Evaluating Cognitive-Motor Interference in Multiple Sclerosis: A Technology-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Devices
- Number of steps (STEPS), i.e., the sum of steps executed with both feet.
- Average contact time (CT, ms), i.e., the contact time averaged over all the steps.
- Average peak force (PF, N), i.e., the peak force averaged over all the steps.
- Force time integral (FTI, Ns), i.e., force–time integral over the entire interval of the trial.
- FOIB = (FTIleft − FTIright)/(FTIleft + FTIright); it measures which foot is loaded more over the interval of analysis. Thus, negative or positive values mean that the right or the left foot was loaded more, respectively; here, we used the absolute value of the FOIB in order to describe imbalance more generally.
2.4. Calculating the Dual-Task Cost (%)
- Motor DTC (DTCmot) = (STmot − DTmot)/STmot×100;
- Cognitive DTC (DTCcogn) = (STcogn − DTcogn)/STcogn×100.
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Cognitive Performance
3.3. Motor Performance
3.4. Load Forces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, P.; Lamar, M.; Bhatt, T. Effect of Type of Cognitive Task and Walking Speed on Cognitive-Motor Interference during Dual-Task Walking. Neuroscience 2014, 260, 140–148. [Google Scholar] [CrossRef]
- Schott, N.; El-Rajab, I.; Klotzbier, T. Cognitive-Motor Interference during Fine and Gross Motor Tasks in Children with Developmental Coordination Disorder (DCD). Res. Dev. Disabil. 2016, 57, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.; Polson, M.C.; Dafoe, C.G.; Gaskill, S.J. Dividing Attention within and between Hemispheres: Testing a Multiple Resources Approach to Limited-Capacity Information Processing. J. Exp. Psychol. Hum. Percept. Perform. 1982, 8, 625–650. [Google Scholar] [CrossRef] [PubMed]
- Leone, C.; Moumdjian, L.; Patti, F.; Vanzeir, E.; Baert, I.; Veldkamp, R.; Van Wijmeersch, B.; Feys, P. Comparing 16 Different Dual–Tasking Paradigms in Individuals with Multiple Sclerosis and Healthy Controls: Working Memory Tasks Indicate Cognitive–Motor Interference. Front. Neurol. 2020, 11, 544638. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, R.; Kalron, A.; Baert, I.; Hämäläinen, P.; Tacchino, A.; D’hooge, M.; Giffroy, X.; Van Geel, F.; Raats, J.; Coninx, K.; et al. Differential Effects and Discriminative Validity of Motor and Cognitive Tasks Varying in Difficulty on Cognitive–Motor Interference in Persons with Multiple Sclerosis. Mult. Scler. J. 2021, 27, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Argento, O.; Spanò, B.; Pisani, V.; Incerti, C.C.; Bozzali, M.; Foti, C.; Caltagirone, C.; Nocentini, U. Dual-Task Performance in Multiple Sclerosis’ Patients: Cerebellum Matters? Arch. Clin. Neuropsychol. 2021, 36, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Sirhan, B.; Frid, L.; Kalron, A. Is the Dual-Task Cost of Walking and Texting Unique in People with Multiple Sclerosis? J. Neural Transm. 2018, 125, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, R.; D’hooge, M.; Sandroff, B.M.; DeLuca, J.; Kos, D.; Salter, A.; Feinstein, A.; Amato, M.P.; Brichetto, G.; Chataway, J.; et al. Profiling Cognitive–Motor Interference in a Large Sample of Persons with Progressive Multiple Sclerosis and Impaired Processing Speed: Results from the CogEx Study. J. Neurol. 2023, 270, 3120–3128. [Google Scholar] [CrossRef]
- Abou, L.; Peters, J.; Fritz, N.E.; Sosnoff, J.J.; Kratz, A.L. Motor Cognitive Dual-Task Testing to Predict Future Falls in Multiple Sclerosis: A Systematic Review. Neurorehabil. Neural Repair. 2022, 36, 757–769. [Google Scholar] [CrossRef]
- Negahban, H.; Mofateh, R.; Arastoo, A.A.; Mazaheri, M.; Yazdi, M.J.S.; Salavati, M.; Majdinasab, N. The Effects of Cognitive Loading on Balance Control in Patients with Multiple Sclerosis. Gait Posture 2011, 34, 479–484. [Google Scholar] [CrossRef]
- Porosińska, A.; Pierzchała, K.; Mentel, M.; Karpe, J. Evaluation of Postural Balance Control in Patients with Multiple Sclerosis—Effect of Different Sensory Conditions and Arithmetic Task Execution. A Pilot Study. Neurol. Neurochir. Pol. 2010, 44, 35–42. [Google Scholar] [CrossRef]
- Hamilton, F.; Rochester, L.; Paul, L.; Rafferty, D.; O’Leary, C.; Evans, J. Walking and Talking: An Investigation of Cognitive—Motor Dual Tasking in Multiple Sclerosis. Mult. Scler. J. 2009, 15, 1215–1227. [Google Scholar] [CrossRef]
- Nilsagård, Y.; Denison, E.; Gunnarsson, L.-G.; Boström, K. Factors Perceived as Being Related to Accidental Falls by Persons with Multiple Sclerosis. Disabil. Rehabil. 2009, 31, 1301–1310. [Google Scholar] [CrossRef]
- Veldkamp, R.; Romberg, A.; Hämäläinen, P.; Giffroy, X.; Moumdjian, L.; Leone, C.; Feys, P.; Baert, I. Test-Retest Reliability of Cognitive-Motor Interference Assessments in Walking with Various Task Complexities in Persons with Multiple Sclerosis. Neurorehabil. Neural Repair. 2019, 33, 623–634. [Google Scholar] [CrossRef]
- Block, V.J.; Lizée, A.; Crabtree-Hartman, E.; Bevan, C.J.; Graves, J.S.; Bove, R.; Green, A.J.; Nourbakhsh, B.; Tremblay, M.; Gourraud, P.-A.; et al. Continuous Daily Assessment of Multiple Sclerosis Disability Using Remote Step Count Monitoring. J. Neurol. 2017, 264, 316–326. [Google Scholar] [CrossRef]
- Woelfle, T.; Bourguignon, L.; Lorscheider, J.; Kappos, L.; Naegelin, Y.; Jutzeler, C.R. Wearable Sensor Technologies to Assess Motor Functions in People with Multiple Sclerosis: Systematic Scoping Review and Perspective. J. Med. Internet Res. 2023, 25, e44428. [Google Scholar] [CrossRef]
- Schleimer, E.; Pearce, J.; Barnecut, A.; Rowles, W.; Lizee, A.; Klein, A.; Block, V.J.; Santaniello, A.; Renschen, A.; Gomez, R.; et al. A Precision Medicine Tool for Patients with Multiple Sclerosis (the Open MS BioScreen): Human-Centered Design and Development. J. Med. Internet Res. 2020, 22, e15605. [Google Scholar] [CrossRef] [PubMed]
- Montalban, X.; Graves, J.; Midaglia, L.; Mulero, P.; Julian, L.; Baker, M.; Schadrack, J.; Gossens, C.; Ganzetti, M.; Scotland, A.; et al. A Smartphone Sensor-Based Digital Outcome Assessment of Multiple Sclerosis. Mult. Scler. J. 2022, 28, 654–664. [Google Scholar] [CrossRef] [PubMed]
- Tacchino, A.; Veldkamp, R.; Coninx, K.; Brulmans, J.; Palmaers, S.; Hämäläinen, P.; D’hooge, M.; Vanzeir, E.; Kalron, A.; Brichetto, G.; et al. Design, Development, and Testing of an App for Dual-Task Assessment and Training Regarding Cognitive-Motor Interference (CMI-APP) in People with Multiple Sclerosis: Multicenter Pilot Study. JMIR mHealth uHealth 2020, 8, e15344. [Google Scholar] [CrossRef] [PubMed]
- Frechette, M.L.; Meyer, B.M.; Tulipani, L.J.; Gurchiek, R.D.; McGinnis, R.S.; Sosnoff, J.J. Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis. Curr. Neurol. Neurosci. Rep. 2019, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M.; Leo, G.J.; Bernardin, L.; Unverzagt, F. Cognitive Dysfunction in Multiple Sclerosis: I. Frequency, Patterns, and Prediction. Neurology 1991, 41, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.P.; Portaccio, E.; Goretti, B.; Zipoli, V.; Ricchiuti, L.; De Caro, M.F.; Patti, F.; Vecchio, R.; Sorbi, S.; Trojano, M. The Rao’s Brief Repeatable Battery and Stroop Test: Normative Values with Age, Education and Gender Corrections in an Italian Population. Mult. Scler. J. 2006, 12, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Bao, J.; Setiawan, I.M.A.; Saptono, A.; Parmanto, B. The MHealth App Usability Questionnaire (MAUQ): Development and Validation Study. JMIR mHealth uHealth 2019, 7, e11500. [Google Scholar] [CrossRef]
- Burns, G.T.; Deneweth Zendler, J.; Zernicke, R.F. Validation of a Wireless Shoe Insole for Ground Reaction Force Measurement. J. Sports Sci. 2019, 37, 1129–1138. [Google Scholar] [CrossRef]
- Baddeley, D.; Della Sala, S.; Gray, C.; Papagno, C.S.H. Testing Central Executive Functioning with a Pencil-and-Paper Test; Taylor & Francis Group: Bristol, UK, 1997. [Google Scholar]
- Podda, J.; Ponzio, M.; Pedullà, L.; Monti Bragadin, M.; Battaglia, M.A.; Zaratin, P.; Brichetto, G.; Tacchino, A. Predominant Cognitive Phenotypes in Multiple Sclerosis: Insights from Patient-Centered Outcomes. Mult. Scler. Relat. Disord. 2021, 51, 102919. [Google Scholar] [CrossRef]
- Pedullà, L.; Tacchino, A.; Podda, J.; Bragadin, M.M.; Bonzano, L.; Battaglia, M.A.; Bove, M.; Brichetto, G.; Ponzio, M. The Patients’ Perspective on the Perceived Difficulties of Dual-Tasking: Development and Validation of the Dual-Task Impact on Daily-Living Activities Questionnaire (DIDA-Q). Mult. Scler. Relat. Disord. 2020, 46, 102601. [Google Scholar] [CrossRef]
- Linz, N.; Lundholm Fors, K.; Lindsay, H.; Eckerström, M.; Alexandersson, J.; Kokkinakis, D. Temporal Analysis of the Semantic Verbal Fluency Task in Persons with Subjective and Mild Cognitive Impairment. In Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology, Minneapolis, MN, USA, 6 June 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 103–113. [Google Scholar] [CrossRef]
- Smith, P.T.; Claxton, G.L. Lexical Search and Phonemic Organisation in Memory; Experimental Psychology Society: London, UK, 1972. [Google Scholar]
- Crowe, S.F. Decrease in Performance on the Verbal Fluency Test as a Function of Time: Evaluation in a Young Healthy Sample. J. Clin. Exp. Neuropsychol. 1998, 20, 391–401. [Google Scholar] [CrossRef]
Single-Task (ST) | Dual-Task (DT) | p Value | |||
---|---|---|---|---|---|
Right | Left | Right | Left | ||
Contact time (ms)—CT | |||||
| 682.91 ± 140.54 a,b,c | 702.50 ± 182.60 a,d,e | 736.50 ± 199.43 b,d | 747.18 ± 215.53 c,e | 0.029 |
| 462.27 ± 150.58 c | 486.91 ± 181.27 | 495.55 ± 203.72 | 513.91 ± 212.94 c | 0.091 |
| 593.18 ± 133.70 a,b,c | 609.77 ± 181.42 a,d,e | 643.45 ± 188.32 b,d | 652.27 ± 212.73 c,e | 0.016 |
Peak force (N)—PF | |||||
| 786.61 ± 135.39 b,c | 789.72 ± 147.67 d,e | 755.92 ± 127.49 b,d | 757.85 ± 141.43 c,e | <0.01 |
| 606.81 ± 123.42 a,b,c | 629.69 ± 125.30 a,d,e | 569.56 ± 117.89 b,d | 585.25 ± 112.99 e | <0.01 |
| 722.36 ± 147.58 | 728.82 ± 147.40 | 707.39 ± 144.74 | 705.08 ± 139.20 | 0.27 |
Force time integral (Ns)—FTI | |||||
| 29,948.73 ± 5136.25 | 31,109.76 ± 7207.41 | 29,983.56 ± 5084.11 | 30,673.20 ± 6467.27 | 0.27 |
| 12,051.92 ± 1900.55 | 12,769.76 ± 3103.62 | 11,837.63 ± 2466.11 | 12,295.68 ± 3390.92 | 0.57 |
| 17,855.42 ± 4089.36 | 18,380.50 ± 5113.99 | 18,187.32 ± 4050.62 | 18,337.01 ± 4777.71 | 0.95 |
Single-Task (ST) | Dual-Task (DT) | p value | Dual-Task Cost (DTC) | ||
Walked distance (m)—DIST | 143.15 ± 37.73 | 128.80 ± 37.98 | <0.001 | 10.82 ± 6.57 | |
Number of steps—STEPS | 172.09 ± 25.57 | 160.74 ± 27.23 | <0.001 | 6.83 ± 5.02 | |
Generated words—WORDS | 23.91 ± 8.37 | 21.04 ± 6.81 | 0.11 | 6.40 ± 34.72 | |
Factor of Imbalance (%)—FOIB | 3.5 ± 6.3 | 3.0 ± 3.3 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podda, J.; Pedullà, L.; Brichetto, G.; Tacchino, A. Evaluating Cognitive-Motor Interference in Multiple Sclerosis: A Technology-Based Approach. Bioengineering 2024, 11, 277. https://doi.org/10.3390/bioengineering11030277
Podda J, Pedullà L, Brichetto G, Tacchino A. Evaluating Cognitive-Motor Interference in Multiple Sclerosis: A Technology-Based Approach. Bioengineering. 2024; 11(3):277. https://doi.org/10.3390/bioengineering11030277
Chicago/Turabian StylePodda, Jessica, Ludovico Pedullà, Giampaolo Brichetto, and Andrea Tacchino. 2024. "Evaluating Cognitive-Motor Interference in Multiple Sclerosis: A Technology-Based Approach" Bioengineering 11, no. 3: 277. https://doi.org/10.3390/bioengineering11030277
APA StylePodda, J., Pedullà, L., Brichetto, G., & Tacchino, A. (2024). Evaluating Cognitive-Motor Interference in Multiple Sclerosis: A Technology-Based Approach. Bioengineering, 11(3), 277. https://doi.org/10.3390/bioengineering11030277