The Soft Prefabricated Orthopedic Insole Decreases Plantar Pressure during Uphill Walking with Heavy Load Carriage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Insoles
2.3. Experimental Protocol
2.4. Statistics
3. Results
3.1. Hardness of Insole
3.2. Peak Plantar Pressure
3.3. Pressure–Time Integral
3.4. Contact Area
3.5. Median Frequency of EMG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Yoon, Y.J.; Shin, C.S. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking. J. Appl. Biomech. 2017, 33, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Bhattacharyya, D.; Chatterjee, T.; Majumdar, D. Effect of uphill walking with varying grade and speed during load carriage on muscle activity. Ergonomics 2016, 59, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.S.; Low, D.C. Military load carriage effects on the gait of military personnel: A systematic review. Appl. Ergon. 2021, 93, 103376. [Google Scholar] [CrossRef]
- Grampp, J.; Willson, J.; Kernozek, T. The plantar loading variations to uphill and downhill gradients during treadmill walking. Foot Ankle Int. 2000, 21, 227–231. [Google Scholar] [CrossRef]
- Melia, G.; Siegkas, P.; Levick, J.; Apps, C. Insoles of uniform softer material reduced plantar pressure compared to dual-material insoles during regular and loaded gait. Appl. Ergon. 2021, 91, 103298. [Google Scholar] [CrossRef] [PubMed]
- Hurd, W.J.; Kavros, S.J.; Kaufman, K.R. Comparative biomechanical effectiveness of over-the-counter devices for individuals with a flexible flatfoot secondary to forefoot varus. Clin. J. Sport Med. 2010, 20, 428–435. [Google Scholar] [CrossRef]
- Huang, Y.P.; Peng, H.T.; Wang, X.; Chen, Z.R.; Song, C.Y. The arch support insoles show benefits to people with flatfoot on stance time, cadence, plantar pressure and contact area. PLoS ONE 2020, 15, e0237382. [Google Scholar] [CrossRef]
- Aminian, G.; Safaeepour, Z.; Farhoodi, M.; Pezeshk, A.F.; Saeedi, H.; Majddoleslam, B. The effect of prefabricated and proprioceptive foot orthoses on plantar pressure distribution in patients with flexible flatfoot during walking. Prosthet Orthot. Int. 2013, 37, 227–232. [Google Scholar] [CrossRef]
- Peduzzi de Castro, M.; Abreu, S.; Pinto, V.; Santos, R.; Machado, L.; Vaz, M.; Vilas-Boas, J.P. Influence of pressure-relief insoles developed for loaded gait (backpackers and obese people) on plantar pressure distribution and ground reaction forces. Appl. Ergon. 2014, 45, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Cha, E.J.; Kim, K.A.; Won, Y.; Kim, J.J. Effects of custom-made insoles on idiopathic pes cavus foot during walking. Biomed. Mater. Eng. 2015, 26 (Suppl. S1), S705–S715. [Google Scholar] [CrossRef] [Green Version]
- Kelly, L.A.; Cresswell, A.G.; Racinais, S.; Whiteley, R.; Lichtwark, G. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. J. R. Soc. Interface 2014, 11, 20131188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, H.; Nigg, B.M.; de Koning, J. Relationship between plantar pressure distribution under the foot and insole comfort. Clin. Biomech. 1994, 9, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Mo, Z.; Guo, J.; Fan, Y. The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot. J. Healthc. Eng. 2017, 2017, 8614341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheykhi-Dolagh, R.; Saeedi, H.; Farahmand, B.; Kamyab, M.; Kamali, M.; Gholizadeh, H.; Derayatifar, A.A.; Curran, S. The influence of foot orthoses on foot mobility magnitude and arch height index in adults with flexible flat feet. Prosthet Orthot. Int. 2015, 39, 190–196. [Google Scholar] [CrossRef]
- Pan, J.-X.; Lam, W.-K.; Lung-Wai Sze, P.; Tan, M.F.; Leung, A.K.-L. Influence of Arch-Support Orthoses with Heel Lift Manipulation on Joint Moments and Forefoot Mechanics in Running. Appl. Sci. 2021, 11, 1613. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Forriol, F.; Pascual, J. Footprint analysis between three and seventeen years of age. Foot Ankle 1990, 11, 101–104. [Google Scholar] [CrossRef]
- Gonzalez-Martin, C.; Pita-Fernandez, S.; Seoane-Pillado, T.; Lopez-Calviño, B.; Pertega-Diaz, S.; Gil-Guillen, V. Variability between Clarke’s angle and Chippaux-Smirak index for the diagnosis of flat feet. Colomb. Med. 2017, 48, 25–31. [Google Scholar] [CrossRef]
- Zuil-Escobar, J.C.; Martínez-Cepa, C.B.; Martín-Urrialde, J.A.; Gómez-Conesa, A. Medial Longitudinal Arch: Accuracy, Reliability, and Correlation Between Navicular Drop Test and Footprint Parameters. J. Manip. Physiol. Ther. 2018, 41, 672–679. [Google Scholar] [CrossRef]
- Alsancak, S.; Guner, S.; Güven, E.; Özgün, A.K.; Akkaş, Y.; Alkıs, N. Paediatric flat foot and foot dimension in Central Anatolia. BMC Pediatr. 2021, 21, 200. [Google Scholar] [CrossRef]
- Jones, H.L.; Jammeh, L.; Owens, S.; Fulford, A.J.; Moore, S.E.; Pettifor, J.M.; Prentice, A. Prevalence of rickets-like bone deformities in rural Gambian children. Bone 2015, 77, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.E.; Shih, Y.C. Biomechanical Study on the Workload of Porters; Institute of Labor, Occupational Safety and Health, Ministry of Labor: New Taipei City, Taiwan, 2019. [Google Scholar]
- Mountaineering-Rules and Regulations. Available online: https://baltistantours.com/tours/mountaineering-in-pakistan/mountaineering-rules-and-regulations/ (accessed on 1 January 2022).
- Park, H.; Branson, D.; Petrova, A.; Peksoz, S.; Jacobson, B.; Warren, A.; Goad, C.; Kamenidis, P. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort. Ergonomics 2013, 56, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Abreu, S.; Sousa, H.; Machado, L.; Santos, R.; Vilas-Boas, J.P. Ground reaction forces and plantar pressure distribution during occasional loaded gait. Appl. Ergon. 2013, 44, 503–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellstrand Tang, U.; Zügner, R.; Lisovskaja, V.; Karlsson, J.; Hagberg, K.; Tranberg, R. Comparison of plantar pressure in three types of insole given to patients with diabetes at risk of developing foot ulcers—A two-year, randomized trial. J. Clin. Transl. Endocrinol. 2014, 1, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Celebrini, R.G.; Eng, J.J.; Miller, W.C.; Ekegren, C.L.; Johnston, J.D.; MacIntyre, D.L. The effect of a novel movement strategy in decreasing ACL risk factors in female adolescent soccer players. J. Strength Cond. Res. 2012, 26, 3406–3417. [Google Scholar] [CrossRef] [Green Version]
- Onate, J.; Cortes, N.; Welch, C.; Van Lunen, B.L. Expert versus novice interrater reliability and criterion validity of the landing error scoring system. J. Sport Rehabil. 2010, 19, 41–56. [Google Scholar] [CrossRef]
- Yang, C.; Yao, W.; Garrett, W.E.; Givens, D.L.; Hacke, J.; Liu, H.; Yu, B. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks. Am. J. Sport. Med. 2018, 46, 3014–3022. [Google Scholar] [CrossRef]
- Begalle, R.L.; Walsh, M.C.; McGrath, M.L.; Boling, M.C.; Blackburn, J.T.; Padua, D.A. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement. J. Appl. Biomech. 2015, 31, 205–210. [Google Scholar] [CrossRef]
- Peng, H.T. Changes in biomechanical properties during drop jumps of incremental height. J. Strength Cond. Res. 2011, 25, 2510–2518. [Google Scholar] [CrossRef]
- Peng, H.T.; Kernozek, T.W.; Song, C.Y. Quadricep and hamstring activation during drop jumps with changes in drop height. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sport. Med. 2011, 12, 127–132. [Google Scholar] [CrossRef]
- Killen, B.S.; Zelizney, K.L.; Ye, X. Crossover Effects of Unilateral Static Stretching and Foam Rolling on Contralateral Hamstring Flexibility and Strength. J. Sport Rehabil. 2019, 28, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G.S.; Harrison, I. Gait and neuromuscular dynamics during level and uphill walking carrying military loads. Eur. J. Sport Sci. 2022, 22, 1364–1373. [Google Scholar] [CrossRef]
- Ye, X.; Killen, B.S.; Zelizney, K.L.; Miller, W.M.; Jeon, S. Unilateral hamstring foam rolling does not impair strength but the rate of force development of the contralateral muscle. PeerJ 2019, 7, e7028. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, J.B.; Joubert, J.E.; Diefenthaeler, F.; Trinity, J.D. Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Trans. Bio-Med. Eng. 2008, 55, 2666–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, H. The effect of backpack load on muscle activities of the trunk and lower extremities and plantar foot pressure in flatfoot. J. Phys. Ther. Sci. 2013, 25, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Cram, J.R.; Kasman, G.S.; Holtz, J. Introduction to Surface Electromyography; Aspen Publishers: Boston, MA, USA, 1998. [Google Scholar]
- Simpson, K.M.; Munro, B.J.; Steele, J.R. Backpack load affects lower limb muscle activity patterns of female hikers during prolonged load carriage. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2011, 21, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Raisbeck, L.D. The Effects of Attentional Focus Instructions Specific to Body Movements on Movement Quality and Performance. J. Sport Rehabil. 2020, 30, 422–429. [Google Scholar] [CrossRef]
- Hinde, K.; Lloyd, R.; Low, C.; Cooke, C. The effect of temperature, gradient, and load carriage on oxygen consumption, posture, and gait characteristics. Eur. J. Appl. Physiol. 2017, 117, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Olthof, S.B.H.; Frencken, W.G.P.; Lemmink, K. Match-derived relative pitch area changes the physical and team tactical performance of elite soccer players in small-sided soccer games. J. Sport. Sci. 2018, 36, 1557–1563. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Chang, N.J.; Wu, W.L.; Guo, L.Y.; Chu, I.H. Acute Effects of Foam Rolling, Static Stretching, and Dynamic Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults. J. Sport Rehabil. 2017, 26, 469–477. [Google Scholar] [CrossRef]
- Baumgart, C.; Freiwald, J.; Kühnemann, M.; Hotfiel, T.; Hüttel, M.; Hoppe, M.W. Foam Rolling of the Calf and Anterior Thigh: Biomechanical Loads and Acute Effects on Vertical Jump Height and Muscle Stiffness. Sports 2019, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birrell, S.A.; Haslam, R.A. The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl. Ergon. 2010, 41, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Mandaresu, S.; Leban, B.; Nussbaum, M.A. Short-term effects of backpack carriage on plantar pressure and gait in schoolchildren. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2015, 25, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Wearing, S.C.; Smeathers, J.E.; Urry, S.R.; Hennig, E.M.; Hills, A.P. The pathomechanics of plantar fasciitis. Sport. Med. 2006, 36, 585–611. [Google Scholar] [CrossRef] [PubMed]
- Redmond, A.C.; Landorf, K.B.; Keenan, A.M. Contoured, prefabricated foot orthoses demonstrate comparable mechanical properties to contoured, customised foot orthoses: A plantar pressure study. J. Foot Ankle Res. 2009, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Davis, I.M.; Laughton, C.M.; Hughes, M. Dual-function foot orthosis: Effect on shock and control of rearfoot motion. Foot Ankle Int. 2003, 24, 410–414. [Google Scholar] [CrossRef]
- Sprigle, S.; Chung, K.C.; Brubaker, C.E. Reduction of sitting pressures with custom contoured cushions. J. Rehabil. Res. Dev. 1990, 27, 135–140. [Google Scholar] [CrossRef]
- Tsung, B.Y.; Zhang, M.; Mak, A.F.; Wong, M.W. Effectiveness of insoles on plantar pressure redistribution. J. Rehabil. Res. Dev. 2004, 41, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.E.; Reading, J.E.; Daley, J.L.; Hodgdon, J.A.; Pozos, R.S. A Physiological and Biomechanical Evaluation of Commercial Load-Bearing Ensembles for the US Marine Corps; Naval Health Research Center: San Diego, CA, USA, 1996. [Google Scholar]
Participants (n = 15) | |
---|---|
age (years) | 20.4 ± 1.0 |
height (cm) | 176.9 ± 5.7 |
weight (kg) | 76.5 ± 9.0 |
foot length (cm) | 26.45 ± 1.28 |
foot type (n) | |
high arch | 3 |
low arch | 10 |
normal arch | 2 |
leg type (n) | |
knock knee | 3 |
bow knee | 3 |
normal knee | 9 |
MI | HI | SI | FI | p Value | Effect Size | Power | |
---|---|---|---|---|---|---|---|
Fore-foot | 25.4 ± 1.14 b,c | 52.4 ± 0.54 a,c,d | 22.0 ± 0.7 a,b,d | 26.8 ± 1.09 b,c | 0.001 | 0.996 | 1.00 |
Mid-foot | 29.4 ± 1.14 b,c,d | 51.4 ± 0.54 a,c,d | 16.6 ± 1.81 a,b,d | 24.2 ± 1.64 a,b,c | 0.001 | 0.999 | 1.00 |
Rear-foot | 20.0 ± 0.7 b,d | 50.0 ± 0.7 a,c,d | 19.6 ± 0.89 b,d | 26.6 ± 1.14 a,b,c | 0.001 | 0.997 | 1.00 |
MI | HI | SI | FI | p Value | Effect Size | Power | |
---|---|---|---|---|---|---|---|
hallux | 154.13 ± 45.18 b | 248.66 ± 81.95 a,c,d | 159.26 ± 63.60 b | 134.53 ± 78.84 b | 0.001 | 0.614 | 1.00 |
2nd toe | 76.00 ± 21.77 b | 131.66 ± 52.55 a,c,d | 87.06 ± 39.80 b | 83.80 ± 40.75 b | 0.006 | 0.425 | 0.848 |
3rd toe | 57.40 ± 27.48 b | 105.66 ± 32.93 a,c,d | 62.80 ± 34.60 b | 66.00 ± 62.38 b | 0.001 | 0.480 | 1.00 |
4th and 5th toe | 49.13 ± 26.93 b | 85.86 ± 44.37 a,c,d | 55.93 ± 34.98 b | 50.33 ± 34.89 b | 0.001 | 0.537 | 1.00 |
1st metatarsal | 214.26 ± 111.68 | 231.53 ± 80.46 | 197.20 ± 89.84 | 206.73 ± 74.56 | 0.196 | 0.104 | 0.397 |
2nd metatarsal | 169.53 ± 52.18 | 179.93 ± 47.20 | 168.60 ± 32.98 | 173.80 ± 49.24 | 0.621 | 0.041 | 0.163 |
3rd metatarsal | 160.60 ± 49.07 | 182.40 ± 73.95 | 154.53 ± 42.07 | 175.53 ± 65.53 | 0.082 | 0.146 | 0.558 |
4th metatarsal | 116.13 ± 33.69 | 136.86 ± 56.79 | 117.93 ± 30.60 | 130.53 ± 46.43 | 0.203 | 0.113 | 0.238 |
5th metatarsal | 83.06 ± 26.54 d | 90.80 ± 27.27 | 84.26 ± 18.12 d | 108.86 ± 36.68 a,c | 0.003 | 0.279 | 0.913 |
mid-foot | 104.40 ± 47.75 | 121.40 ± 37.14 c | 91.26 ± 18.29 b | 111.13 ± 34.74 | 0.020 | 0.207 | 0.759 |
medial heel | 133.73 ± 50.13 | 128.40 ± 42.99 | 131.60 ± 34.98 | 160.53 ± 55.52 | 0.062 | 0.159 | 0.604 |
lateral heel | 104.20 ± 26.72 d | 104.86 ± 43.81 d | 108.80 ± 35.41 d | 140.53 ± 52.71 a,b,c | 0.001 | 0.374 | 0.988 |
MI | HI | SI | FI | p Value | Effect Size | Power | |
---|---|---|---|---|---|---|---|
hallux | 24.10 ± 6.10 b | 43.73 ± 11.99 a,c,d | 27.00 ± 7.57 b | 24.32 ± 10.95 b | 0.001 | 0.617 | 0.993 |
2nd toe | 14.23 ± 4.80 b | 25.08 ± 8.71 a,c | 17.20 ± 5.89 b | 16.84 ± 7.97 | 0.001 | 0.401 | 0.994 |
3rd toe | 11.14 ± 4.53 b | 21.70 ± 7.05 a,c,d | 12.26 ± 5.59 b | 11.98 ± 10.33 b | 0.001 | 0.515 | 1.00 |
4th and 5th toe | 8.12 ± 3.80 b | 16.31 ± 9.27 a,c,d | 10.01 ± 6.97 b | 7.68 ± 6.40 b | 0.001 | 0.489 | 1.00 |
1st metatarsal | 39.98 ± 18.69 | 46.14 ± 16.50 | 40.82 ± 15.49 | 43.15 ± 17.94 | 0.274 | 0.087 | 0.331 |
2nd metatarsal | 33.90 ± 9.33 | 36.78 ± 8.37 | 36.42 ± 8.25 | 38.40 ± 10.91 | 0.418 | 0.064 | 0.254 |
3rd metatarsal | 32.46 ± 7.62 | 35.76 ± 9.87 | 33.65 ± 7.68 | 37.51 ± 11.42 | 0.193 | 0.105 | 0.401 |
4th metatarsal | 26.09 ± 6.00 | 30.39 ± 7.18 | 28.42 ± 5.74 | 31.43 ± 10.77 | 0.125 | 0.126 | 0.483 |
5th metatarsal | 20.38 ± 6.33 | 25.48 ± 10.67 | 23.32 ± 6.60 | 27.76 ± 12.58 | 0.041 | 0.177 | 0.666 |
mid-foot | 26.94 ± 6.58 | 31.68 ± 8.25 | 26.00 ± 4.59 | 29.10 ± 5.78 | 0.024 | 0.200 | 0.739 |
medial heel | 34.02 ± 15.27 | 32.56 ± 9.30 | 35.31 ± 10.59 | 39.23 ± 12.32 | 0.354 | 0.074 | 0.279 |
lateral heel | 25.44 ± 4.98 d | 26.35 ± 9.67 | 28.17 ± 10.25 | 32.62 ± 10.74 a | 0.034 | 0.184 | 0.692 |
MI | HI | SI | FI | p Value | Effect Size | Power | |
---|---|---|---|---|---|---|---|
hallux | 6.52 ± 1.88 | 7.44 ± 1.52 d | 5.92 ± 2.44 | 5.25 ± 2.24 b | 0.001 | 0.348 | 0.977 |
2nd toe | 3.38 ± 0.89 | 3.27 ± 0.81 | 3.60 ± 1.36 | 3.59 ± 1.07 | 0.741 | 0.029 | 0.126 |
3rd toe | 2.59 ± 0.87 | 2.89 ± 0.73 | 2.98 ± 1.14 | 2.74 ± 1.36 | 0.482 | 0.036 | 0.103 |
4th and 5th toe | 1.53 ± 1.07 | 2.04 ± 0.72 | 1.51 ± 0.84 | 1.60 ± 1.26 | 0.069 | 0.154 | 0.586 |
1st metatarsal | 14.54 ± 1.87 | 13.73 ± 1.86 c | 15.66 ± 2.51 b | 14.82 ± 1.67 | 0.004 | 0.270 | 0.899 |
2nd metatarsal | 9.14 ± 1.13 | 8.54 ± 1.23 c | 10.07 ± 1.51 b | 9.61 ± 1.56 | 0.001 | 0.346 | 0.976 |
3rd metatarsal | 9.14 ± 1.53 | 8.66 ± 1.29 c | 9.98 ± 1.42 b | 9.46 ± 1.76 | 0.010 | 0.234 | 0.830 |
4th metatarsal | 8.19 ± 1.66 | 7.74 ± 1.88 c | 9.08 ± 1.53 b | 8.42 ± 1.92 | 0.048 | 0.170 | 0.644 |
5th metatarsal | 7.92 ± 2.84 | 7.22 ± 2.36 | 8.75 ± 1.67 | 8.07 ± 2.83 | 0.188 | 0.107 | 0.406 |
mid-foot | 42.83 ± 10.43 | 41.85 ± 8.89 | 44.55± 9.69 | 41.54 ± 11.03 | 0.631 | 0.04 | 0.16 |
medial heel | 21.17 ± 2.35 | 21.34 ± 1.75 | 20.30 ± 1.96 | 21.80 ± 2.67 | 0.202 | 0.103 | 0.391 |
lateral heel | 21.58 ± 3.46 | 21.39 ± 2.22 | 19.93 ± 2.56 | 21.96 ± 3.24 | 0.100 | 0.137 | 0.523 |
MI | HI | SI | FI | ||
---|---|---|---|---|---|
AT e | T1 | 94.27 ± 22.13 | 97.51 ± 12.67 | 95.39 ± 19.61 | 98.22 ± 10.75 |
T2 | 92.40 ± 22.87 | 94.93 ± 12.66 | 91.27 ± 18.84 | 91.23 ± 15.51 | |
GA | T1 | 103.94 ± 16.10 | 102.39 ± 23.10 | 102.85 ± 18.49 | 100.70 ± 7.77 |
T2 | 106.86 ± 14.61 | 106.44 ± 18.54 | 96.84 ± 23.10 | 99.00 ± 14.64 | |
RF | T1 | 99.83 ± 25.04 | 103.06 ± 17.67 | 100.39 ± 10.11 | 105.78 ± 14.39 |
T2 | 101.12 ± 20.05 | 101.50 ± 10.49 | 98.10 ± 12.46 | 106.13 ± 15.35 | |
BF | T1 | 91.29 ± 21.45 | 85.28 ± 21.50 | 92.12 ± 12.59 | 90.15 ± 14.71 |
T2 | 93.36 ± 19.59 | 89.94 ± 16.80 | 94.66 ± 12.83 | 87.61 ± 20.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.-T.; Liu, L.-W.; Chen, C.-J.; Chen, Z.-R. The Soft Prefabricated Orthopedic Insole Decreases Plantar Pressure during Uphill Walking with Heavy Load Carriage. Bioengineering 2023, 10, 353. https://doi.org/10.3390/bioengineering10030353
Peng H-T, Liu L-W, Chen C-J, Chen Z-R. The Soft Prefabricated Orthopedic Insole Decreases Plantar Pressure during Uphill Walking with Heavy Load Carriage. Bioengineering. 2023; 10(3):353. https://doi.org/10.3390/bioengineering10030353
Chicago/Turabian StylePeng, Hsien-Te, Li-Wen Liu, Chiou-Jong Chen, and Zong-Rong Chen. 2023. "The Soft Prefabricated Orthopedic Insole Decreases Plantar Pressure during Uphill Walking with Heavy Load Carriage" Bioengineering 10, no. 3: 353. https://doi.org/10.3390/bioengineering10030353
APA StylePeng, H. -T., Liu, L. -W., Chen, C. -J., & Chen, Z. -R. (2023). The Soft Prefabricated Orthopedic Insole Decreases Plantar Pressure during Uphill Walking with Heavy Load Carriage. Bioengineering, 10(3), 353. https://doi.org/10.3390/bioengineering10030353