Special Issue: Artificial Intelligence in Advanced Medical Imaging
1. Introduction
2. Related Work
2.1. Medical Image Processing
2.2. Learning Method Based on Deep Learning
2.3. Multi-Modality Medical Image Fusion
3. Special Issue Article
4. Conclusions and Prospect
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perez, A.M.M.M.; Poletti, M.E. Characterization of digital systems used in medical X-ray imaging. Radiat. Phys. Chem. 2022, 200, 110307. [Google Scholar] [CrossRef]
- Guo, S.L.; Wang, H.; Agaian, S.; Han, L.N.; Song, X.W. LRENet: A location-related enhancement network for liver lesions in CT images. Phys. Med. Bio. 2024, 69, 035019. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, Z.W.; Yang, H.L.; Li, X.R.; Yang, Z.C. MRI-Based Medical Image Recognition: Identification and Diagnosis of LDH. Comput. Intell. Neurosci. 2022, 2022, 5207178. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Shuaib, M.; Ismail, E.A.; Li, S. Enhancing medical ultrasound imaging through fractional mathematical modeling of ultrasound bubble dynamics. Ultrason. Sonochemistry 2023, 100, 106603. [Google Scholar] [CrossRef]
- Radhika, P.; Sofia Bobby, J.; Francis, S.V.; Femina, M.A. Towards accurate diagnosis: Exploring knowledge distillation and self-attention in multimodal medical image fusion. J. Exp. Theor. Artif. Intell. 2024, 1–30. [Google Scholar] [CrossRef]
- Zhi, Z.; Qing, M. Intelligent medical image feature extraction method based on improved deep learning. Technol. Health Care 2021, 29, 363–379. [Google Scholar] [CrossRef]
- Jiao, Q.L.; Guo, X.W.; Liu, M.; Kong, L.Q.; Hui, M.; Dong, L.Q.; Zhao, Y.J. Deep learning baseline correction method via multi-scale analysis and regression. Chemom. Intell. Lab. Syst. 2023, 235, 104779. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Jiao, Q.L.; Liu, M.; Ning, B.; Zhao, F.F.; Dong, L.Q.; Kong, L.Q.; Hui, M.; Zhao, Y.J. Image Dehazing Based on Local and Non-Local Features. Fractal Fract. 2022, 6, 262. [Google Scholar] [CrossRef]
- Bao, C.; Cao, J.; Ning, Y.Q.; Cheng, Y.; Hao, Q. Rega-Net: Retina Gabor Attention for Deep Convolutional Neural Networks. IEEE Geosci. Remote. Sens. Lett. 2023, 20, 6004905. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S.; Ogundokun, R.O. Deep Learning Approach for Medical Image Analysis. Comput. Intell. Neurosci. 2021, 2021, 6215281. [Google Scholar] [CrossRef]
- Sun, H.Q.; Liu, Z.; Wang, G.Z.; Lian, W.M.; Ma, J. Intelligent Analysis of Medical Big Data Based on Deep Learning. IEEE Access 2019, 7, 142022–142037. [Google Scholar] [CrossRef]
- Hephzibah, R.; Anandharaj, H.C.; Kowsalya, G.; Jayanthi, R.; Chandy, D.A. Review on Deep Learning Methodologies in Medical Image Restoration and Segmentation. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2023, 19, 844–854. [Google Scholar] [CrossRef]
- El-Shafai, W.; Abd El-Nabi, S.; El-Rabaie, E.M.; Ali, A.M.; Soliman, N.F.; Algarni, A.D.; Abd El-Samie, F.E. Efficient Deep-Learning-Based Autoencoder Denoising Approach for Medical Image Diagnosis. Comput. Mater. Contin. 2022, 70, 6107–6125. [Google Scholar] [CrossRef]
- Alqahtani, T.M. Big Data Analytics with Optimal Deep Learning Model for Medical Image Classification. Comput. Syst. Sci. Eng. 2023, 44, 1433–1449. [Google Scholar] [CrossRef]
- Xie, Q.S.; Li, Y.X.; He, N.J.; Ning, M.N.; Ma, K.; Wang, G. Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training. IEEE T. Med. Imaging. 2024, 43, 4–14. [Google Scholar] [CrossRef]
- Zhuang, M.; Chen, Z.; Wang, H.; Tang, H.; He, J.; Qin, B.; Yang, Y.; Jin, X.; Yu, M.; Jin, B.; et al. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 379–394. [Google Scholar] [CrossRef]
- Chen, J.G.; Yang, N.; Pan, Y.H.; Liu, H.L.; Zhang, Z.L. Synchronous Medical Image Augmentation framework for deep learning-based image segmentation. Comput. Med. Imaging Graph. 2023, 104, 102161. [Google Scholar] [CrossRef]
- Fakhouri, H.N.; Alawadi, S.; Awaysheh, F.M.; Alkhabbas, F.; Zraqou, J. A cognitive deep learning approach for medical image processing. Sci. Rep. 2024, 14, 4539. [Google Scholar] [CrossRef]
- Wang, C.T.; Zhang, J.H.; Liu, S.Y. Medical Ultrasound Image Segmentation with Deep Learning Models. IEEE Access 2023, 11, 10158–10168. [Google Scholar] [CrossRef]
- Hou, R.Z.; Li, F. IDPCNN: Iterative denoising and projecting CNN for MRI reconstruction. J. Comput. Appl. Math. 2022, 406, 113973. [Google Scholar] [CrossRef]
- Xiong, Z.; Han, Z.F.; Hong, S.G.; Han, X.L.; Cui, X.Y.; Wang, A.H. Artifact and Detail Attention Generative Adversarial Networks for Low-Dose CT Denoising. IEEE Trans. Med. Imaging 2021, 40, 3901–3918. [Google Scholar] [CrossRef]
- Xia, K.J.; Zhou, Q.H.; Jiang, Y.Z.; Chen, B.; Gu, X.Q. Deep residual neural network based image enhancement algorithm for low dose CT images. Multimedia Tools Appl. 2022, 81, 36007–36030. [Google Scholar] [CrossRef]
- Liu, J.Y.; Tian, Y.L.; Duzgol, C.; Akin, O.; Agildere, A.M.; Haberal, K.M.; Coskun, M. Virtual contrast enhancement for CT scans of abdomen and pelvis. Comput. Med. Imaging Graph. 2022, 100, 102094. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Raymond, C.; Speier, W.; Jin, X.Y.; Cloughesy, T.F.; Enzmann, D.; Ellingson, B.M.; Arnold, C.W. Synthesizing MR Image Contrast Enhancement Using 3D High-Resolution ConvNets. IEEE Trans. Biomed. Eng. 2023, 70, 401–412. [Google Scholar] [CrossRef]
- Lyu, Q.; Shan, H.M.; Wang, G. MRI Super-Resolution with Ensemble Learning and Complementary Priors. IEEE Trans. Comput. Imaging 2020, 6, 615–624. [Google Scholar] [CrossRef]
- Zeng, W.; Peng, J.; Wang, S.S.; Liu, Q.G. A comparative study of CNN-based super-resolution methods in MRI reconstruction and its beyond. Signal Process. Image Commun. 2020, 81, 115701. [Google Scholar] [CrossRef]
- Wang, S.S.; Ke, Z.W.; Cheng, H.T.; Jia, S.; Ying, L.S.; Zheng, H.R.; Liang, D. DIMENSION: Dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training. NMR Biomed. 2022, 35, e4131. [Google Scholar] [CrossRef]
- Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 491–503. [Google Scholar] [CrossRef]
- Qiao, Z.W.; Du, C.C. RAD-UNet: A Residual, Attention-Based, Dense UNet for CT Sparse Reconstruction. J. Digit. Imaging 2022, 35, 1748–1758. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, K.; Li, K.P.; Fu, Y. MR Image Super-Resolution with Squeeze and Excitation Reasoning Attention Network. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Ji, Z.; Zhu, C.; Dai, Y.; Zhang, W.; Kui, X. Multi-scale deformable transformer for multi-contrast knee MRI super-resolution. Biomed. Signal Process. Control 2023, 79, 104154. [Google Scholar] [CrossRef]
- Wu, Z.L.; Liao, W.B.; Yan, C.; Zhao, M.S.; Liu, G.W.; Ma, N.; Li, X.S. Deep learning based MRI reconstruction with transformer. Comput. Methods Programs Biomed. 2023, 233, 107452. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.H.; Zheng, S.Z.; Wang, B.; Luo, G.X.; Huang, W.Q.; Zhang, J. Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging. BioMed Res. Int. 2022, 2022, 4431536. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, Y.; Özbey, M.; Cukur, T. MRI Reconstruction with Conditional Adversarial Transformers. Proceedings of 5th International Workshop on Machine Learning for Medical Image Reconstruction, Singapore, 22 September 2022. [Google Scholar] [CrossRef]
- He, Q.Q.; Yang, Q.J.; Xie, M.H. HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation. Comput. Biol. Med. 2023, 155, 106629. [Google Scholar] [CrossRef]
- Tu, Z.Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y.X. MAXIM: Multi-Axis MLP for Image Processing. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Pan, S.; Chang, C.; Wang, T.; Wynne, J.; Hu, M.; Lei, Y.; Liu, T.; Patel, P.; Roper, J.; Yang, X. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Med. Phys. 2022, 50, 3027–3038. [Google Scholar] [CrossRef]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration without Clean Data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
- Wu, D.F.; Kim, K.; Li, Q.Z. Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning. Med. Phys. 2021, 48, 7657–7672. [Google Scholar] [CrossRef]
- Yuan, N.M.; Zhou, J.; Qi, J.Y. Half2Half: Deep neural network based CT image denoising without independent reference data. Phys. Med. Biol. 2020, 65, 215020. [Google Scholar] [CrossRef]
- Jung, W.; Lee, H.-S.; Seo, M.; Nam, Y.; Choi, Y.; Shin, N.-Y.; Ahn, K.-J.; Kim, B.-S.; Jang, J. MR-self Noise2Noise: Self-supervised deep learning–based image quality improvement of submillimeter resolution 3D MR images. Eur. Radiol. 2023, 33, 2686–2698. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zhang, J.; Ling, T.; Lu, J.W.; Zheng, Y.F.; Yu, Q.; Qi, L.; Gao, Y. Inconsistency-Aware Uncertainty Estimation for Semi-Supervised Medical Image Segmentation. IEEE Trans. Med. Imaging 2022, 41, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Zhang, D.; Du, X.G.; Wang, X.; Wan, Y.; Nandi, A.K. Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network. IEEE Trans. Med. Imaging 2023, 42, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Voulodimos, A.; Protopapadakis, E.; Katsamenis, I.; Doulamis, A.; Doulamis, N. A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images. Sensors 2021, 21, 2215. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.C.; Yao, L.N.; Zhou, T.; Dong, J.M.; Zhang, Y. Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images. Pattern. Recogn. 2021, 113, 107826. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.C.; Hu, P.Y.; Zhang, L.G.; Sun, J.G.; Yin, G.S. MCFNet: Multi-Layer Concatenation Fusion Network for Medical Images Fusion. IEEE Sensors J. 2019, 19, 7107–7119. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, T.F.; Lei, B.Y. Medical image fusion method based on dense block and deep convolutional generative adversarial network. Neural Comput. Appl. 2021, 33, 6595–6610. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, R.C.; Cao, J.D.; Ma, C.Z. Self-Supervised Fusion for Multi-Modal Medical Images via Contrastive Auto-Encoding and Convolutional Information Exchange. IEEE Comput. Intell. Mag. 2023, 18, 68–80. [Google Scholar] [CrossRef]
- Wang, L.F.; Liu, Y.; Mi, J.; Zhang, J. MSE-Fusion: Weakly supervised medical image fusion with modal synthesis and enhancement. Eng. Appl. Artif. Intell. 2023, 119, 105744. [Google Scholar] [CrossRef]
- Lakshmi, A.; Rajasekaran, M.P.; Jeevitha, S.; Selvendran, S. An Adaptive MRI-PET Image Fusion Model Based on Deep Residual Learning and Self-Adaptive Total Variation. Arab. J. Sci. Eng. 2022, 47, 10025–10042. [Google Scholar] [CrossRef]
- Xiao, N.; Yang, W.T.; Qiang, Y.; Zhao, J.J.; Hao, R.; Lian, J.H.; Li, S. PET and CT Image Fusion of Lung Cancer with Siamese Pyramid Fusion Network. Front. Med. 2022, 9, 792390. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, Q.R.; Lu, H.L.; Li, Q.; Zhang, X.X.; Qiu, S. Deep learning methods for medical image fusion: A review. Comput. Biol. Med. 2023, 160, 106959. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.A.; Khan, K.B.; Salahuddin, S.; Rehman, E.; Khan, S.A.; Khan, M.A.; Kadry, S.; Gandomi, A.H. A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics. Comput. Biol. Med. 2022, 144, 105253. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering 2022, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Oglat, A.A.; Fohely, F.; Al Masalmeh, A.; Al Jbour, I.; Al Jaradat, L.; Athamnah, S.I. Attitudes toward the Integration of Radiographers into the First-Line Interpretation of Imaging Using the Red Dot System. Bioengineering 2023, 10, 71. [Google Scholar] [CrossRef]
- Liu, J.Y.; Yildirim, O.; Akin, O.; Tian, Y.L. AI-Driven Robust Kidney and Renal Mass Segmentation and Classification on 3D CT Images. Bioengineering 2023, 10, 116. [Google Scholar] [CrossRef]
- Ali, Y.H.; Chinnaperumal, S.; Marappan, R.; Raju, S.K.; Sadiq, A.T.; Farhan, A.K.; Srinivasan, P. Multi-Layered Non-Local Bayes Model for Lung Cancer Early Diagnosis Prediction with the Internet of Medical Things. Bioengineering 2023, 10, 138. [Google Scholar] [CrossRef]
- Ali, Y.H.; Chooralil, V.S.; Balasubramanian, K.; Manyam, R.R.; Raju, S.K.; Sadiq, A.T.; Farhan, A.K. Optimization System Based on Convolutional Neural Network and Internet of Medical Things for Early Diagnosis of Lung Cancer. Bioengineering 2023, 10, 320. [Google Scholar] [CrossRef]
- Hauptman, A.; Balasubramaniam, G.M.; Arnon, S. Machine Learning Diffuse Optical Tomography Using Extreme Gradient Boosting and Genetic Programming. Bioengineering 2023, 10, 382. [Google Scholar] [CrossRef]
- Park, Y.J.; Cho, H.S.; Kim, M.N. AI Model for Detection of Abdominal Hemorrhage Lesions in Abdominal CT Images. Bioengineering 2023, 10, 502. [Google Scholar] [CrossRef]
- Zou, J.; Liu, J.; Choi, K.S.; Qin, J. Intra-Patient Lung CT Registration through Large Deformation Decomposition and Attention-Guided Refinement. Bioengineering 2023, 10, 562. [Google Scholar] [CrossRef]
- Dunn, B.; Pierobon, M.; Wei, Q. Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis. Bioengineering 2023, 10, 690. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Lim, S.; Suh, S.Y.; Mutawak, B.; Chitnis, P.V.; Demer, J.L.; Wei, Q. Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images. Bioengineering 2023, 10, 699. [Google Scholar] [CrossRef] [PubMed]
- Illakiya, T.; Ramamurthy, K.; Siddharth, M.V.; Mishra, R.; Udainiya, A. AHANet: Adaptive Hybrid Attention Network for Alzheimer’s Disease Classification Using Brain Magnetic Resonance Imaging. Bioengineering 2023, 10, 714. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Torres, S.I.; Hennessey, R.P.; Snider, E.J. Performance Comparison of Object Detection Networks for Shrapnel Identification in Ultrasound Images. Bioengineering 2023, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Lee, M. Deep Transfer Learning Using Real-World Image Features for Medical Image Classification, with a Case Study on Pneumonia X-ray Images. Bioengineering 2024, 11, 406. [Google Scholar] [CrossRef]
- Zhang, B.R.; Dong, L.Q.; Kong, L.Q.; Liu, M.; Zhao, Y.J.; Hui, M.; Chu, X.H. Prediction of Impulsive Aggression Based on Video Images. Bioengineering 2023, 10, 942. [Google Scholar] [CrossRef]
- Rabbat, N.; Qureshi, A.; Hsu, K.T.; Asif, Z.; Chitnis, P.; Shobeiri, S.A.; Wei, Q. Automated Segmentation of Levator Ani Muscle from 3D Endovaginal Ultrasound Images. Bioengineering 2023, 10, 894. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Jiao, Q.; Liu, M. Special Issue: Artificial Intelligence in Advanced Medical Imaging. Bioengineering 2024, 11, 1229. https://doi.org/10.3390/bioengineering11121229
Jia H, Jiao Q, Liu M. Special Issue: Artificial Intelligence in Advanced Medical Imaging. Bioengineering. 2024; 11(12):1229. https://doi.org/10.3390/bioengineering11121229
Chicago/Turabian StyleJia, Huang, Qingliang Jiao, and Ming Liu. 2024. "Special Issue: Artificial Intelligence in Advanced Medical Imaging" Bioengineering 11, no. 12: 1229. https://doi.org/10.3390/bioengineering11121229
APA StyleJia, H., Jiao, Q., & Liu, M. (2024). Special Issue: Artificial Intelligence in Advanced Medical Imaging. Bioengineering, 11(12), 1229. https://doi.org/10.3390/bioengineering11121229