Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression
Abstract
:1. Introduction
2. Methods
2.1. Animals and Study Groups
2.2. Uterus Isolation
2.3. Decellularization by Vascular Perfusion
2.4. Recellularization and Graft Preparation
2.5. Transplantation of Bioengineered Uterus Construct
2.6. Staining and Immunohistochemistry
2.7. Tissue Regeneration and Vascular Density Assessment
2.8. Gene Expression Analysis: Digital Droplet PCR
2.9. Statistical Analysis
3. Results
3.1. Confirmation of Biomaterial Production
3.2. Observations During Graft Retrieval
3.3. Uterus Tissue Regeneration Evaluation
3.4. Expression Analysis for Growth-Related Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padma, A.M.; Carrière, L.; Krokström Karlsson, F.; Sehic, E.; Bandstein, S.; Tiemann, T.T.; Oltean, M.; Song, M.J.; Brännström, M.; Hellström, M. Towards a bioengineered uterus: Bioactive sheep uterus scaffolds are effectively recellularized by enzymatic preconditioning. NPJ Regen. Med. 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Liu, H.; Fan, Y. Biomaterial Scaffolds for Reproductive Tissue Engineering. Ann. Biomed. Eng. 2017, 45, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- Busnelli, A.; Barbaro, G.; Pozzati, F.; D’Ippolito, S.; Cristodoro, M.; Nobili, E.; Scambia, G.; Di Simone, N. The importance of the ‘uterine factor’ in recurrent pregnancy loss: A retrospective cohort study on women screened through 3D transvaginal ultrasound. Hum. Reprod. 2024, 39, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Hellström, M.; Moreno-Moya, J.M.; Bandstein, S.; Bom, E.; Akouri, R.R.; Miyazaki, K.; Maruyama, T.; Brännström, M. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil. Steril. 2016, 106, 487–496.e481. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Maruyama, T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials 2014, 35, 8791–8800. [Google Scholar] [CrossRef]
- Santoso, E.G.; Yoshida, K.; Hirota, Y.; Aizawa, M.; Yoshino, O.; Kishida, A.; Osuga, Y.; Saito, S.; Ushida, T.; Furukawa, K.S. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models. PLoS ONE 2014, 9, e103201. [Google Scholar] [CrossRef] [PubMed]
- Hellström, M.; El-Akouri, R.R.; Sihlbom, C.; Olsson, B.M.; Lengqvist, J.; Bäckdahl, H.; Johansson, B.R.; Olausson, M.; Sumitran-Holgersson, S.; Brännström, M. Towards the development of a bioengineered uterus: Comparison of different protocols for rat uterus decellularization. Acta Biomater. 2014, 10, 5034–5042. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Hirota, Y.; Saito-Fujita, T.; Matsuo, M.; Egashira, M.; Matsumoto, L.; Haraguchi, H.; Dey, S.K.; Furukawa, K.S.; Fujii, T.; et al. STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation. JCI Insight 2016, 1, e87591. [Google Scholar] [CrossRef]
- Yao, Q.; Zheng, Y.W.; Lin, H.L.; Lan, Q.H.; Huang, Z.W.; Wang, L.F.; Chen, R.; Xiao, J.; Kou, L.; Xu, H.L.; et al. Exploiting crosslinked decellularized matrix to achieve uterus regeneration and construction. Artif. Cells Nanomed. Biotechnol. 2020, 48, 218–229. [Google Scholar] [CrossRef]
- Campo, H.; Garcia-Dominguez, X.; Lopez-Martinez, S.; Faus, A.; Vicente Anton, J.S.; Marco-Jimenez, F.; Cervello, I. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomater. 2019, 89, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Sanguansook, P.; Martínez-López, C.; Izquierdo-Rico, M.J.; Martínez-Cáceres, C.; López-Orozco, M.; Chatdarong, K.; García-Vázquez, F.A. Development of decellularization protocols for female cat reproductive organs. Res. Vet. Sci. 2024, 173, 105257. [Google Scholar] [CrossRef] [PubMed]
- Campo, H.; Baptista, P.M.; Lopez-Perez, N.; Faus, A.; Cervello, I.; Simon, C. De- and recellularization of the pig uterus: A bioengineering pilot study. Biol. Reprod. 2017, 96, 34–45. [Google Scholar] [CrossRef]
- Daryabari, S.S.; Kajbafzadeh, A.M.; Fendereski, K.; Ghorbani, F.; Dehnavi, M.; Rostami, M.; Garajegayeh, B.A.; Tavangar, S.M. Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J. Assist. Reprod. Genet. 2019, 36, 1211–1223. [Google Scholar] [CrossRef] [PubMed]
- Ghiringhelli, M.; Verdile, N.; Brevini, T.A.L.; Gandolfi, F. Decellularization of goat uterus as a promising 3-dimensional homing matrix of biological scaffold: A pilot study. Reprod. Fertil. Dev. 2019, 31, 151–152. [Google Scholar] [CrossRef]
- Sehic, E.; de Miguel-Gómez, L.; Thorén, E.; Sameus, J.; Bäckdahl, H.; Oltean, M.; Brännström, M.; Hellström, M. Decellularization and enzymatic preconditioning of bovine uterus for improved recellularization. Transl. Med. Commun. 2024, 9, 16. [Google Scholar] [CrossRef]
- De Miguel-Gómez, L.; Sehic, E.; Thorén, E.; Ahlström, J.; Rabe, H.; Oltean, M.; Brännström, M.; Hellström, M. Toward human uterus tissue engineering: Uterine decellularization in a non-human primate species. Acta Obstet. Gynecol. Scand. 2024. [Google Scholar] [CrossRef] [PubMed]
- Young, R.C.; Goloman, G. Allo- and xeno-reassembly of human and rat myometrium from cells and scaffolds. Tissue Eng. Part. A 2013, 19, 2112–2119. [Google Scholar] [CrossRef]
- Daryabari, S.S.; Fendereski, K.; Ghorbani, F.; Dehnavi, M.; Shafikhani, Y.; Omranipour, A.; Zeraatian-Nejad Davani, S.; Majidi Zolbin, M.; Tavangar, S.M.; Kajbafzadeh, A.M. Whole-organ decellularization of the human uterus and in vivo application of the bio-scaffolds in animal models. J. Assist. Reprod. Genet. 2022, 39, 1237–1247. [Google Scholar] [CrossRef]
- Sehic, E.; Thoren, E.; Gudmundsdottir, I.; Oltean, M.; Brannstrom, M.; Hellstrom, M. Mesenchymal stem cells establish a pro-regenerative immune milieu after decellularized rat uterus tissue transplantation. J. Tissue Eng. 2022, 13, 20417314221118858. [Google Scholar] [CrossRef]
- Padma, A.M.; Alshaikh, A.B.; Song, M.J.; Akouri, R.; Oltean, M.; Brännström, M.; Hellström, M. Decellularization protocol-dependent damage-associated molecular patterns in rat uterus scaffolds differentially affect the immune response after transplantation. J. Tissue Eng. Regen. Med. 2021, 15, 674–685. [Google Scholar] [CrossRef]
- Sehic, E.; de Miguel Gómez, L.; Rabe, H.; Thorén, E.; Gudmundsdottir, I.; Oltean, M.; Akouri, R.; Brännström, M.; Hellström, M. Transplantation of a bioengineered tissue patch promotes uterine repair in the sheep. Biomater. Sci. 2024, 12, 2136–2148. [Google Scholar] [CrossRef]
- Gibson-Corley, K.N.; Olivier, A.K.; Meyerholz, D.K. Principles for valid histopathologic scoring in research. Vet. Pathol. 2013, 50, 1007–1015. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, M.; Mueller, R.D.; Nolan, T.; et al. The digital MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clin. Chem. 2013, 59, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Li, X.; Sun, H.; Su, J.; Lin, N.; Peault, B.; Song, T.; Yang, J.; Dai, J.; Hu, Y. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials 2014, 35, 4888–4900. [Google Scholar] [CrossRef] [PubMed]
- Yoshimasa, Y.; Maruyama, T. Bioengineering of the Uterus. Reprod. Sci. 2021, 28, 1596–1611. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, Y.; He, X.; Ling, W.; Yao, J.; Li, Z.; Wang, Q.; Li, L. Biomaterializing the advances in uterine tissue engineering. iScience 2022, 25, 105657. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, R.; Wang, G.; Zhang, Y.; Liu, F. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium. Stem Cell Res. Ther. 2019, 10, 225. [Google Scholar] [CrossRef]
- Jin, X.; Dai, Y.; Xin, L.; Ye, Z.; Chen, J.; He, Q.; Chen, X.; Xu, X.; Song, G.; Yu, X.; et al. ADSC-derived exosomes-coupled decellularized matrix for endometrial regeneration and fertility restoration. Mater. Today Bio 2023, 23, 100857. [Google Scholar] [CrossRef]
- Ribatti, D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod. Toxicol. 2017, 70, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Trigo, C.M.; Rodrigues, J.S.; Camões, S.P.; Solá, S.; Miranda, J.P. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef]
- Chen, L.; Fu, C.; Zhang, Q.; He, C.; Zhang, F.; Wei, Q. The role of CD44 in pathological angiogenesis. FASEB J. 2020, 34, 13125–13139. [Google Scholar] [CrossRef]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting integrin pathways: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Lin, Z.; Chen, J.; Chen, G.; Zhang, S.; Liu, M.; Li, H.; He, D.; Liang, S.; Luo, Q.; et al. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration. J. Cachexia Sarcopenia Muscle 2021, 12, 1704–1723. [Google Scholar] [CrossRef] [PubMed]
- Goumans, M.-J.; Liu, Z.; ten Dijke, P. TGF-β signaling in vascular biology and dysfunction. Cell Res. 2009, 19, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Tie, Y.; Tang, F.; Peng, D.; Zhang, Y.; Shi, H. TGF-beta signal transduction: Biology, function and therapy for diseases. Mol. Biomed. 2022, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, C.; Wang, R.; Zhang, Y.; Jian, B.; Zhou, Z.; Wu, Z.; Liang, M. HnRNPA1 Prevents Endothelial-to-mesenchymal Transition-induced VSMC Activation and Neointimal Hyperplasia in Vein Grafts. J. Cardiovasc. Transl. Res. 2024, 17, 1400–1414. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Z.-J.; Li, P.; He, Y.-L. Creation of a female rabbit model for intrauterine adhesions using mechanical and infectious injury. J. Surg. Res. 2013, 183, 296–303. [Google Scholar] [CrossRef]
- Hong, I.-S. Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis. 2023, 10, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Liu, D.; Song, M.; Zhao, G.; Cao, Y.; Yan, G.; Dai, J.; Hu, Y. Leukemia inhibitory factor promotes the regeneration of rat uterine horns with full-thickness injury. Wound Repair Regen. 2019, 27, 477–487. [Google Scholar] [CrossRef]
- Gargett, C.E.; Hapangama, D. Endometrial Stem/Progenitor Cells: Prospects and Challenges. J. Pers. Med. 2022, 12, 1466. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vilella, F.; Alama, P.; Moreno, I.; Mignardi, M.; Isakova, A.; Pan, W.; Simon, C.; Quake, S.R. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 2020, 26, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Chan, R.W.S.; Ng, E.H.Y.; Gemzell-Danielsson, K.; Yeung, W.S.B. Single-cell RNA sequencing of cultured human endometrial CD140b(+)CD146(+) perivascular cells highlights the importance of in vivo microenvironment. Stem Cell Res. Ther. 2021, 12, 306. [Google Scholar] [CrossRef]
- Boroń, D.; Zmarzły, N.; Wierzbik-Strońska, M.; Rosińczuk, J.; Mieszczański, P.; Grabarek, B.O. Recent Multiomics Approaches in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 1237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-M.; Da, L.-C.; Wang, R.; Wang, L.; Jiang, Y.-L.; Zhang, X.-Z.; Li, Y.-X.; Lei, X.-X.; Song, Y.-T.; Zou, C.-Y.; et al. Promotion of uterine reconstruction by a tissue-engineered uterus with biomimetic structure and extracellular matrix microenvironment. Sci. Adv. 2023, 9, eadi6488. [Google Scholar] [CrossRef]
- Juul, N.; Amoushahi, M.; Willacy, O.; Ji, M.; Villa, C.; Ajalloueian, F.; Chamorro, C.; Fossum, M. Autologous micrografting improves regeneration of tissue-engineered urinary conduits in vivo. Sci. Rep. 2024, 14, 22028. [Google Scholar] [CrossRef]
- Willacy, O.; Juul, N.; Taouzlak, L.; Chamorro, C.I.; Ajallouiean, F.; Fossum, M. A perioperative layered autologous tissue expansion graft for hollow organ repair. Heliyon 2024, 10, e25275. [Google Scholar] [CrossRef]
Scoring of Uterus Tissue Regeneration | ||||||
---|---|---|---|---|---|---|
Group | Minor (0) | Partial (1) | Moderate (2) | Substantial (3) | Major (4) | Average Score |
DC 1 month | 0 | 2 | 1 | 3 | 0 | 2.2 |
RC 1 month | 3 | 2 | 0 | 1 | 0 | 1.5 |
DC 4 months | 2 | 0 | 1 | 2 | 0 | 2 |
RC 4 months | 1 | 0 | 1 | 2 | 1 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandstein, S.; De Miguel-Gómez, L.; Sehic, E.; Thorén, E.; López-Martínez, S.; Cervelló, I.; Akouri, R.; Oltean, M.; Brännström, M.; Hellström, M. Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression. Bioengineering 2024, 11, 1268. https://doi.org/10.3390/bioengineering11121268
Bandstein S, De Miguel-Gómez L, Sehic E, Thorén E, López-Martínez S, Cervelló I, Akouri R, Oltean M, Brännström M, Hellström M. Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression. Bioengineering. 2024; 11(12):1268. https://doi.org/10.3390/bioengineering11121268
Chicago/Turabian StyleBandstein, Sara, Lucia De Miguel-Gómez, Edina Sehic, Emy Thorén, Sara López-Martínez, Irene Cervelló, Randa Akouri, Mihai Oltean, Mats Brännström, and Mats Hellström. 2024. "Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression" Bioengineering 11, no. 12: 1268. https://doi.org/10.3390/bioengineering11121268
APA StyleBandstein, S., De Miguel-Gómez, L., Sehic, E., Thorén, E., López-Martínez, S., Cervelló, I., Akouri, R., Oltean, M., Brännström, M., & Hellström, M. (2024). Uterine Repair Mechanisms Are Potentiated by Mesenchymal Stem Cells and Decellularized Tissue Grafts Through Elevated Vegf, Cd44, and Itgb1 Gene Expression. Bioengineering, 11(12), 1268. https://doi.org/10.3390/bioengineering11121268