Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study
Abstract
:1. Introduction
2. Methods
2.1. Research Population
2.2. Research Ethics Clearance
2.3. Enrollment Criteria
2.4. Information Acquisition
2.5. Definitions of Study Variables
- The dependent variable: Temporomandibular joint disorders (TMDs), based on the 2015 ICD-9-CM Diagnosis Code 524.60, Temporomandibular joint disorders, unspecified.
- Systemic comorbidities linked to Metabolic Syndrome (MetS) were incorporated within the study as independent variables defined according to the ICD-9-CM diagnostic criteria. These diagnoses are depicted in Table 1 in the results section.
2.6. Analysis Strategy
2.6.1. Statistical Analysis
2.6.2. Machine Learning (ML) Models
3. Results
3.1. The Associations of Temporomandibular Disorders (TMDs) with Demographics, Smoking Status, and Systemic Conditions
Parameter | TMD Mean ± SD | Without TMD Mean ± SD | p Value * | OR and 95% CI # | |
---|---|---|---|---|---|
Age | 25.72 ± 8.03 | 21.83 ± 5.97 | <0.001 | 1.07 (1.06–1.07) | |
Parameter | Variable | TMD No. (%) | Without TMD No. (%) | p-Value ^ | OR (95% Confidence Interval) ## |
Sex | Male | 1073 (1.1%) | 98,393 (98.9%) | <0.001 | 1 |
Female | 826 (2.5%) | 32,237 (97.5%) | 2.34 (2.14–2.57) | ||
Smoking | Yes | 223 (3.2) | 6661 (96.8) | <0.001 | 2.47 (2.15–2.85) |
No | 1676 (1.3) | 123,969 (98.7) | 1 | ||
Hypertension | Yes | 77 (2.3) | 3286 (97.7) | <0.001 | 2.19 (1.60–2.98) |
No | 1822 (1.4) | 127,344 (98.6) | 1 | ||
Hyperlipidemia | Yes | 285 (3.7) | 7441 (96.3) | <0.001 | 2.92 (2.57–3.32) |
No | 1614 (1.3) | 123,189 (98.7) | 1 | ||
Type 2 diabetes | Yes | 10 (2.9) | 335 (97.1) | 0.022 | 2.06 (1.09–3.86) |
No | 1889 (1.4) | 130,295 (98.6%) | 1 | ||
Impaired glucose tolerance (IGT) | Yes | 6 (4.7) | 122 (95.3) | 0.002 | 3.39 (1.49–7.70) |
No | 1893 (1.4) | 130,508 (98.6) | 1 | ||
Obesity | Yes | 253 (3.4) | 7195 (96.6) | <0.001 | 2.63 (2.30–3.01) |
No | 1646 (1.3) | 123,435 (98.7) | 1 | ||
Nonalcoholic fatty liver disease (NAFLD) | Yes | 43 (4.6) | 895 (95.4) | <0.001 | 3.35 (2.46–4.57) |
No | 1856 (1.4) | 129,735 (98.6) | 1 | ||
Obstructive sleep apnea (OSA) | Yes | 18 (5.7) | 300 (94.3) | <0.001 | 4.15 (2.57–6.70) |
No | 1881 (1.4) | 130,330 (98.6) | 1 | ||
Cardiac disease | Yes | 110 (3.1) | 3488 (96.9) | <0.001 | 2.24 (1.84–2.72) |
No | 1789 (1.4) | 127,142 (98.6) | 1 | ||
S/P Transient ischemic attack (TIA) | Yes | 7 (7.1) | 92 (92.9) | <0.001 | 5.25 (2.43–11.33) |
No | 1892 (1.4) | 130,538 (98.6) | 1 | ||
S/P Stroke | Yes | 6 (6.5) | 86 (93.5) | <0.001 | 4.81 (2.10–11.02) |
No | 1893 (1.4) | 130,544 (98.6) | 1 | ||
S/P Deep venous thrombosis (DVT) | Yes | 7 (6.5) | 101 (93.5) | <0.001 | 4.78 (2.22–10.30) |
No | 1892 (1.4) | 130,529 (98.6) | 1 | ||
Anemia | Yes | 320 (4.1) | 7440 (95.9) | <0.001 | 3.35 (2.97–3.79) |
No | 1579 (1.3) | 123,190 (98.7) | 1 |
3.2. The Associations of Temporomandibular Disorders (TMDs) with Ancillary Test Findings including Biochemistry Blood Test Results Used in the Workup of MetS Components
Parameter | TMD | Without TMD | p Value * | OR and 95% CI # | ||
---|---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | |||
Weight (kilograms) | 1104 | 73.02 ± 28.43 | 65,513 | 73.30 ± 32.44 | 0.778 | 1.000 (0.998–1.002) |
Body mass index (BMI) | 1100 | 24.76 ± 4.74 | 65,294 | 24.26 ± 4.29 | 0.001 | 1.026 (1.012–1.039) |
C-reactive protein (CRP) (mg/L) | 826 | 3.96 ± 6.85 | 29,529 | 3.76 ± 10.26 | 0.571 | 1.002 (0.996–1.008) |
Glycated hemoglobin (HbA1c) (%) | 69 | 5.36 ± 0.94 | 1874 | 5.40 ± 0.97 | 0.761 | 0.960 (0.738–1.249) |
Fasting glucose (mg/dL) | 70 | 86.75 ± 9.92 | 2457 | 87.13 ± 11.99 | 0.754 | 0.997 (0.977–1.018) |
Cholesterol (mg/dL) | 867 | 178.89 ± 33.47 | 27,313 | 175.72 ± 35.69 | 0.006 | 1.002 (1.001–1.004) |
High-density lipoprotein (HDL) (mg/dL) | 867 | 50.06 ± 12.89 | 27,306 | 48.22 ± 11.73 | <0.001 | 1.013 (1.007–1.018) |
Low-density lipoprotein (LDL) (mg/dL) | 685 | 109.31 ± 27.83 | 19,528 | 108.31 ± 30.11 | 0.354 | 1.001 (0.999–1.004) |
LDL cholesterol calculated (mg/dL) | 565 | 110.06 ± 28.07 | 16,893 | 108.32 ± 30.48 | 0.147 | 1.002 (0.944–1.010) |
Triglycerides (mg/dL) | 867 | 104.87 ± 67.46 | 27,316 | 104.45 ± 63.92 | 0.851 | 1.000 (0.999–1.001) |
Very-low-density lipoprotein (VLDL) (mg/dL) | 866 | 20.52 ± 11.08 | 27,265 | 20.61 ± 11.20 | 0.817 | 0.999 (0.993–1.005) |
Non-HDL cholesterol (mg/dL) | 561 | 130.99 ± 32.22 | 16,261 | 129.45 ± 35.10 | 0.270 | 1.001 (0.999–1.004) |
3.3. Multivariable Analysis and Collinearity Statistics Evaluating Temporomandibular Disorders (TMDs) as a Dependent Variable with Significantly Associated Parameters Identified in the Bivariate Analysis
Parameter | Multivariable Binary Logistic Regression Analysis | Collinearity Statistics Using Linear Regression Analysis | ||||
---|---|---|---|---|---|---|
B | SE | p Value | OR (95% CI) | Tolerance | VIF | |
(Intercept) | 5.31 | 0.08 | 0.005 (0.004–0.006) | |||
Age | 0.07 | 0.003 | <0.001 | 1.07 (1.06–1.08) | 0.485 | 2.060 |
Sex: women vs. men | 0.97 | 0.05 | <0.001 | 2.65 (2.41–2.93) | 0.939 | 1.065 |
Smoking | 0.07 | 0.08 | 0.383 | 1.07 (0.91–1.26) | 0.775 | 1.291 |
Hypertension | 0.21 | 0.17 | 0.233 | 1.23 (0.87–1.73) | 0.908 | 1.102 |
Hyperlipidemia | 0.68 | 0.08 | 0.448 | 1.07 (0.89–1.27) | 0.558 | 1.791 |
Type 2 diabetes | 0.23 | 0.24 | 0.344 | 1.26 (0.78–2.04) | 0.928 | 1.078 |
Impaired glucose tolerance (IGT) | 0.05 | 0.46 | 0.910 | 1.05 (0.42–2.63) | 0.968 | 1.033 |
Obesity | 0.06 | 0.08 | 0.429 | 1.07 (0.90–1.26) | 0.681 | 1.468 |
Cardiac disease | 0.11 | 0.10 | 0.305 | 1.11 (0.90–1.38) | 0.938 | 1.066 |
Obstructive sleep apnea (OSA) | 0.49 | 0.25 | 0.051 | 1.63 (0.99–2.66) | 0.979 | 1.022 |
Nonalcoholic fatty liver disease (NAFLD) | 0.31 | 0.17 | 0.069 | 1.37 (0.97–1.93) | 0.903 | 1.107 |
S/P transient ischemic attack (TIA) | 0.36 | 0.42 | 0.385 | 1.43 (0.63–3.27) | 0.960 | 1.041 |
S/P stroke | 0.21 | 0.49 | 0.674 | 1.23 (0.46–3.26) | 0.962 | 1.039 |
S/P deep venous thrombosis (DVT) | 0.61 | 0.40 | 0.131 | 1.83 (0.83–4.04) | 0.996 | 1.004 |
Anemia | 0.52 | 0.06 | <0.001 | 1.69 (1.48–1.93) | 0.917 | 1.090 |
3.4. Feature Importance Based on XGBoost Machine Learning (ML) Algorithm with Temporomandibular Disorders (TMDs) as a Target Variable
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leeuw, R.d.; Klasser, G. (Eds.) Orofacial Pain: Guidelines for Assessment, Diagnosis, and Management, 4th ed.; Quintessence: Chicago, IL, USA, 2013. [Google Scholar]
- National Institute of Dental and Craniofacial Research (NIDCR). Facial Pain. Available online: http://www.nidcr.nih.gov/DataStatistics/FindDataByTopic/FacialPain/ (accessed on 21 October 2023).
- Almoznino, G.; Zini, A.; Zakuto, A.; Sharav, Y.; Haviv, Y.; Hadad, A.; Chweidan, H.; Yarom, N.; Benoliel, R. Oral Health-Related Quality of Life in Patients with Temporomandibular Disorders. J. Oral Facial Pain Headache 2015, 29, 231–241. [Google Scholar] [CrossRef]
- Greenspan, J.D.; Slade, G.D.; Bair, E.; Dubner, R.; Fillingim, R.B.; Ohrbach, R.; Knott, C.; Diatchenko, L.; Liu, Q.; Maixner, W. Pain sensitivity and autonomic factors associated with development of TMD: The OPPERA prospective cohort study. J. Pain 2013, 14, T63–T74.e1-6. [Google Scholar] [CrossRef] [PubMed]
- Slade, G.D.; Ohrbach, R.; Greenspan, J.D.; Fillingim, R.B.; Bair, E.; Sanders, A.E.; Dubner, R.; Diatchenko, L.; Meloto, C.B.; Smith, S.; et al. Painful Temporomandibular Disorder: Decade of Discovery from OPPERA Studies. J. Dent. Res. 2016, 95, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Egermark, I.; Magnusson, T.; Carlsson, G.E. A 20-year follow-up of signs and symptoms of temporomandibular disorders and malocclusions in subjects with and without orthodontic treatment in childhood. Angle Orthod. 2003, 73, 109–115. [Google Scholar] [PubMed]
- Staniszewski, K.; Lygre, H.; Berge, T.; Rosen, A. Serum Analysis in Patients with Temporomandibular Disorders: A Controlled Cross-Sectional Study in Norway. Pain Res. Manag. 2019, 2019, 1360725. [Google Scholar] [CrossRef] [PubMed]
- Ohrbach, R.; Fillingim, R.B.; Mulkey, F.; Gonzalez, Y.; Gordon, S.; Gremillion, H.; Lim, P.F.; Ribeiro-Dasilva, M.; Greenspan, J.D.; Knott, C.; et al. Clinical findings and pain symptoms as potential risk factors for chronic TMD: Descriptive data and empirically identified domains from the OPPERA case-control study. J. Pain 2011, 12, T27-45. [Google Scholar] [CrossRef]
- Rhim, E.; Han, K.; Yun, K.I. Association between temporomandibular disorders and obesity. J. Cranio-Maxillofac. Surg. 2016, 44, 1003–1007. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Kim, T.; Kang, J. Relationship between obstructive sleep apnea, insulin resistance, and metabolic syndrome: A nationwide population-based survey. Endocr. J. 2023, 70, 107–119. [Google Scholar] [CrossRef]
- Tropeano, A.; Corica, D.; Li Pomi, A.; Pepe, G.; Morabito, L.A.; Curatola, S.L.; Casto, C.; Aversa, T.; Wasniewska, M. The metabolic syndrome in pediatrics: Do we have a reliable definition? A systematic review. Eur. J. Endocrinol. 2021, 185, 265–278. [Google Scholar] [CrossRef]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M.; American Diabetes Association; European Association for the Study of Diabetes. The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef]
- Smiti, A. When machine learning meets medical world: Current status and future challenges. Comput. Sci. Rev. 2020, 37, 100280. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Lee, M.J.; Asadi, H. eDoctor: Machine learning and the future of medicine. J. Intern. Med. 2018, 284, 603–619. [Google Scholar] [CrossRef]
- Ahmedt-Aristizabal, D.; Armin, M.A.; Denman, S.; Fookes, C.; Petersson, L. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future. Sensors 2021, 21, 4758. [Google Scholar] [CrossRef]
- Cerquitelli, T.; Meo, M.; Curado, M.; Skorin-Kapov, L.; Tsiropoulou, E.E. Machine Learning Empowered Computer Networks. Comput. Netw. 2023, 230, 109807. [Google Scholar] [CrossRef]
- Lukauskas, M.; Ruzgas, T. Data clustering and its applications in medicine. New Trends in Mathematical Science. New Trends Math. Sci. (ISAME2022-Proc.) 2022, 10, 067–070. [Google Scholar] [CrossRef]
- Huang, L.; Shea, A.L.; Qian, H.; Masurkar, A.; Deng, H.; Liu, D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 2019, 99, 103291. [Google Scholar] [CrossRef] [PubMed]
- Al-Shammari, A.; Zhou, R.; Naseriparsaa, M.; Liu, C. An effective density-based clustering and dynamic maintenance framework for evolving medical data streams. Int. J. Med. Inform. 2019, 126, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 2019, 496, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Almoznino, G.; Kedem, R.; Turgeman, R.; Bader, T.; Yavnai, N.; Zur, D.; Shay, B. The Dental, Oral, Medical Epidemiological (DOME) Study: Protocol and Study Methods. Methods Inf. Med. 2020, 59, 119–130. [Google Scholar] [CrossRef]
- Almoznino, G.; Kessler Baruch, O.; Kedem, R.; Protter, N.E.; Shay, B.; Yavnai, N.; Zur, D.; Mijiritsky, E.; Abramovitz, I. SOS Teeth: First Priority Teeth with Advanced Caries and Its Associations with Metabolic Syndrome among a National Representative Sample of Young and Middle-Aged Adults. J. Clin. Med. 2020, 9, 3170. [Google Scholar] [CrossRef] [PubMed]
- Almoznino, G.; Zini, A.; Kedem, R.; Protter, N.E.; Zur, D.; Abramovitz, I. Hypertension and Its Associations with Dental Status: Data from the Dental, Oral, Medical Epidemiological (DOME) Nationwide Records-Based Study. J. Clin. Med. 2021, 10, 176. [Google Scholar] [CrossRef]
- Abramovitz, I.; Zini, A.; Atzmoni, M.; Kedem, R.; Zur, D.; Protter, N.E.; Almoznino, G. Cognitive Performance and Its Associations with Dental Caries: Results from the Dental, Oral, Medical Epidemiological (DOME) Records-Based Nationwide Study. Biology 2021, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Abramovitz, I.; Zini, A.; Kessler Baruch, O.; Kedem, R.; Protter, N.E.; Shay, B.; Yavnai, N.; Zur, D.; Mijiritsky, E.; Almoznino, G. SOS teeth with advanced caries and sociodemographic indicators, health-related habits and dental attendance patterns: Data from the Dental, Oral, Medical Epidemiological (DOME) nationwide records-based study. BMC Oral Health 2021, 21, 389. [Google Scholar] [CrossRef] [PubMed]
- Abramovitz, I.; Zini, A.; Pribluda, P.; Kedem, R.; Zur, D.; Protter, N.E.; Almoznino, G. “Dental Cluster” Versus “Metabolic Cluster”: Analyzing the Associations of Planned and Delivered Dental Procedures with Metabolic Syndrome, Utilizing Data from the Dental, Oral, Medical Epidemiological (DOME) Cross-Sectional Record-Based Nationwide Study. Biology 2021, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Ram, D.; Wilensky, A.; Zur, D.; Almoznino, G. The Triangle of Nonalcoholic Fatty Liver Disease, Metabolic Dysfunction, and Periodontitis: Analysis of the Dental, Oral, Medical and Epidemiological (DOME) Records-Based Nationwide Research. Metabolites 2022, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Ytzhaik, N.; Zur, D.; Goldstein, C.; Almoznino, G. Obstructive Sleep Apnea, Metabolic Dysfunction, and Periodontitis—Machine Learning and Statistical Analyses of the Dental, Oral, Medical Epidemiological (DOME) Big Data Study. Metabolites 2023, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Friedman, J. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Arbabshirani, M.R.; Fornwalt, B.K.; Mongelluzzo, G.J.; Suever, J.D.; Geise, B.D.; Patel, A.A.; Moore, G.J. Advanced machine learning in action: Identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit. Med. 2018, 1, 9. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.C.; Lu, X.S.; Yao, C. Weighted Gini index feature selection method for imbalanced data. In Proceedings of the ICNSC 2018—15th IEEE International Conference on Networking, Sensing and Control, Zhuhai, China, 27–29 March 2018; pp. 1–6. [Google Scholar]
- Huang, N.; Lu, G.; Cai, G.; Xu, D.; Xu, J.; Li, F.; Zhang, L. Feature selection of power quality disturbance signals with an entropy-importance-based random forest. Entropy 2016, 18, 44. [Google Scholar] [CrossRef]
- Yang, S.; Berdine, G. The receiver operating characteristic (ROC) curve. Southwest Respir. Crit. Care Chron. 2017, 5, 34–36. [Google Scholar] [CrossRef]
- Jha, N.; Lee, K.S.; Kim, Y.J. Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272715. [Google Scholar] [CrossRef]
- Yap, A.U.; Dworkin, S.F.; Chua, E.K.; List, T.; Tan, K.B.; Tan, H.H. Prevalence of temporomandibular disorder subtypes, psychologic distress, and psychosocial dysfunction in Asian patients. J. Oral Facial Pain Headache 2003, 17, 21–28. [Google Scholar]
- Slade, G.D.; Bair, E.; Greenspan, J.D.; Dubner, R.; Fillingim, R.B.; Diatchenko, L.; Maixner, W.; Knott, C.; Ohrbach, R. Signs and symptoms of first-onset TMD and sociodemographic predictors of its development: The OPPERA prospective cohort study. J. Pain 2013, 14, T20–T32.e1-3. [Google Scholar] [CrossRef] [PubMed]
- LeResche, L. Epidemiology of temporomandibular disorders: Implications for the investigation of etiologic factors. Crit. Rev. Oral Biol. Med. 1997, 8, 291–305. [Google Scholar] [CrossRef]
- LeResche, L.; Saunders, K.; Von Korff, M.R.; Barlow, W.; Dworkin, S.F. Use of exogenous hormones and risk of temporomandibular disorder pain. Pain 1997, 69, 153–160. [Google Scholar] [CrossRef]
- Warren, M.P.; Fried, J.L. Temporomandibular disorders and hormones in women. Cells Tissues Organs 2001, 169, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Lipton, J.A.; Ship, J.A.; Larach-Robinson, D. Estimated prevalence and distribution of reported orofacial pain in the United States. J. Am. Dent. Assoc. 1993, 124, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Gillborg, S.; Akerman, S.; Lundegren, N.; Ekberg, E.C. Temporomandibular Disorder Pain and Related Factors in an Adult Population: A Cross-Sectional Study in Southern Sweden. J. Oral Facial Pain Headache 2017, 31, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Banafa, A.; Suominen, A.L.; Sipila, K. Factors associated with signs of temporomandibular pain: An 11-year-follow-up study on Finnish adults. Acta Odontol. Scand. 2020, 78, 57–63. [Google Scholar] [CrossRef]
- Marpaung, C.; Lobbezoo, F.; van Selms, M.K.A. Temporomandibular Disorders among Dutch Adolescents: Prevalence and Biological, Psychological, and Social Risk Indicators. Pain Res. Manag. 2018, 2018, 5053709. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, R.; Eisenlohr-Moul, T.; Bertrand, P. The association of smoking status with sleep disturbance, psychological functioning, and pain severity in patients with temporomandibular disorders. J. Oral Facial Pain Headache 2013, 27, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Katyayan, P.A.; Katyayan, M.K. Effect of smoking status and nicotine dependence on pain intensity and outcome of treatment in Indian patients with temporomandibular disorders: A longitudinal cohort study. J. Indian Prosthodont. Soc. 2017, 17, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Wanman, A. Temporomandibular disorders among smokers and nonsmokers: A longitudinal cohort study. J. Oral Facial Pain Headache 2005, 19, 209–217. [Google Scholar] [CrossRef]
- Yekkalam, N.; Wanman, A. Associations between craniomandibular disorders, sociodemographic factors and self-perceived general and oral health in an adult population. Acta Odontol. Scand. 2014, 72, 1054–1065. [Google Scholar] [CrossRef]
- Mehra, P.; Wolford, L.M. Serum nutrient deficiencies in the patient with complex temporomandibular joint problems. Proc. Bayl. University. Med. Cent. 2008, 21, 243–247. [Google Scholar] [CrossRef]
- Orhan, K.; Delilbasi, C.; Paksoy, C. Magnetic resonance imaging evaluation of mandibular condyle bone marrow and temporomandibular joint disc signal intensity in anaemia patients. Dentomaxillofacial Radiol. 2009, 38, 247–254. [Google Scholar] [CrossRef]
- Shah, N.; Melo, L.; Reid, W.D.; Cioffi, I. Masseter Deoxygenation in Adults at Risk for Temporomandibular Disorders. J. Dent. Res. 2019, 98, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.H.; Min, C.; Yoo, D.M.; Yang, B.E.; Choi, H.G. Increased Risk of Migraine in Patients with Temporomandibular Disorder: A Longitudinal Follow-up Study Using a National Health Screening Cohort. Diagnostics 2020, 10, 724. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Wu, Y.T.; Chien, W.C.; Chung, C.H.; Chen, L.C.; Shieh, Y.S. The prevalence of first-onset temporomandibular disorder in low back pain and associated risk factors: A nationwide population-based cohort study with a 15-year follow-up. Medicine 2020, 99, e18686. [Google Scholar] [CrossRef]
- Sanders, A.E.; Essick, G.K.; Fillingim, R.; Knott, C.; Ohrbach, R.; Greenspan, J.D.; Diatchenko, L.; Maixner, W.; Dubner, R.; Bair, E.; et al. Sleep apnea symptoms and risk of temporomandibular disorder: OPPERA cohort. J. Dent. Res. 2013, 92, 70S–77S. [Google Scholar] [CrossRef] [PubMed]
- Maixner, W.; Fillingim, R.; Kincaid, S.; Sigurdsson, A.; Harris, M.B. Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosom. Med. 1997, 59, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Shin, J.S.; Lee, J.; Lee, Y.J.; Kim, M.R.; Cho, J.H.; Kim, K.W.; Park, Y.; Song, H.J.; Park, S.Y.; et al. Association between temporomandibular disorders, chronic diseases, and ophthalmologic and otolaryngologic disorders in Korean adults: A cross-sectional study. PLoS ONE 2018, 13, e0191336. [Google Scholar] [CrossRef]
- Dursun, O.; Cankaya, T. Assessment of Temporomandibular Joint Dysfunction in Patients with Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 2141–2146. [Google Scholar] [CrossRef]
- Pfutzner, A.; Forst, T. High-sensitivity C-reactive protein as cardiovascular risk marker in patients with diabetes mellitus. Diabetes Technol. Ther. 2006, 8, 28–36. [Google Scholar] [CrossRef]
- Pihut, M.; Ceranowicz, P.; Gala, A. Evaluation of C-Reactive Protein Level in Patients with Pain Form of Temporomandibular Joint Dysfunction. Pain Res. Manag. 2018, 2018, 7958034. [Google Scholar] [CrossRef]
- Sperrin, M.; Marshall, A.D.; Higgins, V.; Renehan, A.G.; Buchan, I.E. Body mass index relates weight to height differently in women and older adults: Serial cross-sectional surveys in England (1992–2011). J. Public Health 2016, 38, 607–613. [Google Scholar] [CrossRef]
- Jordani, P.C.; Campi, L.B.; Circeli, G.Z.; Visscher, C.M.; Bigal, M.E.; Goncalves, D.A. Obesity as a risk factor for temporomandibular disorders. J. Oral Rehabil. 2017, 44, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Lin, L.; Yao, Q.; Zhang, J. Obesity and temporomandibular joint disorders: A systematic review and meta-analysis. BMC Oral Health 2023, 23, 607. [Google Scholar] [CrossRef] [PubMed]
- Minervini, G.; Franco, R.; Marrapodi, M.M.; Almeida, L.E.; Ronsivalle, V.; Cicciu, M. Prevalence of temporomandibular disorders (TMD) in obesity patients: A systematic review and meta-analysis. J. Oral Rehabil. 2023, 50, 1544–1553. [Google Scholar] [CrossRef] [PubMed]
Age Groups | Parameter | Multivariable Binary Logistic Regression Analysis | |||
---|---|---|---|---|---|
B | SE | p Value | OR (95% CI) | ||
Age 18–30 | (Intercept) | 3.97 | 0.04 | <0.001 | 0.02 (0.01–0.02) |
Sex: women vs. men | 0.88 | 0.05 | <0.001 | 2.41 (2.16–2.68) | |
Smoking | 0.52 | 0.14 | <0.001 | 1.69 (1.27–2.25) | |
Hypertension | 0.64 | 0.28 | 0.024 | 1.91 (1.08–3.35) | |
Hyperlipidemia | 0.49 | 0.17 | 0.005 | 1.63 (1.16–2.29) | |
Type 2 diabetes | 0.31 | 0.73 | 0.670 | 1.36 (0.32–5.74) | |
Impaired glucose tolerance (IGT) | 0.86 | 1.06 | 0.42 | 2.36 (0.29–19.18) | |
Obesity | 0.54 | 0.14 | <0.001 | 1.72 (1.31–2.26) | |
Cardiac disease | 0.42 | 1.68 | 0.01 | 1.52 (1.09–2.12) | |
Obstructive sleep apnea (OSA) | 1.93 | 0.44 | <0.001 | 6.89 (2.88–16.47) | |
Nonalcoholic fatty liver disease (NAFLD) | 1.13 | 0.47 | 0.772 | 1.14 (0.45–2.91) | |
S/P transient ischemic attack (TIA) | 0.84 | 1.04 | 0.422 | 2.32 (0.29–18.17) | |
S/P stroke | 1.12 | 1.02 | 0.272 | 3.09 (0.41–23.15) | |
S/P deep venous thrombosis (DVT) | 1.08 | 0.61 | 0.076 | 2.94 (0.88–9.75) | |
Anemia | 0.75 | 0.08 | <0.001 | 2.13 (1.81–2.50) | |
Age 31–50 | (Intercept) | 2.89 | 0.11 | <0.001 | 0.05 (0.04–0.07) |
Sex: women vs. men | 0.87 | 0.11 | <0.001 | 2.39 (1.91–3.00) | |
Smoking | 0.04 | 0.10 | 0.679 | 1.04 (0.85–1.27) | |
Hypertension | 0.34 | 0.020 | 0.142 | 1.35 (0.90–2.03) | |
Hyperlipidemia | 0.20 | 0.10 | 0.051 | 1.22 (0.99–1.49) | |
Type 2 diabetes | 0.07 | 0.25 | 0.778 | 1.07 (0.64–1.78) | |
Impaired glucose tolerance (IGT) | 0.09 | 0.47 | 0.843 | 1.09 (0.43–2.77) | |
Obesity | 0.04 | 1.05 | 0.688 | 1.04 (0.84–1.28) | |
Cardiac disease | 0.04 | 0.19 | 0.688 | 1.04 (0.84–1.28) | |
Obstructive sleep apnea (OSA) | 0.32 | 0.30 | 0.283 | 1.38 (0.76–2.51) | |
Nonalcoholic fatty liver disease (NAFLD) | 0.50 | 0.18 | 0.006 | 1.65 (1.15–2.37) | |
S/P transient ischemic attack (TIA) | 0.50 | 0.46 | 0.278 | 1.65 (0.67–4.08) | |
S/P stroke | 0.47 | 0.51 | 0.355 | 1.60 (0.59–4.34) | |
S/P deep venous thrombosis (DVT) | 0.57 | 0.53 | 0.278 | 1.77 (0.63–5.03) | |
Anemia | 0.40 | 0.11 | <0.001 | 1.49 (1.19–1.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chweidan, H.; Rudyuk, N.; Tzur, D.; Goldstein, C.; Almoznino, G. Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study. Bioengineering 2024, 11, 134. https://doi.org/10.3390/bioengineering11020134
Chweidan H, Rudyuk N, Tzur D, Goldstein C, Almoznino G. Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study. Bioengineering. 2024; 11(2):134. https://doi.org/10.3390/bioengineering11020134
Chicago/Turabian StyleChweidan, Harry, Nikolay Rudyuk, Dorit Tzur, Chen Goldstein, and Galit Almoznino. 2024. "Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study" Bioengineering 11, no. 2: 134. https://doi.org/10.3390/bioengineering11020134
APA StyleChweidan, H., Rudyuk, N., Tzur, D., Goldstein, C., & Almoznino, G. (2024). Statistical Methods and Machine Learning Algorithms for Investigating Metabolic Syndrome in Temporomandibular Disorders: A Nationwide Study. Bioengineering, 11(2), 134. https://doi.org/10.3390/bioengineering11020134