Deep-Learning Model for Mortality Prediction of ICU Patients with Paralytic Ileus
Abstract
:1. Introduction
2. Methodology
2.1. Data Source and Inclusion Criteria
2.2. Variable Importance
2.3. Prediction of Mortality for PI Patients
2.4. Statistical Analysis Between Cohorts
2.5. Variables Impacts
2.6. Ablation Analysis
3. Results
3.1. Cohorts Details
3.2. NN Architecture Ablation Analysis
3.2.1. Layers and Neurons
3.2.2. Learning Rate
3.2.3. Activation Function
3.2.4. Epochs & Batch Size
3.3. SHAP Analysis
3.4. Evaluation Metrics and Proposed Model Performance
4. Discussion
4.1. SHAP Analysis Interpretation Summary
4.2. Existing Model Compilation Summary
4.3. Study Limitations
4.4. Optimizing Prognosis and Care with
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noel, R.J. Nelson Pediatric Symptom-Based Diagnosis; Vomiting and Regurgitation; Elsevier: Amsterdam, The Netherlands, 2018; Available online: https://www.sciencedirect.com/book/9780323399562/nelson-pediatric-symptom-based-diagnosis (accessed on 30 October 2024).
- Vanek, V.W.; Al-Salti, M. Acute pseudo-obstruction of the colon (Ogilvie’s syndrome). An analysis of 400 cases. Dis. Colon Rectum 1986, 29, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Puntillo, K.A.; Arai, S.; Cohen, N.H.; Gropper, M.A.; Neuhaus, J.; Paul, S.M.; Miaskowski, C. Symptoms experienced by intensive care unit patients at high risk of dying. Crit. Care Med. 2010, 38, 2155–2160. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.S.; Ali, L.; Ul Mustafa, R.; Khattak, H.A.; Hameed, T.; Wajahat, I.; Kadry, S.; Bukhari, S.A.C. Correction to: A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs). J. Ambient Intell. Humaniz. Comput. 2023, 14, 14367. [Google Scholar] [CrossRef]
- Pishgar, M.; Razo, M.; Theis, J.; Darabi, H. Process Mining Model to Predict Mortality in Paralytic Ileus Patients. In Proceedings of the International Conference on Cyber-Physical Social Intelligence, Beijing, China, 18–20 December 2021; p. 1. [Google Scholar]
- Theis, J.; Galanter, W.L.; Boyd, A.D.; Darabi, H. Improving the In-Hospital Mortality Prediction of Diabetes ICU Patients Using a Process Mining/Deep Learning Architecture. IEEE J. Biomed. Health Inform. 2021, 26, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Ghaderzadeh, M.; Shalchian, A.; Irajian, G.; Sadeghsalehi, H.; Sabet, B. Artificial Intelligence in Drug Discovery and Development Against Antimicrobial Resistance: A Narrative Review. Iran. J. Med. Microbiol. 2024, 18, 135–147. [Google Scholar] [CrossRef]
- Gheisari, M.; Ghaderzadeh, M.; Li, H.; Taami, T.; Fernández-Campusano, C.; Sadeghsalehi, H.; Afzaal Abbasi, A. Mobile Apps for COVID-19 Detection and Diagnosis for Future Pandemic Control: Multidimensional Systematic Review. JMIR mHealth uHealth 2024, 12, e44406, Erratum in JMIR mHealth uHealth 2024, 12, e58810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Theis, J.; Darabi, H. Decay Replay Mining to Predict Next Process Events. IEEE Access 2019, 7, 119787–119803. [Google Scholar] [CrossRef]
- Johnson, A.; Bulgarelli, L.; Pollard, T.; Horng, S.; Celi, L.A.; Mark, R. MIMIC-IV; Version 2.2; PhysioNet: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Iyer, S.; Saunders, W.B.; Stemkowski, S. Economic burden of postoperative ileus associated with colectomy in the United States. J. Manag. Care Pharm. 2009, 15, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Lin, Y.W.; Zhou, Y.; Faghri, F.A.-O.; Shaw, M.J.; Campbell, R.H. Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS ONE 2019, 14, e0218942. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Training Cohort (N = 681) | Validation Cohort (N = 136) | p-Value |
---|---|---|---|
Outcome Variable | N (%) | ||
Mortality | 16.6 (113) | 12.5 (17) | <0.05 |
Demographics | (Std) | ||
Age Mean | 61.8 (15.5) | 61.5 (15.9) | 0.871 |
Laboratory Findings | N (%) | ||
Aniongap | <0.05 | ||
Aniongap_Abnormal | 22.8 (155) | 17.8 (24) | |
Aniongap_Normal | 74.4 (507) | 78.7 (107) | |
Aniongap_Missing | 2.79 (19) | 3.68 (5) | |
Platelet | <0.05 | ||
Platelet_Abnormal | 56.2 (383) | 55.9 (76) | |
Platelet_Normal | 41.7 (284) | 41.2 (56) | |
Platelet_Missing | 2.06 (14) | 2.94 (4) | |
PTT | <0.05 | ||
PTT_Abnormal | 44.3 (302) | 43.4 (59) | |
PTT_Normal | 43.6 (297) | 41.2 (56) | |
PTT_Missing | 12.0 (82) | 15.4 (21) | |
BUN | <0.05 | ||
BUN_Abnormal | 52.3 (356) | 51.5 (70) | |
BUN_Normal | 45.8 (312) | 45.6 (62) | |
BUN_Missing | 1.91 (13) | 2.94 (4) | |
Total Bilirubin | <0.05 | ||
BUN_Abnormal | 40.4 (275) | 48.5 (66) | |
BUN_Normal | 36.0 (245) | 28.7 (39) | |
BUN_Missing | 23.6 (161) | 22.8 (3) | |
Frequencies of Lab Items | N (%) | <0.05 | |
Bicarbonate (frequency = 0) | 31.3 (213) | 30.9 (42) | |
Bicarbonate (frequency = 1) | 26.9 (183) | 30.1 (41) | |
Bicarbonate (frequency = 2) | 26.1 (178) | 25.7 (35) | |
Total Bilirubin (frequency = 0) | 56.7 (386) | 64.0 (87) | |
Total Bilirubin (frequency = 1) | 27.5 (187) | 22.1 (30) | |
Total Bilirubin (frequency = 2) | 12.8 (87) | 11.8 (16) | |
BUN (frequency = 0) | 41.0 (279) | 40.0 (53) | |
BUN (frequency = 2) | 16.2 (170) | 15.4 (40) | |
BUN (frequency = 1) | 25.0 (110) | 29.4 (21) | |
Platelet (frequency = 2) | 28.9 (200) | 27.9 (40) | |
Platelet (frequency = 0) | 20.1 (197) | 20.6 (38) | |
Platelet (frequency = 1) | 29.4 (137) | 29.4 (28) | |
PTT (frequency = 0) | 40.1 (276) | 44.1 (40) | |
PTT (frequency = 1) | 31.1 (212) | 31.2 (43) | |
PTT (frequency = 2) | 17.3 (118) | 17.7 (24) |
Number of Layers | AUC |
---|---|
(11, 100, 56, 1) | 0.905 |
(11, 100, 56, 18, 1) | 0.766 |
(11, 100, 56, 18, 6, 1) | 0.782 |
(11, 100, 1) | 0.730 |
(11, 56, 1) | 0.690 |
Number of Neurons | AUC |
---|---|
(11, 100, 56, 1) | 0.790 |
(11, 130, 56, 1) | 0.776 |
(11, 150, 56, 1) | 0.769 |
(11, 156, 80, 1) | 0.749 |
(11, 156, 30, 1) | 0.783 |
(11, 156, 32, 1) | 0.798 |
(11, 80, 56, 1) | 0.753 |
(11, 90, 56, 1) | 0.755 |
Learning Rate | AUC |
---|---|
0.814 | |
0.818 | |
0.775 | |
0.520 | |
0.795 | |
0.815 | |
0.825 | |
0.687 |
Activation Function | AUC |
---|---|
Relu-Relu | 0.847 |
Sigmoid-Relu | 0.817 |
Tanh-Relu | 0.825 |
Relu-Sigmoid | 0.837 |
Relu-Tanh | 0.831 |
Tanh-Sigmoid | 0.830 |
Sigmoid-Tanh | 0.812 |
Tanh-Tanh | 0.825 |
Sigmoid-Sigmoid | 0.819 |
Relu-mod Relu | 0.832 |
mod Relu-Relu | 0.842 |
mod Relu-mod Relu | 0.887 |
Prediction Model | AUC | AUC 95% CI |
---|---|---|
Random Forest | ||
Gradient Boost | ||
XGBoost | ||
Cat Boost |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razo, M.; Pishgar, M.; Galanter, W.; Darabi, H. Deep-Learning Model for Mortality Prediction of ICU Patients with Paralytic Ileus. Bioengineering 2024, 11, 1214. https://doi.org/10.3390/bioengineering11121214
Razo M, Pishgar M, Galanter W, Darabi H. Deep-Learning Model for Mortality Prediction of ICU Patients with Paralytic Ileus. Bioengineering. 2024; 11(12):1214. https://doi.org/10.3390/bioengineering11121214
Chicago/Turabian StyleRazo, Martha, Maryam Pishgar, William Galanter, and Houshang Darabi. 2024. "Deep-Learning Model for Mortality Prediction of ICU Patients with Paralytic Ileus" Bioengineering 11, no. 12: 1214. https://doi.org/10.3390/bioengineering11121214
APA StyleRazo, M., Pishgar, M., Galanter, W., & Darabi, H. (2024). Deep-Learning Model for Mortality Prediction of ICU Patients with Paralytic Ileus. Bioengineering, 11(12), 1214. https://doi.org/10.3390/bioengineering11121214