Intelligent Grapevine Disease Detection Using IoT Sensor Network
Abstract
:1. Introduction
- To identify the degree of attack on the leaves using classical methods;
- To deploy the sensors in the vineyard;
- To correlate the sensors data with data collected using classical methods;
- To cluster the data from the sensors to detect the numbers of diseases that can be predicted with data from sensors;
- To develop an algorithm for the automated detection of grapevine disease.
2. Materials and Methods
2.1. Plant Material and Classical Data Collection Methods
2.2. Methods and Algorithms
2.2.1. Clustering Methods
2.2.2. Classification Methods
- Precision is the ratio of correctly predicted positive observations to the total predicted positive observations (5).
- Recall is the ratio of correctly predicted positive observations to the total observations in the class (6).
- F1-Measure takes precision into consideration as well as recall, thus analyzing false-negative and false-positive values (7).
- Input nodes: this provides the network with information from the outside world, and all input nodes form the input layer together;
- Hidden Nodes: they have no direct connection to the outside world. They perform calculations and transfer information from input nodes to output nodes;
- Output nodes: these are responsible for computations and transferring information from the network to the outside world.
2.3. Data Acquisition Using IoT Technology
- (a)
- Leaf moisture—PHYTOS 311 type, designed with thin fiberglass. This sensor is dielectric, with an output voltage of [320; 1000] mV and a 3 V power supply. The sensors work in the temperature range of −30 °C and +40 °C;
- (b)
- Soil O2-SO-411 type has a 12 V power supply and works in the range of [−10; +50] degrees Celsius;
- (c)
- Moisture and temperature—SDI-12 type, has a digital output type, with a supply voltage of 12 V. The measuring range of humidity is 0–60% and temperature in the range of [−30; +70] °C. The sensors are placed at a depth of 20 cm;
- (d)
- Photosynthetically active radiation (PAR)-SQ-521 type is a digital sensor with a measurement range of [400; 700] nm;
- (e)
- Air humidity and temperature digital sensor has a temperature range of [−30 °C; + 50 °C] and an air humidity range of [0%; 100%]. It is powered to 12 V;
- (f)
- The SFM1 Sap Flow Meter measures the speed of sap flow in the stem.
2.4. Data Processing
3. Results
3.1. Disease Monitoring Using Classical Methods
3.2. Plant Physiology Determinations
3.3. Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sreekantha, D.; Kavya, A.M. Agricultural crop monitoring using IOT-a study. In Proceedings of the 2017 11th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 5–6 January 2017; pp. 134–139. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Buffara, C.R.S.; Angelotti, F.; Vieira, R.A.; Bogo, A.; Tessmann, D.J.; De Bem, B.P. Elaboration and validation of a diagrammatic scale to assess downy mildew severity in grapevine. Cienc. Rural 2014, 44, 1384–1391. [Google Scholar] [CrossRef]
- Volpi, I.; Guidotti, D.; Mammini, M.; Marchi, S. Predicting symptoms of downy mildew, powdery mildew, and gray mold diseases of grapevine through machine learning. Ital. J. Agrometeorol. 2021, 2, 57–69. [Google Scholar] [CrossRef]
- Nail, W.R.; Howell, G.S. Effects of Timing of Powdery Mildew Infection on Carbon Assimilation and Subsequent Seasonal Growth of Potted Chardonnay Grapevines. Am. J. Enol. Vitic. 2005, 56, 220–227. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. Forecasting Plant and Crop Disease: An Explorative Study on Current Algorithms. Big Data Cogn. Comput. 2021, 5, 2. [Google Scholar] [CrossRef]
- Armijo, G.; Schlechter, R.; Agurto, M.; Muñoz, D.; Muñez, C.; Arce-Johnson, P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Front. Plant Sci. 2016, 7, 382. [Google Scholar] [CrossRef] [PubMed]
- Bendel, N.; Backhaus, A.; Kicherer, A.; Köckerling, J.; Maixner, M.; Jarausch, B.; Biancu, S.; Klück, H.-C.; Seiffert, U.; Voegele, R.T.; et al. Detection of Two Different Grapevine Yellows in Vitis vinifera Using Hyperspectral Imaging. Remote Sens. 2020, 12, 4151. [Google Scholar] [CrossRef]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed]
- Subir, P.; Vinayaraj, P.; Glu, N.I.; Uto, K.; Nakamura, R.; Kumar, D.N. Canopy Averaged Chlorophyll Content Prediction of Pear Trees Using Convolutional Autoencoder on Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1426–1437. [Google Scholar]
- dos Santos, L.M.; de Souza Barbosa, B.D.; Diotto, A.V.; Andrade, M.T.; Conti, L.; Rossi, G. Determining the Leaf Area Index and Percentage of Area Covered by Coffee Crops Using UAV RGB Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6401–6411. [Google Scholar] [CrossRef]
- Ariff, E.A.R.E.; Suratman, M.N.; Abdullah, S. Stomatal conductance, chlorophyll content, diameter and height in different growth stages of rubber tree (Hevea brasiliensis) saplings. In Proceedings of the 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), Langkawi, Malaysia, 25–28 September 2011; pp. 84–88. [Google Scholar]
- Bhatia, A.; Chug, A.; Singh, A.P. Application of extreme learning machine in plant disease prediction for highly imbalanced dataset. J. Stat. Manag. Syst. 2020, 23, 1059–1068. [Google Scholar] [CrossRef]
- Oliver, S.T.; González-Pérez, A.; Guijarro, J.H. Adapting Models to Warn Fungal Diseases in Vineyards Using In-Field Internet of Things (IoT) Nodes. Sustainability 2019, 11, 416. [Google Scholar] [CrossRef]
- Trilles, S.; Lujan, A.; Belmonte-Fernández, Ó.; Montoliu, R.; Torres-Sospedra, J.; Huerta, J. SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open Standards. Sensors 2015, 15, 5555–5582. [Google Scholar] [CrossRef] [PubMed]
- Miner, G.L.; Ham, J.M.; Kluitenberg, G.J. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agric. For. Meteorol. 2017, 246, 86–97. [Google Scholar] [CrossRef]
- Sosa-Zuniga, V.; Vidal Valenzuela, A.; Barba, P.; Espinoza Cancino, C.; Romero-Romero, J.L.; Arce-Johnson, P. Powdery mildew resistance genes in vines: An opportunity to achieve a more sustainable viticulture. Pathogens 2022, 11, 703. [Google Scholar] [CrossRef] [PubMed]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]
- Onal, A.C.; Sezer, O.B.; Ozbayoglu, M.; Dogduy, E. Weather Data Analysis and Sensor Fault Detection Using An Extended IoT Framework with Semantics, Big Data, and Machine Learning. In Proceedings of the Conference: 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017. [Google Scholar]
- Fenu, G.; Malloci, F.M. An Application of Machine Learning Technique in Forecasting Crop Disease. In Proceedings of the 2019 3rd International Conference on Big Data Research, Paris, France, 20–22 November 2019; pp. 76–82. [Google Scholar]
- Gillund, G.; Shiffrin, R.M. A retrieval model for both recognition and recall. Psychol. Rev. 1984, 91, 1–67. [Google Scholar] [CrossRef] [PubMed]
- Hnatiuc, B.; Paun, M.; Sintea, S.; Hnatiuc, M. Power management for supply of IoT Systems. In Proceedings of the 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC), Crete, Greece, 19–22 July 2022; pp. 216–221. [Google Scholar] [CrossRef]
- Savin, B.C. Mihaela Hnatiuc, Methods of health improving using leaf image, Processing. In Proceedings of the EHB 2021 IEEE International Conference on e-Health and Bioengineering, Virtual Conference, 18–19 November 2021. [Google Scholar] [CrossRef]
- Ghiță, S.; Hnatiuc, M.; Ranca, A.; Artem, V.; Ciocan, M.-A. Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome. In Vegetation Dynamics, Changing Ecosystems and Human Responsibility; InTech Open Access Publisher: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Hnatiuc, M.; Alpetri, D. Prediction Using Environmental Parameters to Identify the Vine Disease. In Proceedings of the 2022 E-Health and Bioengineering Conference (EHB), Iasi, Roamania, 17–18 November 2022. [Google Scholar] [CrossRef]
- Hnatiuc, M.; Hnatiuc, B.; Ranca, A.; Sintea, S.; Artem, V.; Ghita, S. The methods for vine disease identification. In Proceedings of the 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), Virtual Conference, 27–30 October 2021. [Google Scholar] [CrossRef]
- Hnatiuc, M.; Paun, M.; Kapsamun, D. IoT Sensors System for Vineyard Monitoring. In Proceedings of the 11th International Conference on Frontiers of Intelligent Technologys, Paris, France, 16 March 2022. [Google Scholar] [CrossRef]
Disease | Air Temperature [°C] | Air Humidity [%] | Leaf Humidity [%] | |
---|---|---|---|---|
Plasmopara viticola | Occurrence | 10 | 92–100 | 24 |
Optimal | 18–25 | ≥93 | ≥24 | |
Botrytis cinerea | Occurrence | 15 | ≥90 | 90 |
Optimal | 18–20 | ≥80 | 72–90 | |
Uncinula necator | Occurrence | 7–31 | ≥30 | 45 |
Optimal | 15 | ≥45 | 85 |
Inertia | 834,418.46 |
Silhouette Parameter | 0.63 |
Index Calinski–Harabasz | 27,863.24 |
Index Davies–Bouldin | 0.491 |
Accuracy—Subset 1 | Accuracy—Subset 2 | Accuracy—Subset 3 | |
Decision Tree (DT) | 0.976 | 0.974 | 0.978 |
Random Forest (RF) | 0.980 | 0.981 | 0.983 |
Classification Report: Decision Tree Classifier (two classes) | ||||
precision | recall | F1-score | support | |
0 | 1 | 1 | 1 | 5197 |
1 | 0.96 | 0.97 | 0.96 | 506 |
accuracy | 0.99 | 5703 | ||
Macro average | 0.98 | 0.98 | 0.98 | 5703 |
Weight average | 0.99 | 0.99 | 0.99 | 5703 |
Classification Report: Random Forest Classifier (two classes) | ||||
0 | 1 | 1 | 1 | 5197 |
1 | 0.99 | 0.96 | 0.97 | 506 |
accuracy | 1 | 5703 | ||
Macro average | 0.99 | 0.98 | 0.99 | 5703 |
Weight average | 1 | 1 | 1 | 5703 |
Classification Report: Random Forest Classifier (multiple classifiers) | ||||
precision | recall f1 | score support | ||
0 | 1.00 | 1.00 | 1.00 | 13 |
1 | 1.00 | 1.00 | 1.00 | 7 |
2 | 1.00 | 1.00 | 1.00 | 10 |
accuracy | 1.00 | 30 | ||
Macro average | 1.00 | 1.00 | 1.00 | 30 |
Weighted average | 1.00 | 1.00 | 1.00 | 30 |
Classification Report: Decision Tree Classifier (multiple classifiers) | ||||
precision | recall f1 | score support | ||
0 | 1.00 | 0.92 | 0.96 | 13 |
1 | 1.00 | 1.00 | 1.00 | 7 |
2 | 0.91 | 1.00 | 0.95 | 10 |
accuracy | 0.97 | 30 | ||
Macro average | 0.97 | 0.97 | 0.97 | 30 |
Weighted average | 0.97 | 0.97 | 0.97 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hnatiuc, M.; Ghita, S.; Alpetri, D.; Ranca, A.; Artem, V.; Dina, I.; Cosma, M.; Abed Mohammed, M. Intelligent Grapevine Disease Detection Using IoT Sensor Network. Bioengineering 2023, 10, 1021. https://doi.org/10.3390/bioengineering10091021
Hnatiuc M, Ghita S, Alpetri D, Ranca A, Artem V, Dina I, Cosma M, Abed Mohammed M. Intelligent Grapevine Disease Detection Using IoT Sensor Network. Bioengineering. 2023; 10(9):1021. https://doi.org/10.3390/bioengineering10091021
Chicago/Turabian StyleHnatiuc, Mihaela, Simona Ghita, Domnica Alpetri, Aurora Ranca, Victoria Artem, Ionica Dina, Mădălina Cosma, and Mazin Abed Mohammed. 2023. "Intelligent Grapevine Disease Detection Using IoT Sensor Network" Bioengineering 10, no. 9: 1021. https://doi.org/10.3390/bioengineering10091021
APA StyleHnatiuc, M., Ghita, S., Alpetri, D., Ranca, A., Artem, V., Dina, I., Cosma, M., & Abed Mohammed, M. (2023). Intelligent Grapevine Disease Detection Using IoT Sensor Network. Bioengineering, 10(9), 1021. https://doi.org/10.3390/bioengineering10091021