Automated Assessment of the Pulmonary Artery-to-Ascending Aorta Ratio in Fetal Cardiac Ultrasound Screening Using Artificial Intelligence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Data Preprocessing and Augmentation
2.3. Vascular Segmentation and the PA/Ao Ratio
2.3.1. Vascular Segmentation
2.3.2. PA/Ao Ratio
2.4. Screening-Performance Comparison Study
3. Results
3.1. Evaluation of Vascular Segmentation
3.2. Calculation and Assessment of the PA/Ao Ratio
3.3. Screening Performance Using the PA/Ao Ratio
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmerman, M.S.; Smith, A.G.C.; Sable, C.A.; Echko, M.M.; Wilner, L.B.; Olsen, H.E.; Atalay, H.T.; Awasthi, A.; Bhutta, Z.A.; Boucher, J.L.; et al. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Holland, B.J.; Myers, J.A.; Woods, C.R., Jr. Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: A meta-analysis. Ultrasound Obs. Gynecol 2015, 45, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Bensemlali, M.; Bajolle, F.; Laux, D.; Parisot, P.; Ladouceur, M.; Fermont, L.; Lévy, M.; Le Bidois, J.; Raimondi, F.; Ville, Y.; et al. Neonatal management and outcomes of prenatally diagnosed CHDs. Cardiol. Young 2017, 27, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.M.; Karande, T.; Bobhate, P.R.; Jiyani, R.; Rao, S.G.; Kulkarni, S. Neonates with critical congenital heart defects: Impact of fetal diagnosis on immediate and short-term outcomes. Ann. Pediatr. Cardiol. 2017, 10, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Valenzuela, N.J.; Peixoto, A.B.; Araujo Júnior, E. Prenatal diagnosis of congenital heart disease: A review of current knowledge. Indian Heart J. 2018, 70, 150–164. [Google Scholar] [CrossRef]
- Lytzen, R.; Vejlstrup, N.; Bjerre, J.; Petersen, O.B.; Leenskjold, S.; Dodd, J.K.; Jørgensen, F.S.; Søndergaard, L. Live-Born Major Congenital Heart Disease in Denmark: Incidence, Detection Rate, and Termination of Pregnancy Rate From 1996 to 2013. JAMA Cardiol. 2018, 3, 829–837. [Google Scholar] [CrossRef]
- Oggè, G.; Gaglioti, P.; Maccanti, S.; Faggiano, F.; Todros, T. Prenatal screening for congenital heart disease with four-chamber and outflow-tract views: A multicenter study. Ultrasound Obstet. Gynecol 2006, 28, 779–784. [Google Scholar] [CrossRef]
- Del Bianco, A.; Russo, S.; Lacerenza, N.; Rinaldi, M.; Rinaldi, G.; Nappi, L.; Greco, P. Four chamber view plus three-vessel and trachea view for a complete evaluation of the fetal heart during the second trimester. J. Perinat. Med. 2006, 34, 309–312. [Google Scholar] [CrossRef]
- Matsui, H.; Hirata, Y.; Inuzuka, R.; Hayashi, T.; Nagamine, H.; Ueda, T.; Nakayama, T. Initial national investigation of the prenatal diagnosis of congenital heart malformations in Japan-Regional Detection Rate and Emergency Transfer from 2013 to 2017. J. Cardiol. 2021, 78, 480–486. [Google Scholar] [CrossRef]
- Donofrio, M.T.; Moon-Grady, A.J.; Hornberger, L.K.; Copel, J.A.; Sklansky, M.S.; Abuhamad, A.; Cuneo, B.F.; Huhta, J.C.; Jonas, R.A.; Krishnan, A.; et al. Diagnosis and treatment of fetal cardiac disease: A scientific statement from the American Heart Association. Circulation 2014, 129, 2183–2242. [Google Scholar] [CrossRef]
- Nurmaini, S.; Rachmatullah, M.N.; Sapitri, A.I.; Darmawahyuni, A.; Tutuko, B.; Firdaus, F.; Partan, R.U.; Bernolian, N. Deep Learning-Based Computer-Aided Fetal Echocardiography: Application to Heart Standard View Segmentation for Congenital Heart Defects Detection. Sensors 2021, 21, 8007. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Saito, Y.; Imaoka, H.; Saiko, M.; Yamada, S.; Kondo, H.; Takamaru, H.; Sakamoto, T.; Sese, J.; Kuchiba, A.; et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci. Rep. 2019, 9, 14465. [Google Scholar] [CrossRef]
- Lauritsen, S.M.; Kristensen, M.; Olsen, M.V.; Larsen, M.S.; Lauritsen, K.M.; Jørgensen, M.J.; Lange, J.; Thiesson, B. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 2020, 11, 3852. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Y.; Yao, J.; Wang, K.; Zhang, M.; Shi, F.; Tian, Y.; Gao, L.; Ying, Y.; Pan, Q.; et al. Deep learning approaches for differentiating thyroid nodules with calcification: A two-center study. BMC Cancer 2023, 23, 1139. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, L.; Kong, W.; Zhang, W.; Zheng, P.; Sun, L.; Zhang, D.; Liao, H. Deep Semi-Supervised Ultrasound Image Segmentation by Using a Shadow Aware Network With Boundary Refinement. IEEE Trans. Med. Imaging 2023, 42, 3779–3793. [Google Scholar] [CrossRef]
- Fiorentino, M.C.; Villani, F.P.; Di Cosmo, M.; Frontoni, E.; Moccia, S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med. Image Anal. 2023, 83, 102629. [Google Scholar] [CrossRef]
- Komatsu, M.; Sakai, A.; Dozen, A.; Shozu, K.; Yasutomi, S.; Machino, H.; Asada, K.; Kaneko, S.; Hamamoto, R. Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines 2021, 9, 720. [Google Scholar] [CrossRef]
- Slimani, S.; Hounka, S.; Mahmoudi, A.; Rehah, T.; Laoudiyi, D.; Saadi, H.; Bouziyane, A.; Lamrissi, A.; Jalal, M.; Bouhya, S.; et al. Fetal biometry and amniotic fluid volume assessment end-to-end automation using Deep Learning. Nat. Commun. 2023, 14, 7047. [Google Scholar] [CrossRef]
- Dozen, A.; Komatsu, M.; Sakai, A.; Komatsu, R.; Shozu, K.; Machino, H.; Yasutomi, S.; Arakaki, T.; Asada, K.; Kaneko, S.; et al. Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information. Biomolecules 2020, 10, 1526. [Google Scholar] [CrossRef]
- Shozu, K.; Komatsu, M.; Sakai, A.; Komatsu, R.; Dozen, A.; Machino, H.; Yasutomi, S.; Arakaki, T.; Asada, K.; Kaneko, S.; et al. Model-Agnostic Method for Thoracic Wall Segmentation in Fetal Ultrasound Videos. Biomolecules 2020, 10, 1691. [Google Scholar] [CrossRef]
- Sakai, A.; Komatsu, M.; Komatsu, R.; Matsuoka, R.; Yasutomi, S.; Dozen, A.; Shozu, K.; Arakaki, T.; Machino, H.; Asada, K.; et al. Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening. Biomedicines 2022, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Looney, P.; Stevenson, G.N.; Nicolaides, K.H.; Plasencia, W.; Molloholli, M.; Natsis, S.; Collins, S.L. Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning. J. Clin. Insight 2018, 3, e120178. [Google Scholar] [CrossRef] [PubMed]
- Bonet-Carne, E.; Palacio, M.; Cobo, T.; Perez-Moreno, A.; Lopez, M.; Piraquive, J.P.; Ramirez, J.C.; Botet, F.; Marques, F.; Gratacos, E. Quantitative ultrasound texture analysis of fetal lungs to predict neonatal respiratory morbidity. Ultrasound Obstet. Gynecol 2015, 45, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Hata, T.; Bouno, S.; Koyanagi, A.; Miyake, T. Artificial intelligence to understand fluctuation of fetal brain activity by recognizing facial expressions. Int. J. Gynaecol. Obstet. 2023, 161, 877–885. [Google Scholar] [CrossRef]
- Abuhamad, A.Z.; Chaoui, R. A Practical Guide to Fetal Echocardiography: Normal and Abnormal Hearts, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2022; pp. 756–771. [Google Scholar]
- Diniz, P.H.B.; Yin, Y.; Collins, S. Deep Learning strategies for Ultrasound in Pregnancy. Eur. Med. J. Reprod. Health 2020, 6, 73–80. [Google Scholar] [CrossRef]
- Carvalho, J.S.; Axt-Fliedner, R.; Chaoui, R.; Copel, J.A.; Cuneo, B.F.; Goff, D.; Gordin Kopylov, L.; Hecher, K.; Lee, W.; Moon-Grady, A.J.; et al. ISUOG Practice Guidelines (updated): Fetal cardiac screening. Ultrasound Obstet. Gynecol 2023, 61, 788–803. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Komatsu, M.; Sakai, A.; Komatsu, R.; Matsuoka, R.; Yasutomi, S.; Shozu, K.; Dozen, A.; Machino, H.; Hidaka, H.; Arakaki, T. Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Appl. Sci. 2021, 11, 371. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the EUROPEAN Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Slodki, M.; Moszura, T.; Janiak, K.; Sysa, A.; Seligman, N.S.; Weiner, S.; Respondek-Liberska, M. The three-vessel view in the fetal mediastinum in the diagnosis of interrupted aortic arch. Ultrasound Med. Biol. 2011, 37, 1808–1813. [Google Scholar] [CrossRef]
- van Nisselrooij, A.E.L.; Teunissen, A.K.K.; Clur, S.A.; Rozendaal, L.; Pajkrt, E.; Linskens, I.H.; Rammeloo, L.; van Lith, J.M.M.; Blom, N.A.; Haak, M.C. Why are congenital heart defects being missed? Ultrasound Obstet. Gynecol. 2020, 55, 747–757. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S.X.; Ni, D.; Wang, T. Deep Learning in Medical Ultrasound Analysis: A Review. Engineering 2019, 5, 261–275. [Google Scholar] [CrossRef]
- Men, Q.; Teng, C.; Drukker, L.; Papageorghiou, A.T.; Noble, J.A. Gaze-probe joint guidance with multi-task learning in obstetric ultrasound scanning. Med. Image Anal. 2023, 90, 102981. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.F.; Ward, C.; Lee-Tannock, A.; Le, S.; Chan, F.Y. Pulmonary artery/aorta ratio in simple screening for fetal outflow tract abnormalities during the second trimester. Ultrasound Obstet. Gynecol. 2007, 30, 275–280. [Google Scholar] [CrossRef]
- Riggs, T.; Saini, A.P.; Comstock, C.H.; Lee, W. Comparison of cardiac Z-score with cardiac asymmetry for prenatal screening of congenital heart disease. Ultrasound Obstet. Gynecol. 2011, 38, 332–336. [Google Scholar] [CrossRef]
- Wu, L.H.; Wang, N.; Xie, H.N.; Du, L.; Peng, R. Cardiovascular Z-scores in fetuses with tetralogy of Fallot. Ultrasound Obstet. Gynecol. 2014, 44, 674–681. [Google Scholar] [CrossRef]
- Lv, J.; Yang, T.; Gu, X.; Zhang, Y.; Sun, L.; Zhao, Y.; Liu, X.; Han, J.; Ran, S.; Zhang, Z.; et al. Differential diagnosis of fetal large ventricular septal defect and tetralogy of Fallot based on big data analysis. Echocardiography 2020, 37, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Ling, S.; Mao, R.; Xi, H.; Wang, F. A deep learning framework for identifying and segmenting three vessels in fetal heart ultrasound images. Biomed. Eng. OnLine 2024, 23, 39. [Google Scholar] [CrossRef]
- Taksøe-Vester, C.A.; Mikolaj, K.; Petersen, O.B.B.; Vejlstrup, N.G.; Christensen, A.N.; Feragen, A.; Nielsen, M.; Svendsen, M.B.S.; Tolsgaard, M.G. Role of artificial-intelligence-assisted automated cardiac biometrics in prenatal screening for coarctation of aorta. Ultrasound Obstet. Gynecol. 2024, 64, 36–43. [Google Scholar] [CrossRef]
Normal Cases | CHD Cases | ||||||
---|---|---|---|---|---|---|---|
Image Extraction | Segmentation | PA | Ao | SVC | PA | Ao | SVC |
Manual | DeepLabv3+ | 0.812 | 0.822 | 0.677 | 0.686 | 0.733 | 0.547 |
UNet3+ | 0.770 | 0.790 | 0.626 | 0.618 | 0.602 | 0.472 | |
SegFormer | 0.812 | 0.714 | 0.667 | 0.699 | 0.702 | 0.555 | |
Automated | DeepLabv3+ | 0.739 | 0.775 | 0.631 | 0.631 | 0.628 | 0.537 |
UNet3+ | 0.713 | 0.707 | 0.541 | 0.612 | 0.608 | 0.492 | |
SegFormer | 0.750 | 0.748 | 0.623 | 0.652 | 0.628 | 0.549 |
CHD Cases | |||||
---|---|---|---|---|---|
Image Extraction | Segmentation | Normal Cases | Low | Normal | High |
Manual | DeepLabv3+ | 1.200 ± 0.292 | 0.882 ± 0.334 | 1.228 ± 0.368 | 1.102 ± 0.167 |
UNet3+ | 1.219 ± 0.281 | 0.967 ± 0.566 | 1.320 ± 0.362 | 1.396 ± 0.429 | |
SegFormer | 1.306 ± 0.416 | 1.212 ± 0.382 | 1.228 ± 0.479 | 1.248 ± 0.279 | |
Automated | DeepLabv3+ | 1.259 ± 0.360 | 1.051 ± 0.413 | 1.167 ± 0.391 | 1.311 ± 0.540 |
UNet3+ | 1.227 ± 0.306 | 0.960 ± 0.309 | 1.251 ± 0.306 | 1.543 ± 0.611 | |
SegFormer | 1.357 ± 0.493 | 1.065 ± 0.478 | 1.291 ± 0.461 | 1.643 ± 0.455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoyama, R.; Komatsu, M.; Harada, N.; Komatsu, R.; Sakai, A.; Takeda, K.; Teraya, N.; Asada, K.; Kaneko, S.; Iwamoto, K.; et al. Automated Assessment of the Pulmonary Artery-to-Ascending Aorta Ratio in Fetal Cardiac Ultrasound Screening Using Artificial Intelligence. Bioengineering 2024, 11, 1256. https://doi.org/10.3390/bioengineering11121256
Aoyama R, Komatsu M, Harada N, Komatsu R, Sakai A, Takeda K, Teraya N, Asada K, Kaneko S, Iwamoto K, et al. Automated Assessment of the Pulmonary Artery-to-Ascending Aorta Ratio in Fetal Cardiac Ultrasound Screening Using Artificial Intelligence. Bioengineering. 2024; 11(12):1256. https://doi.org/10.3390/bioengineering11121256
Chicago/Turabian StyleAoyama, Rina, Masaaki Komatsu, Naoaki Harada, Reina Komatsu, Akira Sakai, Katsuji Takeda, Naoki Teraya, Ken Asada, Syuzo Kaneko, Kazuki Iwamoto, and et al. 2024. "Automated Assessment of the Pulmonary Artery-to-Ascending Aorta Ratio in Fetal Cardiac Ultrasound Screening Using Artificial Intelligence" Bioengineering 11, no. 12: 1256. https://doi.org/10.3390/bioengineering11121256
APA StyleAoyama, R., Komatsu, M., Harada, N., Komatsu, R., Sakai, A., Takeda, K., Teraya, N., Asada, K., Kaneko, S., Iwamoto, K., Matsuoka, R., Sekizawa, A., & Hamamoto, R. (2024). Automated Assessment of the Pulmonary Artery-to-Ascending Aorta Ratio in Fetal Cardiac Ultrasound Screening Using Artificial Intelligence. Bioengineering, 11(12), 1256. https://doi.org/10.3390/bioengineering11121256