Larger Medial Contact Area and More Anterior Contact Position in Medial-Pivot than Posterior-Stabilized Total Knee Arthroplasty during In-Vivo Lunge Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Demographics
2.2. Clinical Outcome Evaluation
2.3. 3D Reconstruction of Knee Models
2.4. In-Vivo Kinematic Measurements
2.5. In-Vivo Tibiofemoral Articular Contact Measurement
2.6. Statistical Analysis
3. Results
3.1. Clinical Outcomes
3.2. In-Vivo Kinematic of TKA
3.3. In-Vivo Contact Position of TKA
3.4. In-Vivo Contact Area of TKA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.A.; Feng, H.; Yan, W.N.; Li, H.Y.; Zhang, H.N.; Bai, H.J.; Wang, Y.Z. Comparison of Postoperative Effects between Medial Pivot Prosthesis and Posterior Stabilized Prosthesis. Orthop. Surg. 2020, 12, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, X.; Li, L.; Li, Z.; Zhang, Y.; Fan, P. Comparison of Patient Satisfaction Between Medial Pivot Prostheses and Posterior-Stabilized Prostheses in Total Knee Arthroplasty. Orthop. Surg. 2020, 12, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.A.; Guan, S.; Young, T.J.; Dowsey, M.M.; Choong, P.F.; Pandy, M.G. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J. Orthop. Res. 2020, 38, 1753–1768. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, R.; Pratt, D.N.; Banda, J.; Fick, D.P.; Khan, R.J.K.; Robertson, B.W. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. J. Arthroplast. 2017, 32, 3854–3860. [Google Scholar] [CrossRef]
- Rao, L.; Taylor, W.R.; Horn, N.; List, R.; Preiss, S.; Schutz, P. Can tibio-femoral kinematic and kinetic parameters reveal poor functionality and underlying deficits after total knee replacement? A systematic review. Knee 2021, 34, 62–75. [Google Scholar] [CrossRef]
- Li, G.; Zhou, C.; Zhang, Z.; Foster, T.; Bedair, H. Articulation of the femoral condyle during knee flexion. J. Biomech. 2021, 131, 110906. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Liow, M.H.L.; Li, G.; Arauz, P.; Peng, Y.; Klemt, C.; Kwon, Y.M. Bi-Cruciate Retaining Total Knee Arthroplasty Does Not Restore Native Tibiofemoral Articular Contact Kinematics During Gait. J. Orthop. Res. 2019, 37, 1929–1937. [Google Scholar] [CrossRef]
- Springer, B.D.; Levine, B.R.; Golladay, G.J. Highlights of the 2020 American Joint Replacement Registry Annual Report. Arthroplast Today 2021, 9, 141–142. [Google Scholar] [CrossRef]
- Arnout, N.; Vanlommel, L.; Vanlommel, J.; Luyckx, J.P.; Labey, L.; Innocenti, B.; Victor, J.; Bellemans, J. Post-cam mechanics and tibiofemoral kinematics: A dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg. Sport. Traumatol. Arthrosc. 2015, 23, 3343–3353. [Google Scholar] [CrossRef]
- Tsumori, Y.; Yoshiya, S.; Kurosaka, M.; Kobashi, S.; Shibanuma, N.; Yamaguchi, M. Analysis of weight-bearing kinematics of posterior-stabilized total knee arthroplasty with novel helical post-cam design. J. Arthroplast. 2011, 26, 1556–1561. [Google Scholar] [CrossRef]
- Dennis, D.A.; Komistek, R.D.; Mahfouz, M.R.; Walker, S.A.; Tucker, A. A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin. Orthop. Relat. Res. 2004, 428, 180–189. [Google Scholar] [CrossRef]
- Banks, S.A.; Hodge, W.A. 2003 Hap Paul Award Paper of the International Society for Technology in Arthroplasty: Design and activity dependence of kinematics in fixed and mobile-bearing knee arthroplasties. J. Arthroplast. 2004, 19, 809–816. [Google Scholar] [CrossRef]
- Zou, D.; Ling, Z.; Tan, J.; Zheng, N.; Dimitriou, D.; Chen, Y.; Tsai, T.Y. Medial stability and lateral flexibility of the collateral ligaments during mid-range flexion in medial-pivot total knee arthroplasty patients demonstrates favorable postoperative outcomes. Knee Surg. Sport. Traumatol. Arthrosc. 2023, 1–11. [Google Scholar] [CrossRef]
- Tan, J.; Zou, D.; Zhang, X.; Zheng, N.; Pan, Y.; Ling, Z.; Tsai, T.Y.; Chen, Y. Loss of Knee Flexion and Femoral Rollback of the Medial-Pivot and Posterior-Stabilized Total Knee Arthroplasty During Early-Stance of Walking in Chinese Patients. Front. Bioeng. Biotechnol. 2021, 9, 675093. [Google Scholar] [CrossRef]
- Samy, D.A.; Wolfstadt, J.I.; Vaidee, I.; Backstein, D.J. A Retrospective Comparison of a Medial Pivot and Posterior-Stabilized Total Knee Arthroplasty With Respect to Patient-Reported and Radiographic Outcomes. J. Arthroplast. 2018, 33, 1379–1383. [Google Scholar] [CrossRef] [Green Version]
- Choi, N.Y.; In, Y.; Bae, J.H.; Do, J.H.; Chung, S.J.; Koh, I.J. Are Midterm Patient-Reported Outcome Measures Between Rotating-Platform Mobile-Bearing Prosthesis and Medial-Pivot Prosthesis Different? A Minimum of 5-Year Follow-Up Study. J. Arthroplast. 2017, 32, 824–829. [Google Scholar] [CrossRef]
- Pritchett, J.W. Patients prefer a bicruciate-retaining or the medial pivot total knee prosthesis. J. Arthroplast. 2011, 26, 224–228. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, Y.; Wang, Y.; Zhao, X.; Yu, T.; Li, T. Medial pivot prosthesis has a better functional score and lower complication rate than posterior-stabilized prosthesis: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 395. [Google Scholar] [CrossRef]
- Nishitani, K.; Furu, M.; Nakamura, S.; Kuriyama, S.; Ishikawa, M.; Ito, H.; Matsuda, S. No differences in patient-reported outcomes between medial pivot insert and symmetrical insert in total knee arthroplasty: A randomized analysis. Knee 2018, 25, 1254–1261. [Google Scholar] [CrossRef]
- Alesi, D.; Di Paolo, S.; Bragonzoni, L.; Pizza, N.; Zaffagnini, S.; Zinno, R.; Marcheggiani Muccioli, G.M. No kinematical difference between ultra-congruent and medial-congruent total knee arthroplasty when implanted with mechanical alignment: An in vivo dynamic RSA study. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2975–2979. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Li, B.; Wang, L.; Wang, Y.; Liu, J. Comparison of the clinical and patient-reported outcomes between medial stabilized and posterior stabilized total knee arthroplasty: A systematic review and meta-analysis. Knee 2022, 36, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Schutz, P.; Taylor, W.R.; Postolka, B.; Fucentese, S.F.; Koch, P.P.; Freeman, M.A.R.; Pinskerova, V.; List, R. Kinematic Evaluation of the GMK Sphere Implant During Gait Activities: A Dynamic Videofluoroscopy Study. J. Orthop. Res. 2019, 37, 2337–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini Nasab, S.H.; Smith, C.R.; Schutz, P.; Postolka, B.; List, R.; Taylor, W.R. Elongation Patterns of the Collateral Ligaments After Total Knee Arthroplasty Are Dominated by the Knee Flexion Angle. Front. Bioeng. Biotechnol. 2019, 7, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Sarsina, T.R.; Alesi, D.; Di Paolo, S.; Zinno, R.; Pizza, N.; Marcheggiani Muccioli, G.M.; Zaffagnini, S.; Bragonzoni, L. In vivo kinematic comparison between an ultra-congruent and a posterior-stabilized total knee arthroplasty design by RSA. Knee Surg. Sports Traumatol. Arthrosc. 2021, 30, 2753–2758. [Google Scholar] [CrossRef]
- Nishio, Y.; Onodera, T.; Kasahara, Y.; Takahashi, D.; Iwasaki, N.; Majima, T. Intraoperative medial pivot affects deep knee flexion angle and patient-reported outcomes after total knee arthroplasty. J. Arthroplast. 2014, 29, 702–706. [Google Scholar] [CrossRef]
- Shu, L.; Yamamoto, K.; Kai, S.; Inagaki, J.; Sugita, N. Symmetrical cruciate-retaining versus medial pivot prostheses: The effect of intercondylar sagittal conformity on knee kinematics and contact mechanics. Comput. Biol. Med. 2019, 108, 101–110. [Google Scholar] [CrossRef]
- Murakami, K.; Hamai, S.; Moro-Oka, T.; Okazaki, K.; Higaki, H.; Shimoto, T.; Ikebe, S.; Nakashima, Y. Variable tibiofemoral articular contact stress in fixed-bearing total knee arthroplasties. Orthop. Traumatol. Surg. Res. 2018, 104, 177–183. [Google Scholar] [CrossRef]
- Steinbruck, A.; Schroder, C.; Woiczinski, M.; Fottner, A.; Pinskerova, V.; Muller, P.E.; Jansson, V. Femorotibial kinematics and load patterns after total knee arthroplasty: An in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin. Biomech. 2016, 33, 42–48. [Google Scholar] [CrossRef]
- Damm, P.; Kutzner, I.; Bergmann, G.; Rohlmann, A.; Schmidt, H. Comparison of in vivo measured loads in knee, hip and spinal implants during level walking. J. Biomech. 2017, 51, 128–132. [Google Scholar] [CrossRef]
- Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Bergmann, G. Design, calibration and pre-clinical testing of an instrumented tibial tray. J. Biomech. 2007, 40 (Suppl. S1), S4–S10. [Google Scholar] [CrossRef]
- Kono, K.; Inui, H.; Tomita, T.; Yamazaki, T.; Taketomi, S.; Tanaka, S. In Vivo Kinematics of Bicruciate-Retaining Total Knee Arthroplasty with Anatomical Articular Surface under High-Flexion Conditions. J. Knee Surg. 2021, 34, 452–459. [Google Scholar] [CrossRef]
- Riviere, C.; Iranpour, F.; Auvinet, E.; Howell, S.; Vendittoli, P.A.; Cobb, J.; Parratte, S. Alignment options for total knee arthroplasty: A systematic review. Orthop. Traumatol. Surg. Res. 2017, 103, 1047–1056. [Google Scholar] [CrossRef]
- Dehl, M.; Bulaid, Y.; Chelli, M.; Belhaouane, R.; Gabrion, A.; Havet, E.; Mertl, P. Total knee arthroplasty with the Medial-Pivot knee system: Clinical and radiological outcomes at 9.5 years’ mean follow-up. Orthop. Traumatol. Surg. Res. 2018, 104, 185–191. [Google Scholar] [CrossRef]
- Martimbianco, A.L.; Calabrese, F.R.; Iha, L.A.; Petrilli, M.; Lira Neto, O.; Carneiro Filho, M. Reliability of the “American Knee Society Score” (AKSS). Acta Ortop. Bras. 2012, 20, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Hanson, G.R.; Suggs, J.F.; Freiberg, A.A.; Durbhakula, S.; Li, G. Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system. J. Orthop. Res. 2006, 24, 974–981. [Google Scholar] [CrossRef]
- Sami, T.; Goldstein, G.; Vafiadis, D.; Absher, T. An in vitro 3D evaluation of the accuracy of 4 intraoral optical scanners on a 6-implant model. J. Prosthet. Dent. 2020, 124, 748–754. [Google Scholar] [CrossRef]
- Ross, D.S.; Howell, S.M.; Hull, M.L. Errors in Calculating Anterior-Posterior Tibial Contact Locations in Total Knee Arthroplasty Using Three-Dimensional Model to Two-Dimensional Image Registration in Radiographs: An In Vitro Study of Two Methods. J. Biomech. Eng. 2017, 139, 121003. [Google Scholar] [CrossRef]
- Nakamura, S.; Sharma, A.; Nakamura, K.; Ikeda, N.; Zingde, S.M.; Komistek, R.D. Can post-cam function be replaced by addition of a third condyle in PS TKA? J. Arthroplast. 2014, 29, 1871–1876. [Google Scholar] [CrossRef]
- Koo, S.; Andriacchi, T.P. The knee joint center of rotation is predominantly on the lateral side during normal walking. J. Biomech. 2008, 41, 1269–1273. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T.; Watanabe, T.; Nakajima, Y.; Sugamoto, K.; Tomita, T.; Maeda, D.; Sahara, W.; Yoshikawa, H.; Tamura, S. Visualization of femorotibial contact in total knee arthroplasty using X-ray fluoroscopy. Eur. J. Radiol. 2005, 53, 84–89. [Google Scholar] [CrossRef]
- Minoda, Y.; Kobayashi, A.; Iwaki, H.; Iwakiri, K.; Inori, F.; Sugama, R.; Ikebuchi, M.; Kadoya, Y.; Takaoka, K. In vivo analysis of polyethylene wear particles after total knee arthroplasty: The influence of improved materials and designs. J. Bone. Joint. Surg. Am. 2009, 91 (Suppl. S6), 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, M.A.; Laurent, M.P.; Haman, J.D.; Jacobs, J.J.; Galante, J.O. Surface damage versus tibial polyethylene insert conformity: A retrieval study. Clin. Orthop. Relat. Res. 2012, 470, 1814–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Zhang, Z.; Rao, Z.; Foster, T.; Bedair, H.; Li, G. Physiological articular contact kinematics and morphological femoral condyle translations of the tibiofemoral joint. J. Biomech. 2021, 123, 110536. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.A.; Guan, S.; Thomeer, L.T.; Schache, A.G.; de Steiger, R.; Pandy, M.G. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging. J. Orthop. Res. 2019, 37, 615–630. [Google Scholar] [CrossRef]
- Ansari, F.; Ries, M.D.; Pruitt, L. Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty. J. Mech. Behav. Biomed. Mater. 2016, 53, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.L.; Koch, C.N.; Elpers, M.E.; Wright, T.M.; Haas, S.B.; Heyse, T.J. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty. Bone Jt. J. 2017, 99, 793–798. [Google Scholar] [CrossRef]
- Gascoyne, T.C.; Teeter, M.G.; Guenther, L.E.; Burnell, C.D.; Bohm, E.R.; Naudie, D.R. In Vivo Wear Performance of Cobalt-Chromium Versus Oxidized Zirconium Femoral Total Knee Replacements. J. Arthroplast. 2016, 31, 137–141. [Google Scholar] [CrossRef]
- Paterson, N.R.; Teeter, M.G.; MacDonald, S.J.; McCalden, R.W.; Naudie, D.D. The 2012 Mark Coventry award: A retrieval analysis of high flexion versus posterior-stabilized tibial inserts. Clin. Orthop. Relat. Res. 2013, 471, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Shimmin, A.; Martinez-Martos, S.; Owens, J.; Iorgulescu, A.D.; Banks, S. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Knee 2015, 22, 522–526. [Google Scholar] [CrossRef]
- Miura, K.; Ohkoshi, Y.; Ino, T.; Ukishiro, K.; Kawakami, K.; Suzuki, S.; Suzuki, K.; Maeda, T. Kinematics and center of axial rotation during walking after medial pivot type total knee arthroplasty. J. Exp. Orthop. 2020, 7, 72. [Google Scholar] [CrossRef]
- Broberg, J.S.; Ndoja, S.; MacDonald, S.J.; Lanting, B.A.; Teeter, M.G. Comparison of Contact Kinematics in Posterior-Stabilized and Cruciate-Retaining Total Knee Arthroplasty at Long-Term Follow-Up. J. Arthroplast. 2020, 35, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Johal, P.; Williams, A.; Wragg, P.; Hunt, D.; Gedroyc, W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI. J. Biomech. 2005, 38, 269–276. [Google Scholar] [CrossRef]
- Galvin, C.R.; Perriman, D.M.; Newman, P.M.; Lynch, J.T.; Smith, P.N.; Scarvell, J.M. Squatting, lunging and kneeling provided similar kinematic profiles in healthy knees—A systematic review and meta-analysis of the literature on deep knee flexion kinematics. Knee 2018, 25, 514–530. [Google Scholar] [CrossRef]
- Arauz, P.; Klemt, C.; Limmahakhun, S.; An, S.; Kwon, Y.M. Stair Climbing and High Knee Flexion Activities in Bi-Cruciate Retaining Total Knee Arthroplasty: In Vivo Kinematics and Articular Contact Analysis. J. Arthroplast. 2019, 34, 570–576. [Google Scholar] [CrossRef]
- Li, C.; Hosseini, A.; Tsai, T.Y.; Kwon, Y.M.; Li, G. Articular contact kinematics of the knee before and after a cruciate retaining total knee arthroplasty. J. Orthop. Res. 2015, 33, 349–358. [Google Scholar] [CrossRef]
- Matsumoto, K.; Iwamoto, K.; Mori, N.; Yamasaki, T.; Ito, Y.; Takigami, I.; Terabayashi, N.; Ogawa, H.; Tomita, T.; Akiyama, H. In vivo kinematics of a low contact stress rotating platform total knee arthroplasty system under weight bearing and non-weight bearing condition. J. Orthop. Sci. 2014, 19, 750–755. [Google Scholar] [CrossRef]
- Suggs, J.F.; Kwon, Y.M.; Durbhakula, S.M.; Hanson, G.R.; Li, G. In vivo flexion and kinematics of the knee after TKA: Comparison of a conventional and a high flexion cruciate-retaining TKA design. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 150–156. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Xu, C.; Qiu, J.; Xu, J.; Tsai, T.Y.; Zhao, J. Effects of Anterolateral Structure Augmentation on the In Vivo Kinematics of Anterior Cruciate Ligament-Reconstructed Knees. Am. J. Sport. Med. 2021, 49, 656–666. [Google Scholar] [CrossRef]
- Murakami, K.; Hamai, S.; Okazaki, K.; Gondo, H.; Wang, Y.; Ikebe, S.; Higaki, H.; Shimoto, T.; Mizu-Uchi, H.; Akasaki, Y.; et al. Knee kinematics in bi-cruciate stabilized total knee arthroplasty during squatting and stair-climbing activities. J. Orthop. 2018, 15, 650–654. [Google Scholar] [CrossRef]
- Dai, H.; Zheng, N.; Zou, D.; Zhu, Z.; Liow, M.H.L.; Tsai, T.Y.; Wang, Q. More Anterior in vivo Contact Position in Patients With Fixed-Bearing Unicompartmental Knee Arthroplasty During Daily Activities Than in vitro Wear Simulator. Front. Bioeng. Biotechnol. 2021, 9, 666435. [Google Scholar] [CrossRef]
- Meneghini, R.M.; Stefl, M.D.; Hodge, W.A.; Banks, S.A. A Cam-Post Mechanism Is No Longer Necessary in Modern Primary Total Knee Arthroplasty. J. Knee Surg. 2019, 32, 710–713. [Google Scholar] [CrossRef] [PubMed]
Variables | MP-TKA | PS-TKA | p-Value |
---|---|---|---|
Age (year) | 70.4 ± 5.5 | 67.2 ± 5.3 | 0.1894 |
Height (cm) | 160.9 ± 7.1 | 159.6 ± 7.5 | 0.4037 |
Weight (kg) | 67.5 ± 10.2 | 71.0 ± 13.3 | 0.7510 |
BMI (kg/m2) | 26.9 ± 2.4 | 27.7 ± 3.9 | 0.5625 |
Follow-up Time (month) | 11.5 ± 2.9 | 26.0 ± 3.9 | 0.0001 |
Variables | MP-TKA | PS-TKA | p-Value |
---|---|---|---|
Preoperative HKA | 174.3° ± 1.6° | 173.5° ± 2.2° | 0.2835 |
Postoperative HKA | 178.4° ± 1.1° | 177.9° ± 1.7° | 0.2841 |
Postoperative passive range of flexion | 110.9° ± 11.4° | 107.1° ± 10.0° | 0.5675 |
Knee Score of KSS | 73.6 ± 10.6 | 77.0 ± 9.4 | 0.2842 |
Functional Score of KSS | 87.5 ± 13.6 | 79.2 ± 15.6 | 0.2283 |
Forgotten Joint Score | 73.9 ± 21.3 | 57.2 ± 24.0 | 0.1124 |
EQ-5D Score | 1.2 ± 0.2 | 1.2 ± 0.3 | 0.9042 |
Patient Satisfaction Level Score | 1.2 ± 0.2 | 1.3 ± 0.6 | 0.5813 |
MP | PS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flexion Angle | 0° | 30° | 60° | 90° | 100° | 0° | 30° | 60° | 90° | 100° | |
Medial contact position | A/P (%) | −4.0 (4.9) | −8.0 (4.8) | −3.5 (1.2) | −0.2 (3.2) | 0.8 (5.8) | −8.0 (7.1) | −13.4 (5.4) | −10.5 (9.3) | −16.7 (6.1) | −19.6 (6.0) |
L/M (%) | −29.4 (2.8) | −31.4 (1.9) | −30.9 (1.3) | −30.1 (1.5) | −29.7 (2.9) | −31.5 (2.9) | −32.5 (2.8) | −33.1 (3.2) | −29.4 (2.3) | −28.7 (2.9) | |
Lateral contact position | A/P (%) | 3.2 (13.2) | 0.3 (6.5) | −2.3 (7.6) | −8.8 (7.4) | −9.4 (7.4) | −3.5 (8.6) | −10.5 (5.8) | −12.0 (6.6) | −21.8 (7.3) | −25.2 (8.0) |
L/M (%) | 32.4 (1.4) | 32.4 (1.6) | 31.5 (1.7) | 32.4 (1.8) | 32.5 (2.7) | 31.3 (2.0) | 33.1 (3.3) | 33.0 (2.9) | 33.8 (3.3) | 33.2 (3.8) | |
Flexion range | 0°–30° | 30°–60° | 60°–90° | 90°–100° | 0°–100° | 0°–30° | 30°–60° | 60°–90° | 90°–100° | 0°–100° | |
Medial contact range | A/P (mm) | 4.1 (2.2) | 2.5 (2.2) | 1.9 (1.7) a | 1.6 (0.8) | 6.8 (3.1) | 3.1 (1.4) | 3.2 (2.1) | 4.5 (1.8) a | 1.3 (0.7) | 6.6 (2.3) |
A/P (%) | 8.4 (4.4) | 5.0 (4.5) | 3.8 (3.5) b | 3.3 (1.6) | 13.8 (6.4) | 7.1 (3.1) | 7.2 (4.8) | 10.1 (4.1) b | 3.0 (1.5) | 14.9 (5.2) | |
Lateral contact range | A/P (mm) | 4.8 (2.6) | 2.1 (1.4) | 3.5 (2.2) | 1.0 (0.5) c | 9.3 (4.4) | 4.1 (2.3) | 2.8 (1.3) | 4.6 (1.8) | 1.5 (0.6) c | 10.5 (4.1) |
A/P (%) | 9.8 (5.4) | 4.2 (2.9) | 7.2 (4.5) | 2.0 (1.1) d | 19.0 (9.1) | 9.2 (5.2) | 6.3 (2.8) | 10.4 (4.0) | 3.3 (1.5) d | 23.7 (9.3) | |
Pivot point location | Flexion range | 0°–30° | 30°–60° | 60°–90° | 90°–100° | 0°–100° | 0°–30° | 30°–60° | 60°–90° | 90°–100° | 0°–100° |
A/P (%) | 5.8 (5.0) | −2.5 (6.3) | −3.3 (16.5) | −5.6 (11.5) | −3.6 (2.7) | −12.0 (5.4) | −11.2 (4.8) | −8.1 (18.4) | −14.2 (27.6) | −12.7 (4.2) | |
L/M (%) | 65.4 (29.3) | 10.4 (31.3) | −11.8 (1.6) | 9.4 (60.0) | −4.3 (15.9) | −24.5 (61.5) | 17.7 (36.0) | −112.1 (324.4) | −80.3 (228.5) | −44.8 (29.3) |
Contact Area (mm2/%) | p-Value | Area with 21 Times Contact (mm2/%) | p-Value | ||||
---|---|---|---|---|---|---|---|
MP | Medial | 725.4 ± 54.2 | (71.5 ± 5.3%) | 0.0197 | 234.0 ± 89.5 | (23.1 ± 8.8%) | <0.0001 |
Lateral | 530.5 ± 91.4 | (46.1 ± 7.9%) | 128.2 ± 44.0 | (12.6 ± 4.3%) | |||
PS | Medial | 446.7 ± 58.3 | (48.7 ± 6.4%) | 0.0639 | 96.1 ± 47.3 | (10.4 ± 5.1%) | 0.0136 |
Lateral | 519.4 ± 102.8 | (56.7 ± 11.2%) | 31.6 ± 21.3 | (3.4 ± 2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, D.; Tan, J.; Zheng, N.; Ling, Z.; Yu, W.; Liow, M.H.L.; Chen, Y.; Tsai, T.-Y. Larger Medial Contact Area and More Anterior Contact Position in Medial-Pivot than Posterior-Stabilized Total Knee Arthroplasty during In-Vivo Lunge Activity. Bioengineering 2023, 10, 290. https://doi.org/10.3390/bioengineering10030290
Zou D, Tan J, Zheng N, Ling Z, Yu W, Liow MHL, Chen Y, Tsai T-Y. Larger Medial Contact Area and More Anterior Contact Position in Medial-Pivot than Posterior-Stabilized Total Knee Arthroplasty during In-Vivo Lunge Activity. Bioengineering. 2023; 10(3):290. https://doi.org/10.3390/bioengineering10030290
Chicago/Turabian StyleZou, Diyang, Jiaqi Tan, Nan Zheng, Zhi Ling, Wanxin Yu, Ming Han Lincoln Liow, Yunsu Chen, and Tsung-Yuan Tsai. 2023. "Larger Medial Contact Area and More Anterior Contact Position in Medial-Pivot than Posterior-Stabilized Total Knee Arthroplasty during In-Vivo Lunge Activity" Bioengineering 10, no. 3: 290. https://doi.org/10.3390/bioengineering10030290
APA StyleZou, D., Tan, J., Zheng, N., Ling, Z., Yu, W., Liow, M. H. L., Chen, Y., & Tsai, T. -Y. (2023). Larger Medial Contact Area and More Anterior Contact Position in Medial-Pivot than Posterior-Stabilized Total Knee Arthroplasty during In-Vivo Lunge Activity. Bioengineering, 10(3), 290. https://doi.org/10.3390/bioengineering10030290