Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants
Abstract
:1. Introduction
2. Biodegradation Pathways and Related Genes
2.1. Biodegradation Pathways
2.2. Related Genes
3. Alkane Hydroxylases
3.1. Integral-Membrane Alkane Hydroxylases
3.2. Cytochrome P450 Alkane Hydroxylases
3.3. Flavoprotein Alkane Hydroxylases
Enzyme | Origin | Structural Features | Modification | Type of Oxidation | Oxidation Length | Reference | |
---|---|---|---|---|---|---|---|
The ALKB family | AlkB | P. putida GPo1 | Six alpha-helical transmembrane segments Nonheme iron integral-membrane Eight histidines Needs iron and oxygen | / | Terminal oxidation, subterminal oxidation | C5–C12 | [48,49] |
AlkM | Acinetobacter sp. strain ADP1 | / | / | Terminal oxidation | C16–C30 | [24,47] | |
Cytochrome P450 | Class I (CYP153) | Bacteria A. calcoaceticus EB104 | FAD-containing reductase Iron–sulfur protein | Active site replaced by residues with bulkier and more hydrophobic side chains | Terminal oxidation, subterminal oxidation | C6–C11 | [54,56,72] |
Class II (CYP52) | Fungi C. tropicalis ATCC 20336 Bacteria B. megaterium 14581 | FAD- and FMN-containing cytochrome P450 reductase | Rational evolution | Terminal oxidation, subterminal oxidation | C10–C16 | [59,60,61] | |
Flavoprotein | LadA | G. thermodenitrificans NG80-2 | TIM barrel fold C-terminus of polypeptide chain | Random- and site-directed mutagenesis | Terminal oxidation | C15–C36 | [17,25,62] |
AlmA | Acinetobacter sp. strain DSM. 17874 | Flavin binding | / | / | >C32 | [63] | |
Dioxygenase | Acinetobacter sp. strain M-1 | ND | / | Finnerty way | C10–C30 | [67] |
4. Engineered Microbial Chassis
4.1. E. coli
4.2. Pseudomonas sp.
4.3. Bacillus sp.
5. Microbial Community
5.1. Alkane-Degrader and Alkane-Degrader
5.2. Alkane-Degrader and Helper
5.2.1. Surfactants Producers
5.2.2. Nitrogen Providers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Xie, L.; Wu, Y.; Chen, L.; Jiang, B.; Chen, X.; Wu, Y. Improving cleaner production of human activities to mitigate total petroleum hydrocarbons accumulation in coastal environment. Mar. Pollut. Bull. 2023, 186, 114473. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.; Cusack, M.; Saderne, V.; Krishnakumar, P.K.; Rabaoui, L.; Qurban, M.A.; Duarte, C.M.; Agusti, S. Accelerated burial of petroleum hydrocarbons in Arabian Gulf blue carbon repositories. Sci. Total Environ. 2019, 669, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Tian, S.; Wang, W.; Qi, Q.; Jiang, P.; Gao, X.; Li, F.; Li, H.; Yu, H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol. 2018, 9, 2885. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.S.M.; Dorn, M.; Feltes, B.C. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. Chemosphere 2020, 250, 126202. [Google Scholar] [CrossRef] [PubMed]
- Laczi, K.; Erdeine Kis, A.; Szilagyi, A.; Bounedjoum, N.; Bodor, A.; Vincze, G.E.; Kovacs, T.; Rakhely, G.; Perei, K. New frontiers of anaerobic hydrocarbon biodegradation in the multi-omics era. Front. Microbiol. 2020, 11, 590049. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.J.; Gnansounou, E.; Pandey, A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 2017, 188, 280–291. [Google Scholar] [CrossRef]
- Castro, A.R.; Martins, G.; Salvador, A.F.; Cavaleiro, A.J. Iron Compounds in anaerobic degradation of petroleum hydrocarbons: A review. Microorganisms 2022, 10, 2142. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Q.; Mo, F.; Li, T.; Liu, J. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. Environ. Pollut. 2022, 306, 119344. [Google Scholar] [CrossRef]
- Martin, B.C.; George, S.J.; Price, C.A.; Ryan, M.H.; Tibbett, M. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: Current knowledge and future directions. Sci. Total Environ. 2014, 472, 642–653. [Google Scholar] [CrossRef]
- Hazaimeh, M.D.; Ahmed, E.S. Bioremediation perspectives and progress in petroleum pollution in the marine environment: A review. Environ. Sci. Pollut. Res. Int. 2021, 28, 54238–54259. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef] [PubMed]
- Chunyan, X.; Qaria, M.A.; Qi, X.; Daochen, Z. The role of microorganisms in petroleum degradation: Current development and prospects. Sci. Total Environ. 2023, 865, 161112. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Z.W.; Liu, R.X.; Ju, H.Y.; Bian, X.K.; Zhang, W.Z.; Zhang, C.B.; Yang, T.; Guo, B.; Xiao, C.L.; et al. Research progress in bioremediation of petroleum pollution. Environ. Sci. Pollut. Res. Int. 2021, 28, 46877–46893. [Google Scholar] [CrossRef] [PubMed]
- Gregson, B.H.; Metodieva, G.; Metodiev, M.V.; McKew, B.A. Differential protein expression during growth on linear versus branched alkanes in the obligate marine hydrocarbon-degrading bacterium Alcanivorax borkumensis SK2(T). Environ. Microbiol. 2019, 21, 2347–2359. [Google Scholar] [CrossRef] [Green Version]
- Morales, G.; Ugidos, A.; Rojo, F. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. Environ. Microbiol. 2006, 8, 1764–1774. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Yang, W.; Xu, F.; Wang, W.; Feng, L.; Bartlam, M.; Wang, L.; Rao, Z. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: Unveiling the long-chain alkane hydroxylase. J. Mol. Biol. 2008, 376, 453–465. [Google Scholar] [CrossRef]
- Watkinson, R.J.; Morgan, P. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1990, 1, 79–92. [Google Scholar] [CrossRef]
- Forney, F.W.; Markovetz, A.J. Subterminal oxidation of aliphatic hydrocarbons. J. Bacteriol. 1970, 102, 281–282. [Google Scholar] [CrossRef] [Green Version]
- Kotani, T.; Yamamoto, T.; Yurimoto, H.; Sakai, Y.; Kato, N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J. Bacteriol. 2003, 185, 7120–7128. [Google Scholar] [CrossRef] [Green Version]
- Kester, A.S.; Foster, J.W. Diterminal oxidation of long-chain alkanes by bacteria. J. Bacteriol. 1963, 85, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Mao, G.; Wang, Y.; Bartlam, M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front. Microbiol. 2013, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Bihari, Z.; Szvetnik, A.; Szabo, Z.; Blastyak, A.; Zombori, Z.; Balazs, M.; Kiss, I. Functional analysis of long-chain n-alkane degradation by Dietzia spp. FEMS Microbiol. Lett. 2011, 316, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratajczak, A.; Hillen, W. Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases. Appl. Environ. Microbiol. 1998, 64, 1175–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Wang, W.; Cheng, J.; Ren, Y.; Zhao, G.; Gao, C.; Tang, Y.; Liu, X.; Han, W.; Peng, X.; et al. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc. Natl. Acad. Sci. USA 2007, 103, 5602–5607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, R.; Huang, C.; Zhang, A.; Bell, S.G.; Zhou, W.; Wong, L.L. Crystallization and preliminary X-ray analysis of CYP153C1 from Novosphingobium aromaticivorans DSM12444. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2011, 67, 964–967. [Google Scholar] [CrossRef] [Green Version]
- Tani, A.; Ishige, T.; Sakai, Y.; Kato, N. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J. Bacteriol. 2001, 183, 1819–1823. [Google Scholar] [CrossRef] [Green Version]
- Huarte-Bonnet, C.; Kumar, S.; Saparrat, M.C.N.; Girotti, J.R.; Santana, M.; Hallsworth, J.E.; Pedrini, N. Insights into hydrocarbon assimilation by eurotialean and hypocrealean fungi: Roles for CYP52 and CYP53 clans of cytochrome P450 genes. Appl. Biochem. Biotechnol. 2018, 184, 1047–1060. [Google Scholar] [CrossRef]
- Huang, F.C.; Peter, A.; Schwab, W. Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola. Appl. Environ. Microbiol. 2014, 80, 766–776. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Hirakawa, K.; Horiuchi, H.; Fukuda, R.; Ohta, A. Phosphatidic acid and phosphoinositides facilitate liposome association of Yas3p and potentiate derepression of ARE1 (alkane-responsive element one)-mediated transcription control. Fungal. Genet. Biol. 2013, 61, 100–110. [Google Scholar] [CrossRef]
- Park, H.G.; Kim, V.; Kim, H.; Lee, R.; Cho, M.A.; Park, S.W.; Chun, Y.J.; Kim, D. CYP52A23 from Candida albicans and its Substrate Preference for Fatty Acid Hydroxylation. Arch. Biochem. Biophys. 2019, 671, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Panasia, G.; Philipp, B. LaoABCR, a novel system for oxidation of long-chain alcohols derived from SDS and alkane degradation in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2018, 84, e00626-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwama, R.; Kobayashi, S.; Ohta, A.; Horiuchi, H.; Fukuda, R. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica. J. Biol. Chem. 2014, 289, 33275–33286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, C.F.; Xu, Y.; Li, T.; Zhou, N.Y. Wide distribution of the sad gene cluster for sub-terminal oxidation in alkane utilizers. Environ. Microbiol. 2022, 24, 6307–6319. [Google Scholar] [CrossRef]
- Tenagy; Tejima, K.; Chen, X.; Iwatani, S.; Kajiwara, S. Long-chain acyl-CoA synthetase is associated with the growth of Malassezia spp. J. Fungi 2019, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Mounier, J.; Hakil, F.; Branchu, P.; Naïtali, M.; Goulas, P.; Sivadon, P.; Grimaud, R. AupA and AupB are outer and inner membrane proteins involved in alkane uptake in Marinobacter hydrocarbonoclasticus SP17. mBio 2018, 9, e00520-18. [Google Scholar] [CrossRef] [Green Version]
- Thevenieau, F.; Le Dall, M.T.; Nthangeni, B.; Mauersberger, S.; Marchal, R.; Nicaud, J.M. Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal. Genet. Biol. 2007, 44, 531–542. [Google Scholar] [CrossRef]
- Dulermo, R.; Gamboa-Melendez, H.; Dulermo, T.; Thevenieau, F.; Nicaud, J.M. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica. FEMS Yeast Res. 2014, 14, 883–896. [Google Scholar] [CrossRef] [Green Version]
- Martinez, E.; Estupinan, M.; Pastor, F.I.; Busquets, M.; Diaz, P.; Manresa, A. Functional characterization of ExFadLO, an outer membrane protein required for exporting oxygenated long-chain fatty acids in Pseudomonas aeruginosa. Biochimie 2013, 95, 290–298. [Google Scholar] [CrossRef]
- van den Berg, B. The FadL family: Unusual transporters for unusual substrates. Curr. Opin. Struct. Biol. 2005, 15, 401–407. [Google Scholar] [CrossRef]
- Dabirian, Y.; Skrekas, C.; David, F.; Siewers, V. Does co-expression of Yarrowia lipolytica genes encoding Yas1p, Yas2p and Yas3p make a potential alkane-responsive biosensor in Saccharomyces cerevisiae? PLoS ONE 2020, 15, e0239882. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, K.; Wu, G.; Xu, Z.; Hou, R.; Guo, B.; Zhao, Y.; Liu, F. Sulforaphane, a secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence of Xanthomonas by directly targeting OxyR. Mol. Plant Pathol. 2022, 23, 1508–1523. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Miyanaga, A.; Kanaya, S.; Morikawa, M. Alkane inducible proteins in Geobacillus thermoleovorans B23. BMC Microbiol. 2009, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.; Shin, B.; Park, W. Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl. Environ. Microbiol. 2020, 86, e00692-20. [Google Scholar] [CrossRef]
- Iwama, R.; Hara, M.; Mizuike, A.; Horiuchi, H.; Fukuda, R. Osh6p, a homologue of the oxysterol-binding protein, is involved in production of functional cytochrome P450 belonging to CYP52 family in n-alkane-assimilating yeast Yarrowia lipolytica. Biochem. Biophys. Res. Commun. 2018, 499, 836–842. [Google Scholar] [CrossRef]
- Baptist, J.N.; Gholson, R.K.; Coon, M.J. Hydrocarbon oxidation by a bacterial enzyme system I. Products of octane oxidation. BBA-Bioenerg. 1963, 69, 40–47. [Google Scholar]
- Bihari, Z.; Pettkó-Szandtner, A.; Csanádi, G.; Balázs, M.; Bartos, P.; Kesseru, P.; Kiss, I.; Mécs, I. Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Z. Naturforsch. C J. Biosci. 2007, 62, 285–295. [Google Scholar] [CrossRef]
- Smits, T.H.; Balada, S.B.; Witholt, B.; van Beilen, J.B. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J. Bacteriol. 2002, 184, 1733–1742. [Google Scholar] [CrossRef] [Green Version]
- van Beilen, J.B.; Penninga, D.; Witholt, B. Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 1992, 267, 9194–9201. [Google Scholar] [CrossRef]
- Teimoori, A.; Ahmadian, S.; Madadkar-Sobhani, A.; Bambai, B. Rubredoxin reductase from Alcanivorax borkumensis: Expression and characterization. Biotechnol. Prog. 2011, 27, 1383–1389. [Google Scholar] [CrossRef]
- Nie, Y.; Liang, J.; Fang, H.; Tang, Y.Q.; Wu, X.L. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. Appl. Environ. Microbiol. 2011, 77, 7279–7288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelletti, M.; Fedi, S.; Frascari, D.; Ohtake, H.; Turner, R.J.; Zannoni, D. Analyses of both the alkB gene transcriptional start site and alkB promoter-inducing properties of Rhodococcus sp. strain BCP1 grown on n-alkanes. Appl. Environ. Microbiol. 2011, 77, 1619–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geissdorfer, W.; Frosch, S.C.; Haspel, G.; Ehrt, S.; Hillen, W. Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1. Microbiology 1995, 141, 1425–1432. [Google Scholar]
- Maier, T.; Forster, H.H.; Asperger, O.; Hahn, U. Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem. Bioph. Res. Commun. 2001, 286, 652–658. [Google Scholar] [CrossRef] [PubMed]
- van Beilen, J.B.; Funhoff, E.G. Expanding the alkane oxygenase toolbox: New enzymes and applications. Curr. Opin. Biotechnol. 2005, 16, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Yamaguchi, E.; Matsunaga, K.; Aramaki, H.; Horiuchi, T. Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P450cam hydroxylase of Pseudomonas putida. J. Biochem. 1989, 106, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A.M.; Maves, S.A.; Benson, D.E.; Sweet, R.M.; Ringe, D.; Petsko, G.A.; Sligar, S.G. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 2000, 287, 1615–1622. [Google Scholar] [CrossRef]
- Bell, S.G.; Orton, E.; Boyd, H.; Stevenson, J.-A.; Riddle, A.; Campbell, S.; Wong, L.-L. Engineering cytochrome P450cam into an alkane hydroxylase. Dalton. Trans. 2003, 11, 2133–2140. [Google Scholar] [CrossRef]
- Craft, D.L.; Madduri, K.M.; Eshoo, M.; Wilson, C.R. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids. Appl. Environ. Microbiol. 2003, 69, 5983–5991. [Google Scholar] [CrossRef] [Green Version]
- Narhi, L.O.; Fulco, A.J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 1986, 261, 7160–7169. [Google Scholar] [CrossRef]
- Appel, D.; Lutz-Wahl, S.; Fischer, P.; Schwaneberg, U.; Schmid, R.D. A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J. Biotechnol. 2001, 88, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yan, J.; Du, H.; Chen, M.; Ma, T.; Feng, L. Engineering of LadA for enhanced hexadecane oxidation using random- and site-directed mutagenesis. Appl. Microbiol. Biotechnol. 2012, 94, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Throne-Holst, M.; Wentzel, A.; Ellingsen, T.E.; Kotlar, H.K.; Zotchev, S.B. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl. Environ. Microbiol. 2007, 73, 3327–3332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wang, W.; Wu, Y.; Zhou, Z.; Lai, Q.; Shao, Z. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ. Microbiol. 2011, 13, 1168–1178. [Google Scholar] [CrossRef]
- Kong, W.; Zhao, C.; Gao, X.; Wang, L.; Tian, Q.; Liu, Y.; Xue, S.; Han, Z.; Chen, F.; Wang, S. Characterization and transcriptome analysis of a long-chain n-alkane-degrading strain Acinetobacter pittii SW-1. Int. J. Environ. Res. Public Health 2021, 18, 6365. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Shin, B.; Jung, J.; Lee, Y.; Park, W. Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation. Microb. Biotechnol. 2017, 10, 1809–1823. [Google Scholar] [CrossRef]
- Liu, H.; Xu, J.; Liang, R.; Liu, J. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS ONE 2014, 9, e105506. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.P.; Shao, Z.Z. Identification of AlmA genes involved in long-chain alkane degradation by Alcanivorax hongdengensis A-11-3. Acta Microbiol. Sin. 2010, 50, 1051–1057. [Google Scholar]
- Maeng, J.H.; Sakai, Y.; Tan, Y.; Kato, N. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. Strain M-1. J. Bacteriol. 1996, 178, 3695–3700. [Google Scholar] [CrossRef] [Green Version]
- Tomas-Gallardo, L.; Gomez-Alvarez, H.; Santero, E.; Floriano, B. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB. Microb. Biotechnol. 2014, 7, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Mawad, A.M.M.; Abdel-Mageed, W.S.; Hesham, A.E. Quantification of naphthalene dioxygenase (NahAC) and catechol dioxygenase (C23O) catabolic genes produced by phenanthrene-degrading Pseudomonas fluorescens AH-40. Curr. Genom. 2020, 21, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Song, Q.W.; Zheng, J.; Yu, W.H.; Zhang, K.F. Function genes in microorganisms capable of degrading petroleum hydrocarbon. Microbiol. China 2020, 47, 3355–3368. [Google Scholar]
- Wu, M.; Ma, C.; Wang, D.; Liu, H.; Zhu, C.; Xu, H. Nutrient drip irrigation for refractory hydrocarbon removal and microbial community shift in a historically petroleum-contaminated soil. Sci. Total Environ. 2020, 713, 136331. [Google Scholar] [CrossRef] [PubMed]
- Gibu, N.; Kasai, D.; Ikawa, T.; Akiyama, E.; Fukuda, M. Characterization and transcriptional regulation of n-alkane hydroxylase gene cluster of Rhodococcus jostii RHA1. Microorganisms 2019, 7, 479. [Google Scholar] [CrossRef] [Green Version]
- Chlebek, D.; Plociniczak, T.; Gobetti, S.; Kumor, A.; Hupert-Kocurek, K.; Pacwa-Plociniczak, M. Analysis of the genome of the heavy metal resistant and hydrocarbon-degrading Rhizospheric pseudomonas qingdaonensis ZCR6 strain and assessment of its plant-growth-promoting traits. Int. J. Mol. Sci. 2021, 23, 214. [Google Scholar] [CrossRef]
- Hu, B.; Wang, M.; Geng, S.; Wen, L.; Wu, M.; Nie, Y.; Tang, Y.Q.; Wu, X.L. Metabolic exchange with non-alkane-consuming Pseudomonas stutzeri SLG510A3-8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. Strain DQ12-45-1b. Appl. Environ. Microbiol. 2020, 86, e02931-19. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, J.; Liu, X.; Song, B.; Zhen, M.; Ashbolt, N.J. Vertical response of microbial community and degrading genes to petroleum hydrocarbon contamination in saline alkaline soil. J. Environ. Sci. 2019, 81, 80–92. [Google Scholar] [CrossRef]
- Alasmar, R.; Ul-Hassan, Z.; Zeidan, R.; Al-Thani, R.; Al-Shamary, N.; Alnaimi, H.; Migheli, Q.; Jaoua, S. Isolation of a novel Kluyveromyces marxianus strain QKM-4 and evidence of its volatilome production and binding potentialities in the biocontrol of toxigenic fungi and their mycotoxins. ACS Omega 2020, 5, 17637–17645. [Google Scholar] [CrossRef]
- Sun, W.; Ali, I.; Liu, J.; Dai, M.; Cao, W.; Jiang, M.; Saren, G.; Yu, X.; Peng, C.; Naz, I. Isolation, identification, and characterization of diesel-oil-degrading bacterial strains indigenous to Changqing oil field, China. J. Basic Microbiol. 2019, 59, 723–734. [Google Scholar] [CrossRef]
- Park, M.O.; Tanabe, M.; Hirata, K.; Miyamoto, K. Isolation and characterization of a bacterium that produces hydrocarbons extracellularly which are equivalent to light oil. Appl. Microbiol. Biotechnol. 2001, 56, 448–452. [Google Scholar] [CrossRef]
- Nieboer, M.; Kingma, J.; Witholt, B. The alkane oxidation system of Pseudomonas oleovorans: Induction of the alk genes in Escherichia CO//W3110(pGEc47) affects membrane biogenesis and resuits in overexpression of aikane hydroxyiase in a distinct cytopiasmic membrane subtraction. Mol. Microbiol. 1993, 8, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Staijen, I.E.; Van Beilen, J.B.; Witholt, B. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli. Eur. J. Biochem. 2000, 267, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.; Woodley, J.M.; Baganz, F. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Enzym. Microb. Technol. 2011, 48, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; He, Y.; Hou, D.Y.; Zhang, J.G.; Shen, X.R. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium. Braz. J. Microbiol. 2015, 46, 649–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Nuland, Y.M.; de Vogel, F.A.; Scott, E.L.; Eggink, G.; Weusthuis, R.A. Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of alpha,omega-diol and alpha,omega-dicarboxylic acid esters. Metab. Eng. 2017, 44, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K.; Park, Y.C. Biosynthesis of omega-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103, 191–199. [Google Scholar] [CrossRef]
- Fernandez, M.; Niqui-Arroyo, J.L.; Conde, S.; Ramos, J.L.; Duque, E. Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid. Appl. Environ. Microbiol. 2012, 78, 5104–5110. [Google Scholar] [CrossRef] [Green Version]
- Igeno, M.I.; Macias, D.; Blasco, R. A case of adaptive laboratory evolution (ALE): Biodegradation of furfural by Pseudomonas pseudoalcaligenes CECT 5344. Genes 2019, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Muthukumar, B.; Parthipan, P.; AlSalhi, M.S.; Prabhu, N.S.; Rao, T.N.; Devanesan, S.; Maruthamuthu, M.K.; Rajasekar, A. Characterization of bacterial community in oil-contaminated soil and its biodegradation efficiency of high molecular weight (>C40) hydrocarbon. Chemosphere 2022, 289, 133168. [Google Scholar] [CrossRef]
- Chettri, B.; Singha, N.A.; Singh, A.K. Efficiency and kinetics of Assam crude oil degradation by Pseudomonas aeruginosa and Bacillus sp. Arch. Microbiol. 2021, 203, 5793–5803. [Google Scholar] [CrossRef]
- Tirkey, S.R.; Ram, S.; Mishra, S. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon 2021, 7, e06334. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, H.; Zanaroli, G.; Xu, P.; Tang, H. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. J. Hazard. Mater. 2021, 403, 123956. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Ni, Y.; Lu, L.; Chai, Q.; Yu, T.; Shen, Z.; Yang, C. Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils. Chemosphere 2020, 242, 125237. [Google Scholar] [CrossRef]
- Farag, S.; Soliman, N.A.; Abdel-Fattah, Y.R. Statistical optimization of crude oil bio-degradation by a local marine bacterium isolate Pseudomonas sp. sp48. J. Genet. Eng. Biotechnol. 2018, 16, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xu, J.; Xie, W.; Yao, Z.; Yang, H.; Sun, C.; Li, X. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 2018, 9, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, K.; Shityakov, S.; Das, P.P.; Ghosh, C. Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. 3 Biotech 2017, 7, 365. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Bhagowati, P.; Biswa, B.B.; Chanda, A.; Kalita, B. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J. Proteom. 2017, 167, 25–35. [Google Scholar] [CrossRef]
- Cheng, T.; Liang, J.; He, J.; Hu, X.; Ge, Z.; Liu, J. A novel rhamnolipid-producing Pseudomonas aeruginosa ZS1 isolate derived from petroleum sludge suitable for bioremediation. AMB Express 2017, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Ilyas, N.; Bibi, F.; Jayachandran, K.; Dattamudi, S.; Elgorban, A.M. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environ. Pollut. 2022, 292, 118343. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Valan Arasu, M. Enhanced production of biosurfactant from Bacillus subtilis strain Al-Dhabi-130 under solid-state fermentation using date molasses from saudi arabia for bioremediation of Crude-Oil-Contaminated soils. Int. J. Environ. Res. Public Health 2020, 17, 8446. [Google Scholar] [CrossRef]
- Sharma, S.; Pandey, L.M. Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil. Bioresour. Technol. 2020, 307, 123261. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Jiang, Y.; Chen, K.; Gao, F.; Liu, X. Petroleum depletion property and microbial community shift after bioremediation using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Front. Microbiol. 2020, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xu, J.; Liu, J.; Guo, W.H.; Li, X.B.; Xia, J.B.; Xie, W.J.; Yao, Z.G.; Zhang, Y.M.; Wang, R.Q. Characterization and initial application of endophytic Bacillus safensis strain ZY16 for improving phytoremediation of oil-contaminated saline soils. Front. Microbiol. 2019, 10, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, P.; Tiwari, P.; Pandey, L.M. Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Bioresour. Technol. 2018, 270, 439–448. [Google Scholar] [CrossRef]
- Bibi, N.; Hamayun, M.; Khan, S.A.; Iqbal, A.; Islam, B.; Shah, F.; Khan, M.A.; Lee, I.J. Anthracene biodegradation capacity of newly isolated rhizospheric bacteria Bacillus cereus S13. PLoS ONE 2018, 13, e0201620. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, A.; Sinha, A.; Masto, R.E. Biodegradation of anthracene by a newly isolated bacterial strain, Bacillus thuringiensis AT.ISM.1, isolated from a fly ash deposition site. Lett. Appl. Microbiol. 2017, 65, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Raju, M.N.; Leo, R.; Herminia, S.S.; Moran, R.E.; Venkateswarlu, K.; Laura, S. Biodegradation of diesel, crude oil and spent lubricating oil by soil isolates of Bacillus spp. Bull. Environ. Contam. Toxicol. 2017, 98, 698–705. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Chien, M.-F.; Ikeda-Ohtsubo, W.; Suzuki, H.; Obayori, O.S.; Adebusoye, S.A.; Ilori, M.O.; Amund, O.O.; Endo, G. Biodegradation of crude oil and phenanthrene by heavy metal resistant Bacillus subtilis isolated from a multi-polluted industrial wastewater creek. Int. Biodeterior. Biodegr. 2017, 120, 143–151. [Google Scholar] [CrossRef]
- Mohapatra, S.; Maity, S.; Dash, H.R.; Das, S.; Pattnaik, S.; Rath, C.C.; Samantaray, D. Bacillus and biopolymer: Prospects and challenges. Biochem. Biophys. Rep. 2017, 12, 206–213. [Google Scholar] [CrossRef]
- Qiu, Y.; Xiao, F.; Wei, X.; Wen, Z.; Chen, S. Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. Appl. Microbiol. Biotechnol. 2014, 98, 8895–8903. [Google Scholar] [CrossRef]
- Jung, J.; Yu, K.O.; Ramzi, A.B.; Choe, S.H.; Kim, S.W.; Han, S.O. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Nat. Commun. 2012, 109, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ding, Z.T.; Zhong, J.; Zhou, J.Y.; Shu, D.; Luo, D.; Yang, J.; Tan, H. Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes. Lett. Appl. Microbiol. 2017, 64, 452–458. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, F.; Liu, X.; Fan, X.; Huang, R.; Gao, W.; Wang, S.; Yang, C. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb. Cell Factories 2019, 18, 68. [Google Scholar] [CrossRef]
- Wu, Q.; Zhi, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab. Eng. 2019, 52, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Ding, M.; Jia, X.; Ma, Q.; Yuan, Y. Synthetic microbial consortia: From systematic analysis to construction and applications. Chem. Soc. Rev. 2014, 43, 6954–6981. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yan, W.; Ding, M.; Yuan, Y. Construction of microbial consortia for microbial degradation of complex compounds. Front. Bioeng. Biotechnol. 2022, 10, 1051233. [Google Scholar] [CrossRef]
- Bidja Abena, M.T.; Sodbaatar, N.; Li, T.; Damdinsuren, N.; Choidash, B.; Zhong, W. Crude oil biodegradation by newly isolated bacterial strains and their consortium under soil microcosm experiment. Appl. Biochem. Biotechnol. 2019, 189, 1223–1244. [Google Scholar] [CrossRef]
- Hamad, A.A.; Moubasher, H.A.; Moustafa, Y.M.; Mohamed, N.H.; Abd-El Rhim, E.H. Petroleum Hydrocarbon Bioremediation Using Native Fungal Isolates and Consortia. Sci. World J. 2021, 2021, 6641533. [Google Scholar] [CrossRef]
- Ghorbannezhad, H.; Moghimi, H.; Dastgheib, S.M.M. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. Ecotoxicol. Environ. Saf. 2018, 164, 434–439. [Google Scholar] [CrossRef]
- Kachieng’a, L.; Momba, M.N.B. Kinetics of petroleum oil biodegradation by a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.). Biotechnol. Rep. 2017, 15, 125–131. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, D.; Liu, X.; Xie, H.; Lou, X.; Zeng, C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere 2021, 273, 129666. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, B.; Lan, Y.; Ma, T. Enhanced degradation of different crude oils by defined engineered consortia of Acinetobacter venetianus RAG-1 mutants based on their alkane metabolism. Bioresour. Technol. 2021, 327, 124787. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.C.; Vessoni-Penna, T.C.; de Souza Oliveira, R.P. Biosurfactant-enhanced hydrocarbon bioremediation: An overview. Int. Biodeterior. Biodegr. 2014, 89, 88–94. [Google Scholar] [CrossRef]
- Xia, M.; Fu, D.; Chakraborty, R.; Singh, R.P.; Terry, N. Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresour. Technol. 2019, 282, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Zdarta, A.; Smulek, W.; Pacholak, A.; Dudzinska-Bajorek, B.; Kaczorek, E. Surfactant addition in diesel oil degradation-how can it help the microbes? J. Environ. Health Sci. Eng. 2020, 18, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, Y.; Li, Z.; Kan, A.T.; Tomson, M.B. Sorption and desorption characteristics of anionic surfactants to soil sediments. Chemosphere 2018, 211, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.L.; Tilton, F.; Jansik, D.P.; Ergas, S.J.; Marshall, M.J.; Miracle, A.L.; Wellman, D.M. Growth inhibition and stimulation of Shewanella oneidensis MR-1 by surfactants and calcium polysulfide. Ecotoxicol. Environ. Saf. 2012, 80, 195–202. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 2002, 13, 249–252. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Lepine, F.; Deziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Daverey, A.; Pakshirajan, K. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Appl. Biochem. Biotechnol. 2009, 158, 663–674. [Google Scholar] [CrossRef]
- Uttlova, P.; Pinkas, D.; Bechynkova, O.; Fiser, R.; Svobodova, J.; Seydlova, G. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure. Biochim. Biophys. Acta 2016, 1858, 2965–2971. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, S.; Chettri, D.; Kumar Verma, A. Biosurfactants: Secondary metabolites involved in the process of bioremediation and biofilm removal. Appl. Biochem. Biotechnol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.W.; Huang, C.; Tian, Y.X.; Li, Y.B.; Li, J.; Ma, Y.L. Synergistic effect of rhamnolipids and inoculation on the bioremediation of petroleum-contaminated soils by bacterial consortia. Curr. Microbiol. 2020, 77, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Staninska-Pięta, J.; Piotrowska-Cyplik, A.; Juzwa, W.; Zgoła-Grześkowiak, A.; Wolko, Ł.; Sydow, Z.; Kaczorowski, Ł.; Powierska-Czarny, J.; Cyplik, P. The impact of natural and synthetic surfactants on bacterial community during hydrocarbon biodegradation. Int. Biodeterior. Biodegr. 2019, 142, 191–199. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Zhou, Z.; Wen, J.; You, X.; Mao, Y.; Lu, C.; Huo, G.; Jia, X. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Appl. Biochem. Biotechnol. 2014, 172, 3433–3447. [Google Scholar] [CrossRef] [PubMed]
- Mnif, I.; Mnif, S.; Sahnoun, R.; Maktouf, S.; Ayedi, Y.; Ellouze-Chaabouni, S.; Ghribi, D. Biodegradation of diesel oil by a novel microbial consortium: Comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ. Sci. Pollut. Res. Int. 2015, 22, 14852–14861. [Google Scholar] [CrossRef]
- Atakpa, E.O.; Zhou, H.; Jiang, L.; Ma, Y.; Liang, Y.; Li, Y.; Zhang, D.; Zhang, C. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 2022, 290, 133337. [Google Scholar] [CrossRef]
- Chen, W.; Kong, Y.; Li, J.; Sun, Y.; Min, J.; Hu, X. Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. Int. Biodeterior. Biodegr. 2020, 154, 105047. [Google Scholar] [CrossRef]
- Phulpoto, I.A.; Hu, B.; Wang, Y.; Ndayisenga, F.; Li, J.; Yu, Z. Effect of natural microbiome and culturable biosurfactants-producing bacterial consortia of freshwater lake on petroleum-hydrocarbon degradation. Sci. Total Environ. 2021, 751, 141720. [Google Scholar] [CrossRef]
- Muthukumar, B.; Al Salhi, M.S.; Narenkumar, J.; Devanesan, S.; Tentu Nageswara, R.; Kim, W.; Rajasekar, A. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. Environ. Pollut. 2022, 304, 119223. [Google Scholar] [CrossRef]
- Chebbi, A.; Hentati, D.; Zaghden, H.; Baccar, N.; Rezgui, F.; Chalbi, M.; Sayadi, S.; Chamkha, M. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int. Biodeterior. Biodegr. 2017, 122, 128–140. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, H.; Zeng, F.; Jiang, L.; Atakpa, E.O.; Chen, G.; Zhang, C.; Xie, Q. A biosurfactant-producing yeast Rhodotorula sp.CC01 utilizing landfill leachate as nitrogen source and its broad degradation spectra of petroleum hydrocarbons. World J. Microbiol. Biotechnol. 2022, 38, 68. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Xu, W.; Tang, S.; Cao, B.; Wei, D.; Zhang, M.; Lin, J.; Li, W. Isolation and characterization of a biosurfactant producing strain Planococcus sp. XW-1 from the cold marine environment. Int. J. Environ. Res. Public Health 2022, 19, 782. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Jiang, Y.; Chen, K.; Li, J.; Zheng, C.; Gao, F.; Liu, X. One biosurfactant-producing bacteria Achromobacter sp. A-8 and its potential use in microbial enhanced oil recovery and bioremediation. Front. Microbiol. 2020, 11, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Wang, J.; Gao, C.; Zhang, Y.; Du, W. A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci. Rep. 2020, 10, 8519. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, J.; Xu, F.; Li, G.; Ma, T. An cost-effective production of bacterial exopolysaccharide emulsifier for oil pollution bioremediation. Int. Biodeterior. Biodegr. 2021, 159, 105202. [Google Scholar] [CrossRef]
- Chettri, B.; Singha, N.A.; Mukherjee, A.; Rai, A.N.; Chattopadhyay, D.; Singh, A.K. Hydrocarbon degradation potential and competitive persistence of hydrocarbonoclastic bacterium Acinetobacter pittii strain ABC. Arch. Microbiol. 2019, 201, 1129–1140. [Google Scholar] [CrossRef]
- Arora, P.; Kshirsagar, P.R.; Rana, D.P.; Dhakephalkar, P.K. Hyperthermophilic Clostridium sp. N-4 produced a glycoprotein biosurfactant that enhanced recovery of residual oil at 96 °C in lab studies. Colloids Surf. B Biointerfaces 2019, 182, 110372. [Google Scholar] [CrossRef]
- Chaprao, M.J.; da Silva, R.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Production of a biosurfactant from Bacillus methylotrophicus UCP1616 for use in the bioremediation of oil-contaminated environments. Ecotoxicology 2018, 27, 1310–1322. [Google Scholar] [CrossRef]
- Pi, Y.; Chen, B.; Bao, M.; Fan, F.; Cai, Q.; Ze, L.; Zhang, B. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour. Technol. 2017, 232, 263–269. [Google Scholar] [CrossRef]
- Bell, T.H.; Yergeau, E.; Maynard, C.; Juck, D.; Whyte, L.G.; Greer, C.W. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 2013, 7, 1200–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Romantschuk, M.; Bang-Andreasen, T.; Rantalainen, A.-L.; Sinkkonen, A. Nitrogen fertilizers stimulate desorption and biodegradation of gasoline aromatics in the soil from high arctic permafrost active layer: A laboratory study. Int. Biodeterior. Biodegr. 2020, 150, 104957. [Google Scholar] [CrossRef]
- Staninska-Pięta, J.; Czarny, J.; Juzwa, W.; Wolko, Ł.; Cyplik, P.; Piotrowska-Cyplik, A. Dose–Response Effect of Nitrogen on Microbial Community during Hydrocarbon Biodegradation in Simplified Model System. Appl. Sci. 2022, 12, 6012. [Google Scholar] [CrossRef]
- Piehler, M.F.; Swistak, J.G.; Pinckney, J.L.; Paerl, H.W. Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microb. Ecol. 1999, 38, 69–78. [Google Scholar] [CrossRef]
- Borges, M.T.; Nascimento, A.G.; Rocha, U.N.; Tótola, M.R. Nitrogen starvation affects bacterial adhesion to soil. Braz. J. Microbiol. 2008, 39, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Koren, O.; Knezevic, V.; Ron, E.Z.; Rosenberg, E. Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl. Environ. Microbiol. 2003, 69, 6337–6339. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Du, J.; Bahar, M.M.; Wang, H.; Subashchandrabose, S.; Duan, L.; Yang, X.; Megharaj, M.; Zhao, Q.; Zhang, W.; et al. Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil. Chemosphere 2021, 271, 129566. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.J.; Liu, H.C.; Zhou, Y.G.; Wu, X.L.; Nie, Y.; Kang, Y.Q.; Cai, M. Azospirillum oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. Syst. Appl. Microbiol. 2021, 44, 126171. [Google Scholar] [CrossRef]
- Dickel, O.; Knackmuss, H.J. Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. QT-1. Arch. Microbiol. 1991, 157, 76–79. [Google Scholar] [CrossRef]
- Tikariha, H.; Purohit, H.J. Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics 2019, 111, 1824–1830. [Google Scholar] [CrossRef]
- Chaudhary, D.K.; Bajagain, R.; Jeong, S.W.; Kim, J. Development of a bacterial consortium comprising oil-degraders and diazotrophic bacteria for elimination of exogenous nitrogen requirement in bioremediation of diesel-contaminated soil. World J. Microb. Biot. 2019, 35, 99. [Google Scholar] [CrossRef] [PubMed]
- Tanunchai, B.; Kalkhof, S.; Guliyev, V.; Wahdan, S.F.M.; Krstic, D.; Schadler, M.; Geissler, A.; Glaser, B.; Buscot, F.; Blagodatskaya, E.; et al. Nitrogen fixing bacteria facilitate microbial biodegradation of a bio-based and biodegradable plastic in soils under ambient and future climatic conditions. Environ. Sci. Process. Impacts 2022, 24, 233–241. [Google Scholar] [CrossRef] [PubMed]
Species | Type | Name | Degrading Substances | Degradation Rate | References |
---|---|---|---|---|---|
E. coli | Artificial | E. coli GEC137 pCEc47ΔJ | n-Dodecane | / | [83] |
E. coli DH5a pCom8-Gpo1 AlkB | Diesel oil | 24 h from 31% to 50% | [84] | ||
Pseudomonas sp. | Wild | Pseudomonas qingdaonensis ZCR6 | Petroleum hydrocarbons | 76.52% | [75] |
P. aeruginosa pp4 | Crude oil | 86% | [89] | ||
P. aeruginosa AKS1 | Crude oil | 0.038 for 1 day | [90] | ||
Pseudomonas sp. strain SA3 | Naphthalene | 98.74 for 4 days | [91] | ||
Pseudomonas brassicacearum MPDS | Dibenzofuran | 65.7% for 4 days | [92] | ||
Pseudomonas sp. strain NEE2 | n-Hexane | 60% for 2 days | [93] | ||
Pseudomonas sp. Sp48 | Crude oil | 89% for 6 days | [94] | ||
P. aeruginosa L10 | C10–C26 n-alkanes | ND | [95] | ||
P. putida strain KD6 | Petroleum hydrocarbons | 97.729% for 12 days | [96] | ||
P. aeruginosa strain ASP-53 | Pyrene | 30.1% after 144 h | [97] | ||
P. aeruginosa ZS1 | Crude oil | 50% for 12 days | [98] | ||
Artificial | P. putida KT2440R (NAH7) | Naphthalene | / | [87] | |
P. pseudo alcaligenes CECT 5344 evolved | Furfural and furoic acid | / | [88] | ||
Bacillus sp. | Wild | Bacillus marsiflavi Bac 144 | Crude oil | 65% for 5 days | [99] |
Bacillus sp. AKS2 | Crude oil | 0.020 for 1 day | [90] | ||
Bacillus subtilis strain Al-Dhabi-130 | Crude oil | 89% for 2 days | [100] | ||
B. subtilis RSL-2 | Crude oil | ND | [101] | ||
Bacillus cereus T-04 | Crude oil | 60%–80% | [102] | ||
Bacillus safensis strain ZY16 | n-Hexadecane | 98.20% | [103] | ||
B. subtilis MG495086 | Light paraffin oil | 91.3 ± 5% | [104] | ||
B. cereus S13 | Anthracene | 82.29% for 120 h | [105] | ||
Bacillus thuringiensis AT.ISM.1 | Anthracene | 91% | [106] | ||
Bacillus spp. B6 | PAHs | 11%–83% | [107] | ||
Bacillus subtilis (M16K and M19F) | Crude oil | >94.0% | [108] |
Name | Culture Conditions | Surfactant Production Capacity | Emulsifying Ability | Degradability | Features | References |
---|---|---|---|---|---|---|
P. aeruginosa sp. PP4 | 37 °C, pH 7, MSM broth, 150 rpm | ND | ND | Biodegradation efficiency of crude oil reached 78% for 15 days | Acid tolerant | [140] |
Pseudomonas sp. strain W10 | 37 °C and 180 rpm | Produced biosurfactant BSW10 (2 g/L) | Reduced the surface tension to 32 mN/m | Degradation of phenanthrene reached 80% | / | [141] |
Rhodotorula sp. CC01 | 30 °C, 180 rpm, pH 6.5–7.0 fermentation medium | Production rate: 163.33 mg/L for one hour yield: 1360 mg/L at 50 h | Reduced the surface tension of water to 34.77 ± 0.63 mN/m | Olive oil was determined as the best sole carbon source | Removes NH4⁺–N | [142] |
Planococcus sp. XW-1 | pH 7.4, 2216E liquid medium | Glycolipid-type biosurfactant | Reduced the surface tension of water to 26.8 mN/m | After 21 days, 54% of crude oil was degraded | Cold adapted | [143] |
Achromobacter sp. A-8 | 30 °C, pH 7, and 10 g/L NaCl | ND | Decreased the viscosity of petroleum by about 45% | The biodegradation of petroleum reached 56.23–73.87% for 20 days | Salt tolerant | [144] |
Bacillus licheniformis strain DM-1 | 45 °C, LB liquid medium | Exopolysaccharide | Viscosity of the crude oil was reduced by 40% | The degradation of n-octadecane was 81.33% | Tolerates high temperature | [145] |
Geobacillus stearothermophilus DG1 | 45–75 °C, fermentation medium | Exopolysaccharide | ND | / | Tolerates high temperature | [146] |
A. pittii strain ABC | 25 ± 2 °C, darkness, 130 rpm | Produced lipopeptide biosurfactant (0.57 g/L) | Emulsification index (E24 65.26 ± 1.2%), | Degraded 88% and 99.8% of n-hexane | Tolerates heavy metal salts | [147] |
Clostridium sp. N-4 | pH 7, 96 °C, 4% salinity | Glycoprotein | Reduced the surface tension of water to 32 ± 0.4 mN/m | ND | Tolerates high temperature | [148] |
Bacillus methylotrophicus UCP1616 | 28 °C, pH 7, solid fermentation medium | Concentration of lipopeptide (10.0 g/L) | Reduced the surface tension of water to 29 mN/m | ND | / | [149] |
R. erythropolis M-25 | ND | ND | ND | 70.7% of the crude oil was degraded after 30 days | / | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Ding, M.; Yuan, Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering 2023, 10, 347. https://doi.org/10.3390/bioengineering10030347
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering. 2023; 10(3):347. https://doi.org/10.3390/bioengineering10030347
Chicago/Turabian StyleWang, Minzhen, Mingzhu Ding, and Yingjin Yuan. 2023. "Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants" Bioengineering 10, no. 3: 347. https://doi.org/10.3390/bioengineering10030347
APA StyleWang, M., Ding, M., & Yuan, Y. (2023). Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering, 10(3), 347. https://doi.org/10.3390/bioengineering10030347