Gender Differences in Lower Extremity Stiffness during a Single-Leg Landing Motion in Badminton
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Preparation for Testing
2.3. Test Procedure
2.4. Leg and Knee Stiffness Calculations
2.5. Data Processing and Analysis
3. Results
3.1. Leg Stiffness
3.2. Knee Joint Stiffness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagano, Y.; Sasaki, S.; Higashihara, A.; Ichikawa, H. Movements with greater trunk accelerations and their properties during badminton games. Sports Biomech. 2020, 19, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Shao, E.; Lu, Z.; Cen, X.; Zheng, Z.; Sun, D.; Gu, Y. The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds. Diagnostics 2022, 12, 1470. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.Y. Anterior cruciate ligament injuries in female athletes: Prevention strategies. Instr. Course Lect. 2002, 51, 311–314. [Google Scholar] [PubMed]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Olsen, O.-E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef]
- Kimura, Y.; Ishibashi, Y.; Tsuda, E.; Yamamoto, Y.; Tsukada, H.; Toh, S. Mechanisms for anterior cruciate ligament injuries in badminton. Br. J. Sports Med. 2010, 44, 1124–1127. [Google Scholar] [CrossRef]
- Griffin, L.Y.; Albohm, M.J.; Arendt, E.A.; Bahr, R.; Beynnon, B.D.; DeMaio, M.; Dick, R.W.; Engebretsen, L.; Garrett, W.E.; Hannafin, J.A.; et al. Understanding and preventing noncontact anterior cruciate ligament injuries: A review of the Hunt Valley II meeting, January 2005. Am. J. Sports Med. 2006, 34, 1512–1532. [Google Scholar] [CrossRef]
- Biedert, R.; Bachmann, M. Women’s soccer. Injuries, risks, and prevention. Orthopade 2005, 34, 448–453. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Reducing knee and anterior cruciate ligament injuries among female athletes: A systematic review of neuromuscular training interventions. J. Knee Surg. 2005, 18, 82–88. [Google Scholar] [CrossRef]
- Posthumus, M.; September, A.V.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am. J. Sports Med. 2009, 37, 2234–2240. [Google Scholar] [CrossRef]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L. Noncontact anterior cruciate ligament injuries: Risk factors and prevention strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.; Padua, D.; Wilson, S.; Kinesiology. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J. Electromyogr. Kinesiol. 2002, 12, 127–135. [Google Scholar] [CrossRef]
- Butler, R.J.; Crowell III, H.P.; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L.; Zatsiorsky, V.M. Joint stiffness: Myth or reality? Hum. Mov. Sci. 1993, 12, 653–692. [Google Scholar] [CrossRef]
- Blickhan, R. The spring-mass model for running and hopping. J. Biomech. 1989, 22, 1217–1227. [Google Scholar] [CrossRef]
- Hunter, I.; Kearney, R. Dynamics of human ankle stiffness: Variation with mean ankle torque. J. Biomech. 1982, 15, 747–752. [Google Scholar] [CrossRef]
- Julian, F.J.; Sollins, M.R. Variation of muscle stiffness with force at increasing speeds of shortening. J. Gen. Physiol. 1975, 66, 287–302. [Google Scholar] [CrossRef]
- Weiss, P.; Hunter, I.; Kearney, R. Human ankle joint stiffness over the full range of muscle activation levels. J. Biomech. 1988, 21, 539–544. [Google Scholar] [CrossRef]
- Kearney, R.; Stein, R.; Parameswaran, L. Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans. Biomed. Eng. 1997, 44, 493–504. [Google Scholar] [CrossRef]
- Farley, C.T.; Morgenroth, D.C. Leg stiffness primarily depends on ankle stiffness during human hopping. J. Biomec. 1999, 32, 267–273. [Google Scholar] [CrossRef]
- Greene, P.R.; McMahon, T.A. Reflex stiffness of man’s anti-gravity muscles during kneebends while carrying extra weights. J. Biomech. 1979, 12, 881–891. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.A.; Valiant, G.; Frederick, E.C. Groucho running. J. Appl. Physiol. 1987, 62, 2326–2337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Q.; Nuber, G.; Butler, J.; Bowen, M.; Rymer, W.Z. In vivo human knee joint dynamic properties as functions of muscle contraction and joint position. J. Biomech. 1997, 31, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Serpell, B.G.; Ball, N.; Scarvell, J.; Smith, P.N. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J. Sports Sci. 2012, 30, 1347–1363. [Google Scholar] [CrossRef] [PubMed]
- Granata, K.P.; Wilson, S.E.; Padua, D.A. Gender differences in active musculoskeletal stiffness. Part I.: Quantification in controlled measurements of knee joint dynamics. J. Electromyogr. Kinesiol. 2002, 12, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Hennig, E.M.; Lafortune, M.A. Relationships between ground reaction force and tibial bone acceleration parameters. J. Biomech. 1991, 7, 303–309. [Google Scholar] [CrossRef]
- Grimston, S.K.; Engsberg, J.R.; Kloiber, R.; Hanley, D.A. Bone Mass, External Loads, and Stress Fracture in Female Runners. Int. J. Sport. Biomech. 1991, 7, 293–302. [Google Scholar] [CrossRef]
- Blackburn, J.; Riemann, B.L.; Padua, D.A.; Guskiewicz, K.M. Sex comparison of extensibility, passive, and active stiffness of the knee flexors. Clin. Biomech. 2004, 19, 36–43. [Google Scholar] [CrossRef]
- Watsford, M.L.; Murphy, A.J.; McLachlan, K.A.; Bryant, A.L.; Cameron, M.L.; Crossley, K.M.; Makdissi, M. A Prospective Study of the Relationship between Lower Body Stiffness and Hamstring Injury in Professional Australian Rules Footballers. Am. J. Sports Med. 2010, 38, 2058–2064. [Google Scholar] [CrossRef]
- Wang, I.-L.; Wang, S.-Y.; Wang, L.-I. Sex differences in lower extremity stiffness and kinematics alterations during double-legged drop landings with changes in drop height. Sports Biomech. 2015, 14, 404–412. [Google Scholar] [CrossRef]
- Hughes, G.; Watkins, J. Lower limb coordination and stiffness during landing from volleyball block jumps. Res. Sports Med. 2008, 16, 138–154. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; Carcia, C.R.; Arnold, B.L.; Granata, K.P. Gender Differences in Leg Stiffness and Stiffness Recruitment Strategy During Two-Legged Hopping. J. Mot. Behav. 2005, 37, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.E.; Yan, A.F.; Orishimo, K.F.; Kremenic, I.J.; Hagins, M.; Liederbach, M.; Hiller, C.E.; Pappas, E. Comparison of lower limb stiffness between male and female dancers and athletes during drop jump landings. Scand. J. Med. Sci. Sports 2019, 29, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Hobara, H.; Kimura, K.; Omuro, K.; Gomi, K.; Muraoka, T.; Sakamoto, M.; Kanosue, K. Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects. J. Sci. Med. Sport. 2010, 13, 106–111. [Google Scholar] [CrossRef]
- Kimura, Y.; Ishibashi, Y.; Tsuda, E.; Yamamoto, Y.; Hayashi, Y.; Sato, S. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton. Br. J. Sports Med. 2012, 46, 207–213. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lephart, S.M.J.J.o.a.t. The sensorimotor system, part II: The role of proprioception in motor control and functional joint stability. J. Athl. Train. 2002, 37, 80. [Google Scholar]
- Blackburn, J.T.; Bell, D.R.; Norcross, M.F.; Hudson, J.D.; Engstrom, L.A.; Kinesiology. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J. Electromyogr. Kinesiol. 2009, 19, e362–e369. [Google Scholar] [CrossRef]
- Herda, T.J.; Costa, P.B.; Walter, A.A.; Ryan, E.D.; Hoge, K.M.; Kerksick, C.; Stout, J.R.; Cramer, J. Effects of Two Modes of Static Stretching on Muscle Strength and Stiffness. Med. Sci. Sports Exerc. 2011, 43, 1777–1784. [Google Scholar] [CrossRef]
- Ferris, D.P.; Louie, M.; Farley, C.T. Running in the real world: Adjusting leg stiffness for different surfaces. Proc. R. Soc. B: Boil. Sci. 1998, 265, 989–994. [Google Scholar] [CrossRef]
- Kuitunen, S.; Komi, P.V.; Kyröläinen, H. Knee and ankle joint stiffness in sprint running. Med. Sci. Sports Exerc. 2002, 34, 166–173. [Google Scholar] [CrossRef]
- Hobara, H.; Muraoka, T.; Omuro, K.; Gomi, K.; Sakamoto, M.; Inoue, K.; Kanosue, K. Knee stiffness is a major determinant of leg stiffness during maximal hopping. J. Biomech. 2009, 42, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Toft, E.; Kagamihara, Y. Segmental reflexes and ankle joint stiffness during co-contraction of antagonistic ankle muscles in man. Exp. Brain Res. 1994, 102, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Solomonow, M.; Baratta, R.; Zhou, B.; Shoji, H.; Bose, W.; Beck, C.; D’Ambrosia, R. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am. J. Sports Med. 1987, 15, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Lavender, S.A.; Tsuang, Y.-H.; Hafezi, A.; Anderson, G.B.J.; Chaffin, D.B.; Hughes, R.E. Coactivation of the Trunk Muscles during Asymmetric Loading of the Torso. Hum. Factors: J. Hum. Factors Ergon. Soc. 1992, 34, 239–247. [Google Scholar] [CrossRef]
- Granata, K.P.; Marras, W.S. The Influence of Trunk Muscle Coactivity on Dynamic Spinal Loads. Spine 1995, 20, 913–919. [Google Scholar] [CrossRef]
- Fagenbaum, R.; Darling, W.G. Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury. Am. J. Sports Med. 2003, 31, 233–240. [Google Scholar] [CrossRef]
- Huston, L.; Vibert, B.; Ashton-Miller, J.A.; Wojtys, E.M. Gender differences in knee angle when landing from a drop-jump. Am. J. knee Surg. 2001, 14, 215–219; discussion 219–220. [Google Scholar]
- Zhang, L.-Q.; Xu, D.; Wang, G.; Hendrix, R.W. Muscle strength in knee varus and valgus. Med. Sci. Sports Exerc. 2001, 33, 1194–1199. [Google Scholar] [CrossRef]
- Zazulak, B.T.; Paterno, M.; Myer, G.D.; Romani, W.A.; Hewett, T.E. The Effects of the Menstrual Cycle on Anterior Knee Laxity. Sports Med. 2006, 36, 847–862. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Buchanan, T.S. Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomec. 2001, 34, 1257–1267. [Google Scholar] [CrossRef]
- Besier, T.F.; Lloyd, D.G.; Ackland, T.R. Muscle Activation Strategies at the Knee during Running and Cutting Maneuvers. Med. Sci. Sports Exerc. 2003, 35, 119–127. [Google Scholar] [CrossRef] [PubMed]
Males (n = 8) | Females (n = 8) | |
---|---|---|
Age (years) | 21.5 ± 2.57 | 20.38 ± 2.19 |
Height (cm) | 178.5 ± 2.21 | 167.6 ± 5.76 |
Body weight (Kg) | 70.63 ± 6.17 | 61.38 ± 6.98 |
Experiences (years) | 9.62 ± 1.95 | 10.75 ± 2.87 |
Males | Females | p Value | |
---|---|---|---|
Change in vertical GRF (N) | 2339.16 ± 549.50 | 1235.44 ± 316.87 | 0.0002 * |
Vertical COM displacement (m) | 0.141 ± 0.025 | 0.131 ± 0.024 | 0.3852 |
Leg stiffness (KN/m) | 16.95 ± 4.17 | 9.45 ± 1.98 | 0.0004 * |
Males | Females | p Value | |
---|---|---|---|
Change in vertical GRF (BW) | 3.29 ± 0.73 | 2.03 ± 0.38 | 0.0006 * |
Vertical COM displacement (ht) | 0.079 ± 0.014 | 0.078 ± 0.013 | 0.9954 |
Leg stiffness (KN/m) | 16.95 ± 4.17 | 9.45 ± 1.98 | 0.0004 * |
Males | Females | p Value | |
---|---|---|---|
Change in knee joint moment (N.m) | 158.46 ± 32.31 | 106.67 ± 51.57 | 0.0304 * |
Knee flexion displacement (°) | 30.511 ± 3.442 | 40.989 ± 6.770 | 0.0015 * |
Knee stiffness (N.m/°) | 5.179 ± 0.789 | 2.57 ± 1.099 | 0.0002 * |
Males | Females | p Value | |
---|---|---|---|
Change in knee joint moment (BW.ht) | 0.125 ± 0.022 | 0.104 ± 0.045 | 0.2713 |
Knee flexion displacement (°) | 30.511 ± 3.442 | 40.988 ± 6.769 | 0.0015 * |
Knee stiffness (BW.ht/°) | 0.0041 ± 0.0008 | 0.0026 ± 0.001 | 0.0034 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, Z.; Li, B.; Qiu, X.; Li, M.; Meng, X.; Kim, S.; Kim, Y. Gender Differences in Lower Extremity Stiffness during a Single-Leg Landing Motion in Badminton. Bioengineering 2023, 10, 631. https://doi.org/10.3390/bioengineering10060631
Zhang Y, Hu Z, Li B, Qiu X, Li M, Meng X, Kim S, Kim Y. Gender Differences in Lower Extremity Stiffness during a Single-Leg Landing Motion in Badminton. Bioengineering. 2023; 10(6):631. https://doi.org/10.3390/bioengineering10060631
Chicago/Turabian StyleZhang, Yanan, Zhe Hu, Bairan Li, Xuan Qiu, Ming Li, Xiangwei Meng, Sukwon Kim, and Youngsuk Kim. 2023. "Gender Differences in Lower Extremity Stiffness during a Single-Leg Landing Motion in Badminton" Bioengineering 10, no. 6: 631. https://doi.org/10.3390/bioengineering10060631
APA StyleZhang, Y., Hu, Z., Li, B., Qiu, X., Li, M., Meng, X., Kim, S., & Kim, Y. (2023). Gender Differences in Lower Extremity Stiffness during a Single-Leg Landing Motion in Badminton. Bioengineering, 10(6), 631. https://doi.org/10.3390/bioengineering10060631