Bone Laser Patterning to Decipher Cell Organization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Tissue Supply
2.2. Laser-Assisted Patterning of Bone
2.3. Cell Culture
2.4. Cell Preparation
2.5. Metabolic Assay
2.6. Qualitative Observations via Confocal Imaging and Scanning Electron Microscopy
2.7. Cytoskeleton Orientation Assays
2.8. Statistical Analysis
3. Results
3.1. Laser Patterning Profilometry
3.2. Laser Machining Impact on Recolonizing Cell Survival
3.3. Laser Machining Impact on Cell Orientation
3.4. Laser Patterning Impact on Cell Adhesion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barfeie, A.; Wilson, J.; Rees, J. Implant Surface Characteristics and Their Effect on Osseointegration. Br. Dent. J. 2015, 218, E9. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.-W.; Fang, F.-Z. State of the Art of Bioimplants Manufacturing: Part II. Adv. Manuf. 2018, 6, 137–154. [Google Scholar] [CrossRef] [Green Version]
- West-Livingston, L.N.; Park, J.; Lee, S.J.; Atala, A.; Yoo, J.J. The Role of the Microenvironment in Controlling the Fate of Bioprinted Stem Cells. Chem. Rev. 2020, 120, 11056–11092. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Montealegre, M.A.; Minguella-Canela, J.; Vitale-Brovarone, C. Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings 2019, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Daskalova, A.; Lasgorceix, M.; Bliznakova, I.; Angelova, L.; Hocquet, S.; Leriche, A.; Trifonov, A.; Buchvarov, I. Ultra-Fast Laser Surface Texturing of β-Tricalcium Phosphate (β-TCP) Ceramics for Bone-Tissue Engineering Applications. J. Phys. Conf. Ser. 2020, 1492, 012059. [Google Scholar] [CrossRef]
- Lasgorceix, M.; Ott, C.; Boilet, L.; Hocquet, S.; Leriche, A.; Asadian, M.; De Geyter, N.; Declercq, H.; Lardot, V.; Cambier, F. Micropatterning of Beta Tricalcium Phosphate Bioceramic Surfaces, by Femtosecond Laser, for Bone Marrow Stem Cells Behavior Assessment. Mater. Sci. Eng. C 2019, 95, 371–380. [Google Scholar] [CrossRef]
- Olsson, R.; Powell, J.; Palmquist, A.; Brånemark, R.; Frostevarg, J.; Kaplan, A.F.H. Production of Osseointegrating (Bone Bonding) Surfaces on Titanium Screws by Laser Melt Disruption. J. Laser Appl. 2018, 30, 042009. [Google Scholar] [CrossRef]
- Man, H.C.; Chiu, K.Y.; Guo, X. Laser Surface Micro-Drilling and Texturing of Metals for Improvement of Adhesion Joint Strength. Appl. Surf. Sci. 2010, 256, 3166–3169. [Google Scholar] [CrossRef]
- Coathup, M.J.; Blunn, G.W.; Mirhosseini, N.; Erskine, K.; Liu, Z.; Garrod, D.R.; Li, L. Controlled Laser Texturing of Titanium Results in Reliable Osteointegration. J. Orthop. Res. 2017, 35, 820–828. [Google Scholar] [CrossRef]
- Ulerich, J.P.; Ionescu, L.C.; Chen, J.; Soboyejo, W.O.; Arnold, C.B. Modifications of Ti-6Al-4V Surfaces by Direct-Write Laser Machining of Linear Grooves. In Proceedings of the Photon Processing in Microelectronics and Photonics VI, San Jose, CA, USA, 13 March 2007; Volume 6458, pp. 307–316. [Google Scholar]
- Nuutinen, T.; Silvennoinen, M.; Päiväsaari, K.; Vahimaa, P. Control of Cultured Human Cells with Femtosecond Laser Ablated Patterns on Steel and Plastic Surfaces. Biomed. Microdevices 2013, 15, 279–288. [Google Scholar] [CrossRef]
- Hallgren, C.; Reimers, H.; Chakarov, D.; Gold, J.; Wennerberg, A. An in Vivo Study of Bone Response to Implants Topographically Modified by Laser Micromachining. Biomaterials 2003, 24, 701–710. [Google Scholar] [CrossRef]
- Carvalho, A.; Grenho, L.; Fernandes, M.H.; Daskalova, A.; Trifonov, A.; Buchvarov, I.; Monteiro, F.J. Femtosecond Laser Microstructuring of Alumina Toughened Zirconia for Surface Functionalization of Dental Implants. Ceram. Int. 2020, 46, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Gnilitskyi, I.; Pogorielov, M.; Viter, R.; Ferraria, A.M.; Carapeto, A.P.; Oleshko, O.; Orazi, L.; Mishchenko, O. Cell and Tissue Response to Nanotextured Ti6Al4V and Zr Implants Using High-Speed Femtosecond Laser-Induced Periodic Surface Structures. Nanomed. Nanotechnol. Biol. Med. 2019, 21, 102036. [Google Scholar] [CrossRef]
- Lee, B.E.J.; Exir, H.; Weck, A.; Grandfield, K. Characterization and Evaluation of Femtosecond Laser-Induced Sub-Micron Periodic Structures Generated on Titanium to Improve Osseointegration of Implants. Appl. Surf. Sci. 2018, 441, 1034–1042. [Google Scholar] [CrossRef]
- Gemini, L.; Al-Bourgol, S.; Machinet, G.; Bakkali, A.; Faucon, M.; Kling, R. Ablation of Bone Tissue by Femtosecond Laser: A Path to High-Resolution Bone Surgery. Materials 2021, 14, 2429. [Google Scholar] [CrossRef]
- Plötz, C.; Schelle, F.; Bourauel, C.; Frentzen, M.; Meister, J. Ablation of Porcine Bone Tissue with an Ultrashort Pulsed Laser (USPL) System. Lasers Med. Sci. 2015, 30, 977–983. [Google Scholar] [CrossRef]
- Cangueiro, L.T.; Vilar, R.M.C.d.S.; Rego, A.M.B.d.; Muralha, V.S.F. Femtosecond Laser Ablation of Bovine Cortical Bone. JBO 2012, 17, 125005. [Google Scholar] [CrossRef]
- Girard, B.; Yu, D.; Armstrong, M.R.; Wilson, B.C.; Clokie, C.M.L.; Miller, R.J.D. Effects of Femtosecond Laser Irradiation on Osseous Tissues. Lasers Surg. Med. 2007, 39, 273–285. [Google Scholar] [CrossRef]
- Um, S.-H.; Lee, J.; Song, I.-S.; Ok, M.-R.; Kim, Y.-C.; Han, H.-S.; Rhee, S.-H.; Jeon, H. Regulation of Cell Locomotion by Nanosecond-Laser-Induced Hydroxyapatite Patterning. Bioact. Mater. 2021, 6, 3608–3619. [Google Scholar] [CrossRef]
- Liu, Y.; Niemz, M. Ablation of Femural Bone with Femtosecond Laser Pulses—A Feasibility Study. Lasers Med. Sci. 2007, 22, 171–174. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Guan, K.; Guan, K.; Zhang, Z.; Zhang, Z.; Zhang, Z.; Guan, Y.; Guan, Y.; Guan, Y.; et al. In Vitro Evaluation of Ultrafast Laser Drilling Large-Size Holes on Sheepshank Bone. Opt. Express 2020, 28, 25528–25544. [Google Scholar] [CrossRef] [PubMed]
- Canteli, D.; Muñoz-García, C.; Morales, M.; Márquez, A.; Lauzurica, S.; Arregui, J.; Lazkoz, A.; Molpeceres, C. Thermal Effects in the Ablation of Bovine Cortical Bone with Pulsed Laser Sources. Materials 2019, 12, 2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rémy, M.; Ferraro, F.; Le Salver, P.; Rey, S.; Genot, E.; Djavaheri-Mergny, M.; Thébaud, N.; Boiziau, C.; Boeuf, H. Isolation and Culture of Human Stem Cells from Apical Papilla under Low Oxygen Concentration Highlight Original Properties. Cells 2019, 8, 1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoyama, W.; Liu, Y.; Yamaza, T.; Tuan, R.S.; Wang, S.; Shi, S.; Huang, G.T.-J. Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. J. Endod. 2008, 34, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touya, N.; Devun, M.; Handschin, C.; Casenave, S.; Ahmed Omar, N.; Gaubert, A.; Dusserre, N.; De Oliveira, H.; Kérourédan, O.; Devillard, R. In Vitroandin Vivocharacterization of a Novel Tricalcium Silicate-Based Ink for Bone Regeneration Using Laser-Assisted Bioprinting. Biofabrication 2022, 14, ac584b. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Croker, S.L.; Reed, W.; Donlon, D. Comparative Cortical Bone Thickness between the Long Bones of Humans and Five Common Non-Human Mammal Taxa. Forensic Sci. Int. 2016, 260, 104.e1–104.e17. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.S.; Newsome, P.N. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Front. Immunol. 2019, 10, 1952. [Google Scholar] [CrossRef]
- Zhang, H.; van Oosten, D.; Krol, D.M.; Dijkhuis, J.I. Saturation Effects in Femtosecond Laser Ablation of Silicon-on-Insulator. Appl. Phys. Lett. 2011, 99, 231108. [Google Scholar] [CrossRef]
- Webster, M.; Witkin, K.L.; Cohen-Fix, O. Sizing up the Nucleus: Nuclear Shape, Size and Nuclear-Envelope Assembly. J. Cell Sci. 2009, 122, 1477–1486. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Robey, P.G.; Gronthos, S. Comparison of Human Dental Pulp and Bone Marrow Stromal Stem Cells by CDNA Microarray Analysis. Bone 2001, 29, 532–539. [Google Scholar] [CrossRef]
- Yamada, Y.; Fujimoto, A.; Ito, A.; Yoshimi, R.; Ueda, M. Cluster Analysis and Gene Expression Profiles: A CDNA Microarray System-Based Comparison between Human Dental Pulp Stem Cells (HDPSCs) and Human Mesenchymal Stem Cells (HMSCs) for Tissue Engineering Cell Therapy. Biomaterials 2006, 27, 3766–3781. [Google Scholar] [CrossRef]
- Shimohira, T.; Katagiri, S.; Ohsugi, Y.; Hirota, T.; Hatasa, M.; Mizutani, K.; Watanabe, K.; Niimi, H.; Iwata, T.; Aoki, A. Comprehensive and Sequential Gene Expression Analysis of Bone Healing Process Following Er:YAG Laser Ablation. Photobiomodul. Photomed. Laser Surg. 2021, 39, 100–112. [Google Scholar] [CrossRef]
- Ohsugi, Y.; Aoki, A.; Mizutani, K.; Katagiri, S.; Komaki, M.; Noda, M.; Takagi, T.; Kakizaki, S.; Meinzer, W.; Izumi, Y. Evaluation of Bone Healing Following Er:YAG Laser Ablation in Rat Calvaria Compared with Bur Drilling. J. Biophotonics 2019, 12, e201800245. [Google Scholar] [CrossRef]
- Khalili, A.A.; Ahmad, M.R. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int. J. Mol. Sci. 2015, 16, 18149–18184. [Google Scholar] [CrossRef] [Green Version]
- Troedhan, A.; Mahmoud, Z.T.; Wainwright, M.; Khamis, M.M.; Troedhan, A.; Mahmoud, Z.T.; Wainwright, M.; Khamis, M.M. Cutting Bone with Drills, Burs, Lasers and Piezotomes: A Comprehensive Systematic Review and Recommendations for the Clinician. Int. J. Oral Craniofacial Sci. 2017, 3, 020–033. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Zhai, K.; Li, X.; Liu, S.; Tao, Y. Ultrasonic Vibration Used for Improving Interfacial Adhesion Strength between Metal Substrate and High-Aspect-Ratio Thick SU-8 Photoresist Mould. Ultrasonics 2020, 103, 106100. [Google Scholar] [CrossRef]
- Kérourédan, O.; Rémy, M.; Oliveira, H.; Guillemot, F.; Devillard, R. Laser-Assisted Bioprinting of Cells for Tissue Engineering. In Laser Printing of Functional Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 349–373. ISBN 978-3-527-80510-5. [Google Scholar]
- Mackay, B.S.; Praeger, M.; Grant-Jacob, J.A.; Kanczler, J.; Eason, R.W.; Oreffo, R.O.C.; Mills, B. Modeling Adult Skeletal Stem Cell Response to Laser-Machined Topographies through Deep Learning. Tissue Cell 2020, 67, 101442. [Google Scholar] [CrossRef]
Condition | Measured Hatch ± Std Dev (µm) | Ablation Width ± Std Dev (µm) | Ablation Depth ± Std Dev (µm) | Ablated Area (%) |
---|---|---|---|---|
Control 1 | N/A | 5.37 ± 1.8 | 4.35 ± 0.99 | N/A |
H 25 | 25.61 ± 4.8 | 8.14 ± 2.7 | 4.46 ± 1.1 | 36.6 |
H 45 | 45.52 ± 1.9 | 8.36 ± 1.7 | 20.06 ± 2.3 | 26.2 |
H 65 | 63.95 ± 1.9 | 8.5 ± 1.1 | 21.5 ± 1.1 | 20.7 |
Frequencies | [−45:−3] | [−2:2] | Angle Range [3:87] | [88:92] | [93:134] |
---|---|---|---|---|---|
Control 1 vs. H25 | ns | ns | ns | * | ns |
Control 1 vs. H45 | ns | ns | ns | *** | ns |
Control 1 vs. H65 | ns | ns | ns | *** | ns |
H25 vs. H45 | ns | ** | ns | * | ns |
H25 vs. H65 | ns | *** | ns | ns | ns |
H45 vs. H65 | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touya, N.; Al-Bourgol, S.; Désigaux, T.; Kérourédan, O.; Gemini, L.; Kling, R.; Devillard, R. Bone Laser Patterning to Decipher Cell Organization. Bioengineering 2023, 10, 155. https://doi.org/10.3390/bioengineering10020155
Touya N, Al-Bourgol S, Désigaux T, Kérourédan O, Gemini L, Kling R, Devillard R. Bone Laser Patterning to Decipher Cell Organization. Bioengineering. 2023; 10(2):155. https://doi.org/10.3390/bioengineering10020155
Chicago/Turabian StyleTouya, Nicolas, Samy Al-Bourgol, Théo Désigaux, Olivia Kérourédan, Laura Gemini, Rainer Kling, and Raphaël Devillard. 2023. "Bone Laser Patterning to Decipher Cell Organization" Bioengineering 10, no. 2: 155. https://doi.org/10.3390/bioengineering10020155
APA StyleTouya, N., Al-Bourgol, S., Désigaux, T., Kérourédan, O., Gemini, L., Kling, R., & Devillard, R. (2023). Bone Laser Patterning to Decipher Cell Organization. Bioengineering, 10(2), 155. https://doi.org/10.3390/bioengineering10020155