Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery
Abstract
:1. Introduction
2. Methods
2.1. Subject Characteristics
2.2. Experimental Design
2.2.1. Pod OFF Baseline (Week 1)
2.2.2. Pod ON (Week 2)
2.2.3. Pod OFF End (Final Two Nights)
2.2.4. Temperature Compliance
2.3. Physiological Data
2.3.1. The Eight Sleep Pod
2.3.2. HST
2.3.3. Fitbit HR, HRV, and Exercise Data
2.4. Data Quality Checks and Data Processing
2.4.1. HST Post-Processing
2.4.2. Filtering Methods
2.5. Statistical Analysis
3. Results
3.1. Subject Characteristics and HST and Fitbit Frequencies
3.2. Effect of Pod Use on HR and HRV
3.3. Effect of Pod Use on Sleep Metrics
3.3.1. Men
3.3.2. Women
Variable | Men | Women | Effect Modification by Sex: Cool | Effect Modification by Sex: Warm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OFF (Ref) | Cool | Warm | OFF (Ref) | Cool | Warm | |||||||
lsmean ± SE | p-Value | lsmean ± SE | p-Value | lsmean ± SE | lsmean ± SE | p-Value | lsmean ± SE | p-Value | p-Value | p-Value | ||
Bedtime | ||||||||||||
SOL | 28.5 ± 4.1 | 28.7 ± 5.1 | 0.965 | 26.0 ± 4.6 | 0.452 | 31.5 ± 3.9 | 33.0 ± 5.3 | 0.756 | 24.2 ± 4.5 | 0.079 | 0.756 | 0.079 |
Deep SOL | 16.8 ± 2.2 | 10.0 ± 3.2 | 0.045 | 11.5 ± 2.7 | 0.066 | 18.4 ± 4.3 | 8.5 ± 6.2 | 0.124 | 23.1 ± 5.0 | 0.377 | 0.654 | 0.100 |
Early Phase | ||||||||||||
Deep (min) | 64.3 ± 4.9 | 78.6 ± 5.7 | 0.003 | 70.9 ± 6.3 | 0.205 | 68.5 ± 6.5 | 63.6 ± 7.1 | 0.305 | 61.8 ± 7.3 | 0.194 | 0.005 | 0.071 |
Deep (%) | 17.3 ± 1.5 | 20.1 ± 1.7 | 0.051 | 18.7 ± 1.9 | 0.389 | 17.4 ± 1.7 | 16.8 ± 1.9 | 0.669 | 15.9 ± 1.9 | 0.292 | 0.089 | 0.178 |
REM (min) | 37.2 ± 3.34 | 30.5 ± 4.0 | 0.072 | 35.3 ± 4.5 | 0.628 | 35.0 ± 4.2 | 44.3 ± 4.9 | 0.033 | 35.5 ± 5.1 | 0.924 | 0.005 | 0.702 |
REM (%) | 10.0 ± 0.9 | 7.8 ± 1.1 | 0.061 | 9.1 ± 1.3 | 0.476 | 9.3 ± 1.1 | 11.7 ± 1.3 | 0.028 | 8.8 ± 1.4 | 0.686 | 0.004 | 0.823 |
Light (min) | 113.0 ± 5.9 | 105.0 ± 6.6 | 0.075 | 108.0 ± 7.0 | 0.341 | 115.0 ± 6.7 | 108.0 ± 7.4 | 0.169 | 109.0 ± 7.6 | 0.301 | 0.843 | 0.923 |
Light (%) | 30.5 ± 1.9 | 27.0 ± 2.2 | 0.047 | 28.4 ± 2.4 | 0.291 | 29.8 ± 1.9 | 28.4 ± 2.1 | 0.326 | 28.8 ± 2.2 | 0.527 | 0.401 | 0.664 |
Wake (min) | 22.8 ± 2.2 | 22.0 ± 2.8 | 0.754 | 21.7 ± 3.1 | 0.713 | 20.6 ± 3.1 | 23.5 ± 3.6 | 0.375 | 24.7 ± 3.8 | 0.236 | 0.412 | 0.236 |
REM SOL | 111.0 ± 45.9 | 116.6 ± 51.2 | 0.694 | 132.6 ± 81.1 | 0.443 | 122.4 ± 64.5 | 101.8 ± 75.2 | 0.181 | 144.6 ± 52.4 | 0.202 | 0.200 | 0.634 |
Late Phase | ||||||||||||
Deep (min) | 7.3 ± 1.4 | 7.3 ± 1.6 | 0.993 | 4.6 ± 2.0 | 0.181 | 9.2 ± 2.1 | 10.4 ± 2.7 | 0.654 | 7.1 ± 2.7 | 0.460 | 0.700 | 0.902 |
Deep (%) | 1.8 ± 0.3 | 1.8 ± 0.4 | 0.957 | 1.1 ± 0.5 | 0.188 | 2.3 ± 0.5 | 2.6 ± 0.6 | 0.622 | 1.8 ± 0.6 | 0.499 | 0.692 | 0.771 |
REM (min) | 55.6 ± 5.6 | 48.7 ± 6.5 | 0.257 | 66.5 ± 7.9 | 0.142 | 45.6 ± 4.3 | 48.0 ± 5.5 | 0.678 | 47.8 ± 5.5 | 0.706 | 0.219 | 0.328 |
REM (%) | 13.4 ± 1.2 | 11.6 ± 1.4 | 0.159 | 15.2 ± 1.7 | 0.252 | 11.4 ± 0.9 | 11.8 ± 1.2 | 0.792 | 11.4 ± 1.2 | 0.990 | 0.221 | 0.346 |
Light (min) | 94.4 ± 6.9 | 105.0 ± 8.2 | 0.204 | 117.8 ± 10.2 | 0.023 | 105.0 ± 7.1 | 106.0 ± 8.7 | 0.967 | 113.0 ± 8.9 | 0.405 | 0.378 | 0.242 |
Light (%) | 23.1 ± 1.3 | 25.5 ± 1.6 | 0.166 | 28.2 ± 2.0 | 0.016 | 26.1 ± 1.4 | 26.1 ± 1.7 | 0.983 | 27.5 ± 1.8 | 0.403 | 0.300 | 0.190 |
Wake (min) | 21.0 ± 2.4 | 18.3 ± 2.8 | 0.216 | 24.2 ± 3.4 | 0.046 | 18.7 ± 3.2 | 24.0 ± 4.0 | 0.186 | 26.9 ± 4.0 | 0.044 | 0.082 | 0.377 |
3.4. Effect of Pod Use on the PSQI Components
3.4.1. SOL
3.4.2. Sleep Efficiency
3.4.3. Medication Use and Daytime Dysfunction
3.4.4. Sleep Quality
3.5. Effect of Pod Use on Daily Perceptual Questions
3.5.1. Changes in Daily Perceptual Ratings from Pod OFF to ON
3.5.2. Effect of Pod Temperature on Perceptual Ratings
3.5.3. Linking Perceptual Ratings with Changes in Sleep Metrics: The Mind-Body Connection
4. Discussion
4.1. Impacts of Temperature Regulation during Bedtime Phase
4.2. Impacts of Temperature Regulation during Early and Late Phases
4.3. Cardiovascular Changes Sleeping on the Pod
4.4. Women vs. Men Sleeping on the Pod
4.5. Linking Physiological and Perceptual Data: The Mind-Body Connection
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasch, B.; Born, J. About sleep’s role in memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.P. The role of slow wave sleep in memory processing. J. Clin. Sleep Med. 2009, 5 (Suppl. S2), S20–S26. [Google Scholar] [CrossRef] [PubMed]
- Perry, G.S.; Patil, S.P.; Presley-Cantrell, L.R. Raising awareness of sleep as a healthy behavior. Prev. Chronic Dis. 2013, 10, E133. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.; Quan, S.F.; Weaver, M.D.; Bormes, G.; Barger, L.K.; Czeisler, C.A. Examining sleep deficiency and disturbance and their risk for incident dementia and all-cause mortality in older adults across 5 years in the United States. Aging 2021, 13, 3254–3268. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kavuru, M. Sleep and metabolism: An overview. Int. J. Endocrinol. 2010, 2010, 270832. [Google Scholar] [CrossRef] [PubMed]
- Hoevenaar-Blom, M.P.; Spijkerman, A.M.W.; Kromhout, D.; Van Den Berg, J.F.; Verschuren, W.M.M. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: The MORGEN study. Sleep 2011, 34, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Unhealthy sleep-related behaviors—12 States, 2009. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 233–238. [Google Scholar]
- Fan, Y.; Wang, Y.; Gu, P.; Han, J.; Tian, Y. How Temperature Influences Sleep. Int. J. Mol. Sci. 2022, 23, 12191. [Google Scholar] [CrossRef] [PubMed]
- Van Someren, E.J.W. Mechanisms and functions of coupling between sleep and temperature rhythms. Prog. Brain Res. 2006, 153, 309–324. [Google Scholar] [CrossRef]
- Harding, E.C.; Franks, N.P.; Wisden, W. The Temperature Dependence of Sleep. Front. Neurosci. 2019, 13, 336. [Google Scholar] [CrossRef]
- Troynikov, O.; Watson, C.G.; Nawaz, N. Sleep environments and sleep physiology: A review. J. Therm. Biol. 2018, 78, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Te Lindert, B.H.W.; Van Someren, E.J.W. Skin temperature, sleep, and vigilance. Handb. Clin. Neurol. 2018, 156, 353–365. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef]
- Krauchi, K. The interrelationship between sleep regulation and thermoregulation. Front. Biosci. 2010, 15, 604. [Google Scholar] [CrossRef]
- Van Someren, E.J. Thermosensitivity of the circadian timing system. Sleep Biol. Rhythm. 2003, 1, 55–64. [Google Scholar] [CrossRef]
- VanSomeren, E.J.W. More than a marker: Interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol. Int. 2000, 17, 313–354. [Google Scholar] [CrossRef]
- Lan, L.; Tsuzuki, K.; Liu, Y.F.; Lian, Z.W. Thermal environment and sleep quality: A review. Energy Build. 2017, 149, 101–113. [Google Scholar] [CrossRef]
- Cao, T.; Lian, Z.; Ma, S.; Bao, J. Thermal comfort and sleep quality under temperature, relative humidity and illuminance in sleep environment. J. Build. Eng. 2021, 43, 102575. [Google Scholar] [CrossRef]
- Tsang, T.W.; Mui, K.W.; Wong, L.T. Investigation of thermal comfort in sleeping environment and its association with sleep quality. Build. Environ. 2021, 187, 107406. [Google Scholar] [CrossRef]
- Ngarambe, J.; Yun, G.; Lee, K.; Hwang, Y. Effects of Changing Air Temperature at Different Sleep Stages on the Subjective Evaluation of Sleep Quality. Sustainability 2019, 11, 1417. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, J.Y. Effects of feet warming using bed socks on sleep quality and thermoregulatory responses in a cool environment. J. Physiol. Anthropol. 2018, 37, 13. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heide, A.; Werth, E.; Donjacour, C.E.; Reijntjes, R.H.; Lammers, G.J.; Van Someren, E.J.; Baumann, C.R.; Fronczek, R. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks. Sleep 2016, 39, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Sewitch, D.E.; Kittrell, E.M.W.; Kupfer, D.J.; Reynolds, C.F. Body temperature and sleep architecture in response to a mild cold stress in women. Physiol. Behav. 1986, 36, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Dewasmes, G.; Bothorel, B.; Nicolas, A.; Candas, V.; Libert, J.P.; Ehrhart, J.; Muzet, A. Local sweating responses during recovery sleep after sleep deprivation in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 116–121. [Google Scholar] [CrossRef]
- Togo, F.; Aizawa, S.; Arai, J.-I.; Yoshikawa, S.; Ishiwata, T.; Shephard, R.J.; Aoyagi, Y. Influence on Human Sleep Patterns of Lowering and Delaying the Minimum Core Body Temperature by Slow Changes in the Thermal Environment. Sleep 2007, 30, 797–802. [Google Scholar] [CrossRef]
- Haghayegh, S.; Khoshnevis, S.; Smolensky, M.H.; Hermida, R.C.; Castriotta, R.J.; Schernhammer, E.; Diller, K.R. Novel temperature-controlled sleep system to control sleep: A proof-of-concept study. J. Sleep Res. 2022, 31, e13662. [Google Scholar] [CrossRef]
- Fletcher, A.; van den Heuvel, C.; Dawson, D. Sleeping with an Electric Blanket: Effects on Core Temperature, Sleep, and Melatonin in Young Adults. Sleep 1999, 22, 313–318. [Google Scholar] [CrossRef]
- Raymann, R.J.E.M.; Swaab, D.F.; Van Someren, E.J.W. Skin deep: Enhanced sleep depth by cutaneous temperature manipulation. Brain 2008, 131, 500–513. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Mizuno, K. Effects of head cooling on human sleep stages and body temperature. Int. J. Biometeorol. 2003, 48, 98–102. [Google Scholar] [CrossRef]
- Herberger, S.; Kräuchi, K.; Glos, M.; Lederer, K.; Assmus, L.; Hein, J.; Penzel, T.; Fietze, I. Effects of sleep on a high-heat capacity mattress on sleep stages, EEG power spectra, cardiac interbeat intervals and body temperatures in healthy middle-aged men‡. Sleep 2020, 43, zsz271. [Google Scholar] [CrossRef]
- Reid, K.J.; Kräuchi, K.; Grimaldi, D.; Sbarboro, J.; Attarian, H.; Malkani, R.; Mason, M.; Zee, P.C. Effects of manipulating body temperature on sleep in postmenopausal women. Sleep Med. 2021, 81, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kräuchi, K.; Fattori, E.; Giordano, A.; Falbo, M.; Iadarola, A.; Aglì, F.; Tribolo, A.; Mutani, R.; Cicolin, A. Sleep on a high heat capacity mattress increases conductive body heat loss and slow wave sleep. Physiol. Behav. 2018, 185, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Herberger, S.; Penzel, T.; Fietze, I.; Glos, M.; Cicolin, A.; Fattori, E.; Grimaldi, D.; Reid, K.; Zee, P.; Mason, M.; et al. Enhanced conductive body heat loss during sleep increases slow-wave sleep and calms the heart. Sci. Rep. 2024, 14, 4669. [Google Scholar] [CrossRef] [PubMed]
- Ciuha, U.; Mekjavic, I.B. Thermal comfort zone of the hands, feet and head in males and females. Physiol. Behav. 2017, 179, 427–433. [Google Scholar] [CrossRef]
- Ciuha, U.; Mekjavic, I.B. Regional thermal comfort zone in males and females. Physiol. Behav. 2016, 161, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.B.; Salamunes, A.C.C.; de Oliveira, R.M.; Stadnik, A.M.W. Effect of body fat and gender on body temperature distribution. J. Therm. Biol. 2017, 70, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Lian, Z.; Du, H.; Miyazaki, R.; Bao, J. Differences in environmental perception of gender and sleep quality in self-regulating sleep thermal environment. Indoor Built Environ. 2021, 30, 1568–1579. [Google Scholar] [CrossRef]
- Karjalainen, S. Thermal comfort and gender: A literature review. Indoor Air 2012, 22, 96–109. [Google Scholar] [CrossRef]
- Jonasdottir, S.S.; Minor, K.; Lehmann, S. Gender differences in nighttime sleep patterns and variability across the adult lifespan: A global-scale wearables study. Sleep 2021, 44, zsaa169. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Kaplan, R.; Wang, Y.; Loparo, K.; Kelly, M. Evaluation of an automated single-channel sleep staging algorithm. Nat. Sci. Sleep 2015, 7, 101–111. [Google Scholar] [CrossRef] [PubMed]
- van Beelen, T. EDFbrowser. Available online: https://www.teuniz.net/edfbrowser/ (accessed on 1 August 2022).
- Düking, P.; Giessing, L.; Frenkel, M.O.; Koehler, K.; Holmberg, H.C.; Sperlich, B. Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. JMIR mHealth uHealth 2020, 8, e16716. [Google Scholar] [CrossRef]
- Rodrigues, E.; Lima, D.; Barbosa, P.; Gonzaga, K.; Guerra, R.O.; Pimentel, M.; Barbosa, H.; Maciel, Á. HRV Monitoring Using Commercial Wearable Devices as a Health Indicator for Older Persons during the Pandemic. Sensors 2022, 22, 2001. [Google Scholar] [CrossRef]
- Voderholzer, U.; Al-Shajlawi, A.; Weske, G.; Feige, B.; Riemann, D. Are there gender differences in objective and subjective sleep measures? A study of insomniacs and healthy controls. Depress. Anxiety 2003, 17, 162–172. [Google Scholar] [CrossRef]
- Mccall, C.; Mccall, W.V. Comparison of actigraphy with polysomnography and sleep logs in depressed insomniacs. J. Sleep Res. 2012, 21, 122–127. [Google Scholar] [CrossRef]
- Armitage, R.; Trivedi, M.; Hoffmann, R.; Rush, A.J. Relationship between objective and subjective sleep measures in depressed patients and healthy controls. Depress. Anxiety 1997, 5, 97–102. [Google Scholar] [CrossRef]
- Reed, D.L.; Sacco, W.P. Measuring Sleep Efficiency: What Should the Denominator Be? J. Clin. Sleep Med. 2016, 12, 263–266. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 15 July 2022).
- Pilz, L.K.; Keller, L.K.; Lenssen, D.; Roenneberg, T. Time to rethink sleep quality: PSQI scores reflect sleep quality on workdays. Sleep 2018, 41, zsy029. [Google Scholar] [CrossRef]
- Raymann, R.J.E.M.; Swaab, D.F.; Van Someren, E.J.W. Skin temperature and sleep-onset latency: Changes with age and insomnia. Physiol. Behav. 2007, 90, 257–266. [Google Scholar] [CrossRef]
- Raymann, R.J.E.M.; Swaab, D.F.; Van Someren, E.J.W. Cutaneous warming promotes sleep onset. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1589–R1597. [Google Scholar] [CrossRef]
- Oshima-Saeki, C.; Taniho, Y.; Arita, H.; Fujimoto, E. Lower-limb warming improves sleep quality in elderly people living in nursing homes. Sleep Sci. 2017, 10, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Bjorøy, I.; Jørgensen, V.A.; Pallesen, S.; Bjorvatn, B. The Prevalence of Insomnia Subtypes in Relation to Demographic Characteristics, Anxiety, Depression, Alcohol Consumption and Use of Hypnotics. Front. Psychol. 2020, 11, 527. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25, 20–38. [Google Scholar] [CrossRef] [PubMed]
- Waalen, J.; Buxbaum, J.N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2011, 66, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. Sleep function: An evolutionary perspective. Lancet Neurol. 2022, 21, 937–946. [Google Scholar] [CrossRef]
- Boulos, M.I.; Jairam, T.; Kendzerska, T.; Im, J.; Mekhael, A.; Murray, B.J. Normal polysomnography parameters in healthy adults: A systematic review and meta-analysis. Lancet Respir. Med. 2019, 7, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Qian, X.L.; Lian, Z.W.; Lin, Y.B. Local body cooling to improve sleep quality and thermal comfort in a hot environment. Indoor Air 2018, 28, 135–145. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Mizuno, K. Effects of mild heat exposure on sleep stages and body temperature in older men. Int. J. Biometeorol. 2004, 49, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Buguet, A. Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J. Neurol. Sci. 2007, 262, 145–152. [Google Scholar] [CrossRef]
- Haskell, E.H.; Palca, J.W.; Walker, J.M.; Berger, R.J.; Heller, H.C. Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 948–954. [Google Scholar] [CrossRef]
- Paglinawan, C.C.; Cruz, G.M.; Del Villar, K.R.M. Design of an Arduino-Powered Sleep Monitoring System Based on Electrooculography (EOG) with Temperature Control Applications. In Proceedings of the 2021 IEEE 11th International Conference on System Engineering and Technology, ICSET 2021—Proceedings, Shah Alam, Malaysia, 6 November 2021. [Google Scholar] [CrossRef]
- Katsumata, K.; Noda, Y.; Isokawa, N.; Katayama, S.; Okoshi, T.; Nakazawa, J. SleepTherMo: The affect of in-cloth monitored body temperature change during sleep on human well-being. In UbiComp/ISWC 2019—Adjunct, Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Chimed-Ochir, O.; Ando, S.; Murakami, S.; Kubo, T.; Ishimaru, T.; Fujino, Y.; Ikaga, T. Perception of feeling cold in the bedroom and sleep quality. Nagoya J. Med. Sci. 2021, 83, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Rutkove, S.B.; Veves, A.; Mitsa, T.; Nie, R.; Fogerson, P.M.; Garmirian, L.P.; Nardin, R.A. Impaired distal thermoregulation in diabetes and diabetic polyneuropathy. Diabetes Care 2009, 32, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.L.; Wilson, T.E.; White, A.T.; Frohman, E.M. Thermoregulation in multiple sclerosis. J. Appl. Physiol. 2010, 109, 1531–1537. [Google Scholar] [CrossRef]
- Jehan, S.; Masters-Isarilov, A.; Salifu, I.; Zizi, F.; Jean-Louis, G.; Pandi-Perumal, S.R.; Gupta, R.; Brzezinski, A.; McFarlane, S.I. Sleep Disorders in Postmenopausal Women. J. Sleep Disord. Ther. 2015, 4, 212. [Google Scholar] [PubMed]
- Zhang, S.; Osumi, H.; Uchizawa, A.; Hamada, H.; Park, I.; Suzuki, Y.; Tanaka, Y.; Ishihara, A.; Yajima, K.; Seol, J.; et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol. Rep. 2020, 8, e14353. [Google Scholar] [CrossRef] [PubMed]
- Fronczek, R.; Raymann, R.J.E.M.; Overeem, S.; Romeijn, N.; van Dijk, J.G.; Lammers, G.J.; Van Someren, E.J.W. Manipulation of skin temperature improves nocturnal sleep in narcolepsy. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Abellán-aynés, O.; Manonelles, P.; Alacid, F. Cardiac parasympathetic withdrawal and sympathetic activity: Effect of heat exposure on heart rate variability. Int. J. Environ. Res. Public Health 2021, 18, 5934. [Google Scholar] [CrossRef]
- Okamoto-Mizuno, K.; Tsuzuki, K.; Mizuno, K.; Ohshiro, Y. Effects of low ambient temperature on heart rate variability during sleep in humans. Eur. J. Appl. Physiol. 2009, 105, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Kim, E.H.; Ko, K.J. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome. J. Phys. Ther. Sci. 2016, 28, 1764–1768. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Verheyden, B.; Aubert, A.E.; Fagard, R.H. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability. J. Hum. Hypertens. 2010, 24, 175–182. [Google Scholar] [CrossRef]
- Reimers, A.K.; Knapp, G.; Reimers, C.D. Effects of exercise on the resting heart rate: A systematic review and meta-analysis of interventional studies. J. Clin. Med. 2018, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, K.A.; Hardas, P.P.; Redline, S.; Zeitzer, J.M. Correlates of sleep quality in midlife and beyond: A machine learning analysis. Sleep Med. 2017, 34, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, K.A.; Hirshman, J.; Hernandez, B.; Stefanick, M.L.; Hoffman, A.R.; Redline, S.; Ancoli-Israel, S.; Stone, K.; Friedman, L.; Zeitzer, J.M. When a gold standard isn’t so golden: Lack of prediction of subjective sleep quality from sleep polysomnography. Biol. Psychol. 2017, 123, 37–46. [Google Scholar] [CrossRef]
- Della Monica, C.; Johnsen, S.; Atzori, G.; Groeger, J.A.; Dijk, D.J. Rapid eye movement sleep, sleep continuity and slow wave sleep as predictors of cognition, mood, and subjective sleep quality in healthy men and women, aged 20–84 years. Front. Psychiatry 2018, 9, 255. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Hume, K.; Minors, D.; Waterhouse, J. The meaning of good sleep: A longitudinal study of polysomnography and subjective sleep quality. J. Sleep Res. 1994, 3, 152–158. [Google Scholar] [CrossRef]
- Alzueta, E.; de Zambotti, M.; Javitz, H.; Dulai, T.; Albinni, B.; Simon, K.C.; Sattari, N.; Zhang, J.; Shuster, A.; Mednick, S.C.; et al. Tracking Sleep, Temperature, Heart Rate, and Daily Symptoms across the Menstrual Cycle with the Oura Ring in Healthy Women. Int. J. Womens Health 2022, 14, 491–503. [Google Scholar] [CrossRef]
- Baker, F.C.; Waner, J.I.; Vieira, E.F.; Taylor, S.R.; Driver, H.S.; Mitchell, D. Sleep and 24 hour body temperatures: A comparison in young men, naturally cycling women and women taking hormonal contraceptives. J. Physiol. 2001, 530, 565. [Google Scholar] [CrossRef]
- Baker, F.C.; Kahan, T.L.; Trinder, J.; Colrain, I.M. Sleep Quality and the Sleep Electroencephalogram in Women with Severe Premenstrual Syndrome. Sleep 2007, 30, 1283–1291. [Google Scholar] [CrossRef]
Variable | Total (n = 54) | Male (n = 27) | Female (n = 27) | |
---|---|---|---|---|
Mean ± SD (% of n) | Mean ± SD (% of n) | Mean ± SD (% of n) | p-Value | |
Age (mean) | 36.0 ± 14.4 | 38.3 ± 14.7 | 33.7 ± 13.9 | 0.241 |
Reported use of sleep medication | 9 (16.7%) | 2 (7.4%) | 7 (25.9%) | 0.085 |
Heart conditions | 1 (1.9%) | 1 (3.7%) | 0 (0%) | 0.997 |
Respiratory conditions | 7 (13.0%) | 4 (14.8%) | 3 (11.1%) | 0.191 |
Global PSQI (mean) | 5.0 ± 2.3 | 4.3 ± 2.3 | 5.2 ± 2.2 | 0.002 |
Variable | Odds Ratio | SE | 95% CI | z-Value | p-Value |
---|---|---|---|---|---|
Component 1 (Duration) | 0.362 | 0.336 | (0.187,0.700) | −3.023 | 0.003 |
Component 3 (Latency) | 0.232 | 0.229 | (0.148, 0.363) | −6.378 | <0.001 |
Component 4 (Dysfunction During Day) | 0.203 | 0.341 | (0.104, 0.397) | −4.673 | <0.001 |
Component 5 (Efficiency) | 0.976 | 0.224 | (0.629, 1.516) | −0.107 | 0.915 |
Component 6 (Quality) | 0.120 | 0.377 | (0.057, 0.251) | −5.622 | <0.001 |
Component 7 (Medication) | 0.224 | 0.300 | (0.124, 0.402) | −4.987 | <0.001 |
Variable | Odds Ratio | SE | 95% CI | z-Value | p-Value |
---|---|---|---|---|---|
How would you rate the calmness of your sleep last night? | 1.289 | 0.123 | (1.013, 1.640) | 2.063 | 0.039 |
How easy was it to fall asleep last night? | 1.357 | 0.127 | (1.059, 1.739) | 2.41 | 0.016 |
How easy was it to wake up this morning? | 1.144 | 0.125 | (0.895, 1.461) | 1.076 | 0.282 |
How refreshed do you feel after waking? | 1.091 | 0.123 | (0.859, 1.386) | 0.712 | 0.477 |
How satisfied are you with your sleep last night? | 1.249 | 0.121 | (0.985, 1.583) | 1.838 | 0.066 |
On average, throughout the night, what was your thermal sensation? | 1.780 | 0.122 | (1.401, 2.260) | 4.726 | <0.001 |
On average, how comfortable were you with your body temperature throughout the night? | 1.803 | 0.148 | (1.349, 2.410) | 3.981 | <0.001 |
Variable | Odds Ratio | SE | 95% CI | z-Value | p-Value |
---|---|---|---|---|---|
How would you rate the calmness of your sleep last night? | |||||
Deep Sleep | 1.061 | 0.204 | (0.711, 1.583) | 0.291 | 0.771 |
REM Sleep | 1.178 | 0.200 | (0.796, 1.744) | 0.818 | 0.413 |
Light Sleep | 1.164 | 0.203 | (0.781, 1.732) | 0.747 | 0.455 |
Wake | 1.694 | 0.216 | (1.109, 2.586) | 2.441 | 0.015 |
Total Sleep Time | 1.297 | 0.220 | (0.843, 1.996) | 1.183 | 0.237 |
Number of Awakenings | 1.037 | 0.208 | (0.690, 1.555) | 0.169 | 0.866 |
REM Sleep Onset | 0.924 | 0.205 | (0.617, 1.382) | −0.169 | 0.699 |
Deep Sleep Onset | 0.942 | 0.222 | (0.610, 1.457) | −0.267 | 0.790 |
Sleep Efficiency | 1.358 | 0.129 | (1.050, 1.750) | 2.365 | 0.018 |
How easy was it to fall asleep last night? | |||||
Deep Sleep | 0.887 | 0.223 | (0.573, 1.375) | −0.535 | 0.592 |
REM Sleep | 1.434 | 0.221 | (0.930, 2.212) | 1.631 | 0.103 |
Light Sleep | 0.995 | 0.221 | (0.645, 1.535) | −0.023 | 0.981 |
Wake | 2.027 | 0.264 | (1.208, 3.400) | −2.676 | 0.007 |
Total Sleep Time | 1.248 | 0.702 | (0.315, 4.941) | 0.316 | 0.752 |
Number of Awakenings | 1.438 | 0.234 | (0.908, 2.276) | 1.549 | 0.121 |
Sleep Onset | 1.246 | 0.232 | (0.791, 1.962) | 0.950 | 0.342 |
REM Sleep Onset | 0.491 | 0.225 | (0.316, 0.763) | −3.160 | 0.002 |
Deep Sleep Onset | 0.815 | 0.240 | (0.509, 1.303) | −0.855 | 0.393 |
Sleep Efficiency | 1.557 | 0.136 | (1.194, 2.030) | 3.267 | 0.001 |
How easy was it to wake up this morning? | |||||
Deep Sleep | 0.842 | 0.206 | (0.562, 1.262) | −0.832 | 0.406 |
REM Sleep | 1.275 | 0.200 | (0.863, 1.885) | 1.219 | 0.223 |
Light Sleep | 1.208 | 0.205 | (0.809, 1.804) | 0.925 | 0.355 |
Wake | 1.247 | 0.220 | (0.521, 1.236) | 1.000 | 0.317 |
Total Sleep Time | 1.558 | 0.216 | (1.020, 2.380) | 2.050 | 0.040 |
Number of Awakenings | 1.158 | 0.211 | (0.766, 1.750) | 0.695 | 0.487 |
REM Sleep Onset | 0.656 | 0.206 | (0.438, 0.982) | −2.048 | 0.041 |
Deep Sleep Onset | 1.083 | 0.222 | (0.701, 1.674) | 0.360 | 0.719 |
Sleep Efficiency | 1.173 | 0.132 | (0.906, 1.521) | 1.210 | 0.226 |
How refreshed do you feel after waking? | |||||
Deep Sleep | 1.177 | 0.214 | (0.761, 1.788) | 0.761 | 0.447 |
REM Sleep | 1.436 | 0.205 | (0.960, 2.149) | 1.762 | 0.078 |
Light Sleep | 1.434 | 0.208 | (0.953, 2.158) | 1.730 | 0.084 |
Wake | 1.578 | 0.238 | (0.990, 2.514) | 1.917 | 0.055 |
Total Sleep Time | 1.561 | 0.226 | (1.002, 2.433) | 1.968 | 0.049 |
Number of Awakenings | 0.898 | 0.217 | (0.587, 1.375) | −0.492 | 0.623 |
REM Sleep Onset | 0.771 | 0.213 | (0.508, 1.171) | −1.219 | 0.223 |
Deep Sleep Onset | 1.356 | 0.244 | (0.841, 2.187) | 1.249 | 0.212 |
Sleep Efficiency | 1.442 | 0.366 | (1.116, 1.865) | 2.796 | 0.005 |
How satisfied are you with your sleep last night? | |||||
Deep Sleep | 1.129 | 0.204 | (0.757, 1.683) | 0.595 | 0.552 |
REM Sleep | 1.512 | 0.212 | (1.022, 2.235) | 2.071 | 0.038 |
Light Sleep | 1.28 | 0.201 | (0.832, 1.899) | 1.225 | 0.220 |
Wake | 1.653 | 0.226 | (1.061, 2.575) | 2.223 | 0.026 |
Total Sleep Time | 1.722 | 0.213 | (1.135, 2.612) | 2.555 | 0.011 |
Number of Awakenings | 0.875 | 0.208 | (0.582, 1.317) | −0.639 | 0.523 |
REM Sleep Onset | 0.846 | 0.206 | (0.564, 1.269) | −0.808 | 0.419 |
Deep Sleep Onset | 1.381 | 0.233 | (0.875, 2.179) | 1.388 | 0.165 |
Sleep Efficiency | 1.518 | 0.130 | (1.178, 1.957) | 3.222 | 0.001 |
On average, throughout the night, what was your thermal sensation? | |||||
Deep Sleep | 1.083 | 0.149 | (0.809, 1.456) | 0.537 | 0.591 |
REM Sleep | 0.856 | 0.150 | (0.635, 1.146) | −1.035 | 0.301 |
Light Sleep | 0.687 | 0.156 | (0.501, 0.927) | −2.400 | 0.016 |
Wake | 1.038 | 0.149 | (0.775, 1.039) | 0.252 | 0.801 |
Total Sleep Time | 0.759 | 0.163 | (0.547, 1.041) | −1.693 | 0.091 |
Number of Awakenings | 1.590 | 0.161 | (1.171, 2.205) | −2.891 | 0.004 |
REM Sleep Onset | 1.031 | 0.149 | (0.767, 1.385) | 0.201 | 0.841 |
Deep Sleep Onset | 0.608 | 0.174 | (0.425, 0.845) | −2.854 | 0.004 |
Sleep Efficiency | 0.922 | 0.101 | (0.756, 1.123) | −0.805 | 0.421 |
On average, how comfortable were you with your body temperature throughout the night? | |||||
Deep Sleep | 1.686 | 0.347 | (0.875, 3.458) | 1.507 | 0.132 |
REM Sleep | 1.556 | 0.344 | (0.810, 3.172) | 1.286 | 0.198 |
Light Sleep | 2.361 | 0.379 | (1.171, 5.220) | 2.267 | 0.023 |
Wake | 2.656 | 0.384 | (1.306, 5.920) | 2.547 | 0.011 |
Total Sleep Time | 2.265 | 0.375 | (1.127, 4.945) | 2.183 | 0.029 |
Number of Awakenings | 0.643 | 0.344 | (0.315, 1.235) | −1.286 | 0.198 |
REM Sleep Onset | 0.576 | 0.349 | (0.279, 1.116) | −1.58 | 0.114 |
Deep Sleep Onset | 1.318 | 0.381 | (0.647, 2.949) | 0.727 | 0.467 |
Sleep Efficiency | 1.831 | 0.196 | (1.255, 2.713) | 3.084 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyen, N.E.; Ediger, T.R.; Taylor, K.M.; Hancock, E.G.; Holden, L.D.; Tracy, E.E.; Kay, P.H.; Irick, C.R.; Kotzen, K.J.; He, D.D. Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery. Bioengineering 2024, 11, 352. https://doi.org/10.3390/bioengineering11040352
Moyen NE, Ediger TR, Taylor KM, Hancock EG, Holden LD, Tracy EE, Kay PH, Irick CR, Kotzen KJ, He DD. Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery. Bioengineering. 2024; 11(4):352. https://doi.org/10.3390/bioengineering11040352
Chicago/Turabian StyleMoyen, Nicole E., Tatiana R. Ediger, Kathryn M. Taylor, Erin G. Hancock, Lucas D. Holden, Emma E. Tracy, Philip H. Kay, Charles R. Irick, Kevin J. Kotzen, and David D. He. 2024. "Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery" Bioengineering 11, no. 4: 352. https://doi.org/10.3390/bioengineering11040352
APA StyleMoyen, N. E., Ediger, T. R., Taylor, K. M., Hancock, E. G., Holden, L. D., Tracy, E. E., Kay, P. H., Irick, C. R., Kotzen, K. J., & He, D. D. (2024). Sleeping for One Week on a Temperature-Controlled Mattress Cover Improves Sleep and Cardiovascular Recovery. Bioengineering, 11(4), 352. https://doi.org/10.3390/bioengineering11040352