fuzzy Special Embedded Convolutional Neural Network for Mammography Enhancement. Comput. Intell. 2020, 37, 47–69. [Google Scholar] [CrossRef]
- Al-Najdawi, N.; Biltawi, M.; Tedmori, S. Mammogram Image Visual Enhancement, Mass Segmentation and Classification. Appl. Soft Comput. 2015, 35, 175–185. [Google Scholar] [CrossRef]
- Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. TTCNN: A Breast Cancer Detection and Classification towards Computer-Aided Diagnosis Using Digital Mammography in Early Stages. Appl. Sci. 2022, 12, 3273. [Google Scholar] [CrossRef]
- Kurt, B.; Nabiyev, V.V.; Turhan, K. Comparison of Enhancement Methods for Mammograms with Performance Measures. Stud. Health Technol. Inform. 2014, 205, 486–490. [Google Scholar]
- Singh, L.; Alam, A. An Efficient Hybrid Methodology for an Early Detection of Breast Cancer in Digital Mammograms. J. Ambient Intell. Humaniz. Comput. 2022, 1–24. [Google Scholar] [CrossRef]
- Deng, J.; Ma, Y.; Deng-Ao, L.; Zhao, J.; Liu, Y.; Zhang, H. Classification of Breast Density Categories Based on SE-Attention Neural Networks. Comput. Methods Programs Biomed. 2020, 193, 105489. [Google Scholar] [CrossRef]
- Laishram, R.; Rabidas, R. Optimized Hyperbolic Tangent Function-Based Contrast-Enhanced Mammograms for Breast Mass Detection. Expert Syst. Appl. 2023, 213, 118994. [Google Scholar] [CrossRef]
- Laishram, R.; Rabidas, R. Detection of Mammographic Masses Using FRFCM Optimized by PSO. In Proceedings of the 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 17 October 2020; pp. 327–332. [Google Scholar]
- Zebari, D.A.; Ibrahim, D.A.; Zeebaree, D.Q.; Mohammed, M.A.; Haron, H.; Zebari, N.A.; Damaševičius, R.; Maskeliūnas, R. Breast Cancer Detection Using Mammogram Images with Improved Multi-Fractal Dimension Approach and Feature Fusion. Appl. Sci. 2021, 11, 12122. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 8 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Tan, L.; Huangfu, T.; Wu, L.; Chen, W. Comparison of RetinaNet, SSD, and YOLO v3 for Real-Time Pill Identification. BMC Med. Inform. Decis. Mak. 2021, 21, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Du, J. Understanding of Object Detection Based on CNN Family and YOLO. J. Phys. Conf. Ser. 2018, 1004, 012029. [Google Scholar] [CrossRef]
- Al-Antari, M.A.; Al-Masni, M.A.; Choi, M.-T.; Han, S.-M.; Kim, T.-S. A Fully Integrated Computer-Aided Diagnosis System for Digital X-Ray Mammograms via Deep Learning Detection, Segmentation, and Classification. Int. J. Med. Inform. 2018, 117, 44–54. [Google Scholar] [CrossRef]
- Al-Masni, M.; Al-Antari, M.A.; Park, J.; Gi, G.; Kim, T.-Y.; Rivera, P.; Valarezo Añazco, E.; Choi, M.-T.; Han, S.-M.; Kim, T.-S. Simultaneous Detection and Classification of Breast Masses in Digital Mammograms via a Deep Learning YOLO-Based CAD System. Comput. Methods Programs Biomed. 2018, 157, 85–94. [Google Scholar] [CrossRef]
- Baccouche, A.; Garcia-Zapirain, B.; Olea, C.C.; Elmaghraby, A.S. Breast Lesions Detection and Classification via YOLO-Based Fusion Models. Comput. Mater. Contin. 2021, 69, 1407–1425. [Google Scholar] [CrossRef]
- Baccouche, A.; Garcia-Zapirain, B.; Zheng, Y.; Elmaghraby, A.S. Early Detection and Classification of Abnormality in Prior Mammograms Using Image-to-Image Translation and YOLO Techniques. Comput. Methods Programs Biomed. 2022, 106884. [Google Scholar] [CrossRef]
- Lee, A.; Mavaddat, N.; Wilcox, A.N.; Cunningham, A.P.; Carver, T.; Hartley, S.; Babb de Villiers, C.; Izquierdo, A.; Simard, J.; Schmidt, M.K.; et al. BOADICEA: A Comprehensive Breast Cancer Risk Prediction Modelincorporating Genetic and Nongenetic Risk Factors. Genet. Med. 2019, 21, 1708–1718. [Google Scholar] [CrossRef] [Green Version]
- Adedigba, A.P.; Adeshina, S.A.; Aibinu, A.M. Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset. Bioengineering 2022, 9, 161. [Google Scholar] [CrossRef]
- Abdelhafiz, D.; Nabavi, S.; Ammar, R.; Yang, C.; Bi, J. Residual Deep Learning System for Mass Segmentation and Classification in Mammography. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, New York, NY, USA, 4 September 2019; pp. 475–484. [Google Scholar]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. INbreast: Toward a Full-Field Digital Mammographic Database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Rajevenceltha, J.; Gaidhane, V.H. An Efficient Approach for No-Reference Image Quality Assessment Based on Statistical Texture and Structural Features. Eng. Sci. Technol. Int. J. 2022, 30, 101039. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. The Accuracy of PSNR in Predicting Video Quality for Different Video Scenes and Frame Rates. Telecommun. Syst. 2012, 49, 35–48. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of Validity of PSNR in Image/Video Quality Assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.W.; Jalab, H.A.; Karim, F.K.; Alabdulkreem, E.; Ayub, M.N. A Medical Image Enhancement Based on Generalized Class of Fractional Partial Differential Equations. Quant Imaging Med. Surg. 2022, 12, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Tumakov, D.; Kayumov, Z.; Zhumaniezov, A.; Chikrin, D.; Galimyanov, D. Elimination of Defects in Mammograms Caused by a Malfunction of the Device Matrix. J. Imaging 2022, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Oyelade, O.N.; Ezugwu, A.E.; Almutairi, M.S.; Saha, A.K.; Abualigah, L.; Chiroma, H. A Generative Adversarial Network for Synthetization of Regions of Interest Based on Digital Mammograms. Sci. Rep. 2022, 12, 6166. [Google Scholar] [CrossRef]
- Iandola, F.; Han, S.; Moskewicz, M.; Ashraf, K.; Dally, W.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar] [CrossRef]
- Bressem, K.K.; Adams, L.C.; Erxleben, C.; Hamm, B.; Niehues, S.M.; Vahldiek, J.L. Comparing Different Deep Learning Architectures for Classification of Chest Radiographs. Sci. Rep. 2020, 10, 13590. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, T.; Cai, B. A Computer-Aided Diagnostic System for Mammograms Based on YOLOv3. Multimed. Tools Appl. 2021, 81, 19257–19281. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Chen, H.; Wu, W.; Chen, K.; Wang, S. Anchor-Free YOLOv3 for Mass Detection in Mammogram. Expert Syst. Appl. 2022, 191, 116273. [Google Scholar] [CrossRef]
- Ammar, A.; Koubaa, A.; Ahmed, M.; Saad, A.; Benjdira, B. Vehicle Detection from Aerial Images Using Deep Learning: A Comparative Study. Electronics 2021, 10, 820. [Google Scholar] [CrossRef]
- Aly, G.H.; Marey, M.; El-Sayed, S.A.; Tolba, M.F. YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms. Comput. Methods Programs Biomed. 2021, 200, 105823. [Google Scholar] [CrossRef]
- Saranyaraj, D.; Manikandan, M.; Maheswari, S. A Deep Convolutional Neural Network for the Early Detection of Breast Carcinoma with Respect to Hyper- Parameter Tuning. Multimed. Tools Appl. 2020, 79, 11013–11038. [Google Scholar] [CrossRef]
- Hazarika, M.; Mahanta, L.B. A New Breast Border Extraction and Contrast Enhancement Technique with Digital Mammogram Images for Improved Detection of Breast Cancer. Asian Pac. J. Cancer Prev. 2018, 19, 2141–2148. [Google Scholar] [CrossRef]
- Htay, T.; Maung, S. Early Stage Breast Cancer Detection System Using GLCM Feature Extraction and K-Nearest Neighbor (k-NN) on Mammography Image. In Proceedings of the 2018 18th International Symposium on Communications and Information Technologies (ISCIT), Bangkok, Thailand, 26–29 September 2018; pp. 171–175. [Google Scholar]
- Murtaza, G.; Shuib, L.; Wahab, A.W.A.; Mujtaba, G.; Raza, G. Ensembled Deep Convolution Neural Network-Based Breast Cancer Classification with Misclassification Reduction Algorithms. Multimed Tools Appl. 2020, 79, 18447–18479. [Google Scholar] [CrossRef]
- Lyasheva, M.M.; Lyasheva, S.A.; Shleymovich, M.P. Image Texture Model Based on Energy Features. J. Phys. Conf. Ser. 2021, 1902, 012120. [Google Scholar] [CrossRef]
- Gizatullin, Z.M.; Lyasheva, S.A.; Morozov, O.G.; Shleymovich, M.P. A Method of Contour Detection Based on an Image Weight Model. Comput. Opt. 2020, 44, 393–400. [Google Scholar] [CrossRef]
No | Enhancement Techniques | MSE | BRISQUE | Mean Intensity | GLCM Textural Features | |||
---|---|---|---|---|---|---|---|---|
Contrast | Correlation | Energy | Homogeneity | |||||
1 | Original | N/A | 43.5799 | 0.5914 | 0.0276 | 0.9957 | 0.3174 | 0.9876 |
2 | HE/AHE | 0.0214 | 42.4518 | 0.6584 | 0.0758 | 0.9901 | 0.2212 | 0.9640 |
3 | CLAHE | 0.0066 | 42.9427 | 0.3786 | 0.0856 | 0.9933 | 0.1709 | 0.9621 |
4 | SbBDEM | 0.1169 | 42.3841 | 0.2302 | 0.0399 | 0.9752 | 0.4339 | 0.9803 |
Image Condition | Mean Average Precision (mAP) Using YOLOv3 (%) | |
---|---|---|
Without Modification | With Modification | |
Original | 64.01 | 68.42 |
CLAHE | 67.92 | 74.96 |
HE/AHE | 57.40 | 54.35 |
Proposed | 78.33 | 81.25 |
No | Image Input | Mean Accuracy | Mean IoU | IoU | |
---|---|---|---|---|---|
Mass | Background | ||||
1 | Original | 0.9438 | 0.8921 | 0.8873 | 0.8970 |
2 | HE/AHE | 0.9385 | 0.8830 | 0.8775 | 0.8885 |
3 | CLAHE | 0.9423 | 0.8891 | 0.8844 | 0.8938 |
4 | SbBDEM | 0.9441 | 0.8917 | 0.8878 | 0.8984 |
No | Authors | Enhancement Technique | Dense | Non-dense | mAP @0.5 Threshold | Overall Detection Acc (%) | Classification Acc (%) | Segmentation Acc (%) | Detection Time per Test Image |
---|---|---|---|---|---|---|---|---|---|
1 | [10] | CLAHE | ROC = 0.902 | ROC = 0.984 | - | - | - | - | - |
2 | [24] | CLAHE | Acc = 91.00% | Acc = 94.80% | - | - | - | - | - |
3 | [25] | HE/AHE | Acc = 84.08% | Acc = 88.69% | - | - | - | - | - |
4 | [18] | CLAHE | - | - | - | - | 99.91 | - | - |
5 | [45] | CLAHE | - | - | - | 98.96 | 95.64 | 92.97 | 12.3 s |
6 | [28] | HE/AHE | - | - | - | 97.27 | 95.32 | - | 71 fps |
7 | [66] | - | - | - | 0.9420 1 0.8460 2 | 89.50 | - | - | 0.009 s |
8 | This Study | Proposed- SbBDEM | Acc = 93.33% | Acc = 95.33% | 0.8125 | 92.61 | 96.00 | 94.41 | 1.78 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razali, N.F.; Isa, I.S.; Sulaiman, S.N.; Abdul Karim, N.K.; Osman, M.K.; Che Soh, Z.H. Enhancement Technique Based on the Breast Density Level for Mammogram for Computer-Aided Diagnosis. Bioengineering 2023, 10, 153. https://doi.org/10.3390/bioengineering10020153
Razali NF, Isa IS, Sulaiman SN, Abdul Karim NK, Osman MK, Che Soh ZH. Enhancement Technique Based on the Breast Density Level for Mammogram for Computer-Aided Diagnosis. Bioengineering. 2023; 10(2):153. https://doi.org/10.3390/bioengineering10020153
Chicago/Turabian StyleRazali, Noor Fadzilah, Iza Sazanita Isa, Siti Noraini Sulaiman, Noor Khairiah Abdul Karim, Muhammad Khusairi Osman, and Zainal Hisham Che Soh. 2023. "Enhancement Technique Based on the Breast Density Level for Mammogram for Computer-Aided Diagnosis" Bioengineering 10, no. 2: 153. https://doi.org/10.3390/bioengineering10020153
APA StyleRazali, N. F., Isa, I. S., Sulaiman, S. N., Abdul Karim, N. K., Osman, M. K., & Che Soh, Z. H. (2023). Enhancement Technique Based on the Breast Density Level for Mammogram for Computer-Aided Diagnosis. Bioengineering, 10(2), 153. https://doi.org/10.3390/bioengineering10020153