Unveiling the Unpredictable in Parkinson’s Disease: Sensor-Based Monitoring of Dyskinesias and Freezing of Gait in Daily Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Protocol
2.3. Wearable Sensor: Hardware
2.4. Wearable Sensor: Embedded Algorithms
2.5. Statistical Analysis
3. Results
3.1. Dyskinesias
3.2. Freezing of Gait
3.3. Dyskinesias plus Freezing of Gait
4. Discussion
4.1. Dyskinesias
4.2. Freezing of Gait
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.V.; Lenka, A.; Dhamija, R.K.; Fasano, A. A Video-Atlas of Levodopa-Induced Dyskinesia in Parkinson’s Disease: Terminology Matters. Neurol. Sci. 2024, 45, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Cenci, M.A.; Riggare, S.; Pahwa, R.; Eidelberg, D.; Hauser, R.A. Dyskinesia Matters. Mov. Disord. 2020, 35, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Okuma, Y. Freezing of Gait and Falls in Parkinson’s Disease. J. Parkinsons Dis. 2014, 4, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Mazzetta, I.; Zampogna, A.; Suppa, A.; Gumiero, A.; Pessione, M.; Irrera, F. Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson’s Disease Using Electromyography and Inertial Signals. Sensors 2019, 19, 948. [Google Scholar] [CrossRef] [PubMed]
- Papapetropoulos, S.S. Patient Diaries as a Clinical Endpoint in Parkinson’s Disease Clinical Trials. CNS Neurosci. Ther. 2012, 18, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Amanzio, M.; Monteverdi, S.; Giordano, A.; Soliveri, P.; Filippi, P.; Geminiani, G. Impaired Awareness of Movement Disorders in Parkinson’s Disease. Brain Cogn. 2010, 72, 337–346. [Google Scholar] [CrossRef] [PubMed]
- García-Liñeira, J.; García-Soidán, J.L.; Romo-Pérez, V.; Leirós-Rodríguez, R. Reliability of Accelerometric Assessment of Balance in Children Aged 6–12 Years. BMC Pediatr. 2020, 20, 161. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, T.G.; Papastergiou, A.; Mpaltadoros, L.; Nikolopoulos, S.; Kompatsiaris, I. IoT Wearable Sensors and Devices in Elderly Care: A Literature Review. Sensors 2020, 20, 2826. [Google Scholar] [CrossRef] [PubMed]
- Ossig, C.; Antonini, A.; Buhmann, C.; Classen, J.; Csoti, I.; Falkenburger, B.; Schwarz, M.; Winkler, J.; Storch, A. Wearable Sensor-Based Objective Assessment of Motor Symptoms in Parkinson’s Disease. J. Neural. Transm. 2016, 123, 57–64. [Google Scholar] [CrossRef]
- Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing Gait in Parkinson’s Disease Using Wearable Motion Sensors: A Systematic Review. Diseases 2019, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Dalla Costa, G.; Pérez-López, C.; Camerota, F.; et al. Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Galli, S.; Alborghetti, M.; De Carolis, L.; Zampogna, A.; Hansen, C.; Vuillerme, N.; Suppa, A.; Pontieri, F.E. Four Days Are Enough to Provide a Reliable Daily Step Count in Mild to Moderate Parkinson’s Disease through a Commercial Smartwatch. Sensors 2023, 23, 8971. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Manoni, A.; Asci, F.; Liguori, C.; Irrera, F.; Suppa, A. Shedding Light on Nocturnal Movements in Parkinson’s Disease: Evidence from Wearable Technologies. Sensors 2020, 20, 5171. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, A.; Mileti, I.; Martelli, F.; Paoloni, M.; Del Prete, Z.; Palermo, E.; Suppa, A. Early Balance Impairment in Parkinson’s Disease: Evidence from Robot-Assisted Axial Rotations. Clin. Neurophysiol. 2021, 132, 2422–2430. [Google Scholar] [CrossRef] [PubMed]
- Sica, M.; Tedesco, S.; Crowe, C.; Kenny, L.; Moore, K.; Timmons, S.; Barton, J.; O’Flynn, B.; Komaris, D.-S. Continuous Home Monitoring of Parkinson’s Disease Using Inertial Sensors: A Systematic Review. PLoS ONE 2021, 16, e0246528. [Google Scholar] [CrossRef]
- Phan, D.; Horne, M.; Pathirana, P.N.; Farzanehfar, P. Measurement of Axial Rigidity and Postural Instability Using Wearable Sensors. Sensors 2018, 18, 495. [Google Scholar] [CrossRef] [PubMed]
- Borzì, L.; Olmo, G.; Artusi, C.A.; Fabbri, M.; Rizzone, M.G.; Romagnolo, A.; Zibetti, M.; Lopiano, L. A New Index to Assess Turning Quality and Postural Stability in Patients with Parkinson’s Disease. Biomed. Signal Process. Control. 2020, 62, 102059. [Google Scholar] [CrossRef]
- Bobić, V.; Djurić-Jovičić, M.; Dragašević, N.; Popović, M.B.; Kostić, V.S.; Kvaščev, G. An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors. Sensors 2019, 19, 2644. [Google Scholar] [CrossRef]
- Sigcha, L.; Domínguez, B.; Borzì, L.; Costa, N.; Costa, S.; Arezes, P.; López, J.M.; De Arcas, G.; Pavón, I. Bradykinesia Detection in Parkinson’s Disease Using Smartwatches’ Inertial Sensors and Deep Learning Methods. Electronics 2022, 11, 3879. [Google Scholar] [CrossRef]
- Habets, J.G.V.; Herff, C.; Kubben, P.L.; Kuijf, M.L.; Temel, Y.; Evers, L.J.W.; Bloem, B.R.; Starr, P.A.; Gilron, R.; Little, S. Rapid Dynamic Naturalistic Monitoring of Bradykinesia in Parkinson’s Disease Using a Wrist-Worn Accelerometer. Sensors 2021, 21, 7876. [Google Scholar] [CrossRef]
- Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Olmo, G.; Irrera, F. Prediction of Freezing of Gait in Parkinson’s Disease Using Wearables and Machine Learning. Sensors 2021, 21, 614. [Google Scholar] [CrossRef]
- Lee, S.I.; Daneault, J.-F.; Golabchi, F.N.; Patel, S.; Paganoni, S.; Shih, L.; Bonato, P. A Novel Method for Assessing the Severity of Levodopa-Induced Dyskinesia Using Wearable Sensors. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 2015, 8087–8090. [Google Scholar] [CrossRef]
- Ricciardi, L.; De Angelis, A.; Siri, C.; Horne, M.; Leake, A.; Paviour, D.; Pradhan, P.; Edwards, M.; Morgante, F. Dyskinesia and Impulsive Compulsive Behaviour in Parkinson’s Disease Are Not Related: Insights from a Study with a Wearable Sensor. Park. Relat. Disord. 2023, 115, 105813. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; Ghoraani, B. Dyskinesia Estimation during Activities of Daily Living Using Wearable Motion Sensors and Deep Recurrent Networks. Sci. Rep. 2021, 11, 7865. [Google Scholar] [CrossRef] [PubMed]
- Khodakarami, H.; Shokouhi, N.; Horne, M. A Method for Measuring Time Spent in Bradykinesia and Dyskinesia in People with Parkinson’s Disease Using an Ambulatory Monitor. J. Neuroeng. Rehabil. 2021, 18, 116. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Shah, V.V.; Stuart, S.; Curtze, C.; Horak, F.B.; Safarpour, D.; Nutt, J.G. Measuring Freezing of Gait during Daily-Life: An Open-Source, Wearable Sensors Approach. J. Neuroeng. Rehabil. 2021, 18, 1. [Google Scholar] [CrossRef]
- Lopane, G.; Mellone, S.; Chiari, L.; Cortelli, P.; Calandra-Buonaura, G.; Contin, M. Dyskinesia Detection and Monitoring by a Single Sensor in Patients with Parkinson’s Disease. Mov. Disord. 2015, 30, 1267–1271. [Google Scholar] [CrossRef]
- Ancona, S.; Faraci, F.D.; Khatab, E.; Fiorillo, L.; Gnarra, O.; Nef, T.; Bassetti, C.L.A.; Bargiotas, P. Wearables in the Home-Based Assessment of Abnormal Movements in Parkinson’s Disease: A Systematic Review of the Literature. J. Neurol. 2022, 269, 100–110. [Google Scholar] [CrossRef]
- Rodríguez-Molinero, A.; Pérez-López, C.; Samà, A.; Rodríguez-Martín, D.; Alcaine, S.; Mestre, B.; Quispe, P.; Giuliani, B.; Vainstein, G.; Browne, P.; et al. Estimating Dyskinesia Severity in Parkinson’s Disease by Using a Waist-Worn Sensor: Concurrent Validity Study. Sci. Rep. 2019, 9, 13434. [Google Scholar] [CrossRef] [PubMed]
- Keijsers, N.L.W.; Horstink, M.W.I.M.; Gielen, S.C.A.M. Automatic Assessment of Levodopa-Induced Dyskinesias in Daily Life by Neural Networks. Mov. Disord. 2003, 18, 70–80. [Google Scholar] [CrossRef]
- Fisher, J.M.; Hammerla, N.Y.; Ploetz, T.; Andras, P.; Rochester, L.; Walker, R.W. Unsupervised Home Monitoring of Parkinson’s Disease Motor Symptoms Using Body-Worn Accelerometers. Parkinsonism Relat. Disord. 2016, 33, 44–50. [Google Scholar] [CrossRef]
- Caballol, N.; Bayés, À.; Prats, A.; Martín-Baranera, M.; Quispe, P. Feasibility of a Wearable Inertial Sensor to Assess Motor Complications and Treatment in Parkinson’s Disease. PLoS ONE 2023, 18, e0279910. [Google Scholar] [CrossRef]
- Denk, D.; Herman, T.; Zoetewei, D.; Ginis, P.; Brozgol, M.; Cornejo Thumm, P.; Decaluwe, E.; Ganz, N.; Palmerini, L.; Giladi, N.; et al. Daily-Living Freezing of Gait as Quantified Using Wearables in People with Parkinson Disease: Comparison with Self-Report and Provocation Tests. Phys. Ther. 2022, 102, pzac129. [Google Scholar] [CrossRef]
- Cabo-Lopez, I.; Puy-Nuñez, A.; Redondo-Rafales, N.; Teixeira Baltazar, S.; Calderón-Cruz, B. Holter STAT-ONTM against Other Tools for Detecting MF in Advanced Parkinson’s Disease: An Observational Study. Front. Neurol. 2023, 14, 1249385. [Google Scholar] [CrossRef]
- Rodríguez-Martín, D.; Samà, A.; Pérez-López, C.; Català, A.; Moreno Arostegui, J.M.; Cabestany, J.; Bayés, À.; Alcaine, S.; Mestre, B.; Prats, A.; et al. Home Detection of Freezing of Gait Using Support Vector Machines through a Single Waist-Worn Triaxial Accelerometer. PLoS ONE 2017, 12, e0171764. [Google Scholar] [CrossRef]
- May, D.S.; Tueth, L.E.; Earhart, G.M.; Mazzoni, P. Using Wearable Sensors to Assess Freezing of Gait in the Real World. Bioengineering 2023, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Thorp, J.E.; Adamczyk, P.G.; Ploeg, H.-L.; Pickett, K.A. Monitoring Motor Symptoms During Activities of Daily Living in Individuals with Parkinson’s Disease. Front. Neurol. 2018, 9, 1036. [Google Scholar] [CrossRef] [PubMed]
- Barbe, M.T.; Amarell, M.; Snijders, A.H.; Florin, E.; Quatuor, E.-L.; Schönau, E.; Fink, G.R.; Bloem, B.R.; Timmermann, L. Gait and Upper Limb Variability in Parkinson’s Disease Patients with and without Freezing of Gait. J. Neurol. 2014, 261, 330–342. [Google Scholar] [CrossRef]
- Knobl, P.; Kielstra, L.; Almeida, Q. The Relationship between Motor Planning and Freezing of Gait in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Martín, D.; Cabestany, J.; Pérez-López, C.; Pie, M.; Calvet, J.; Samà, A.; Capra, C.; Català, A.; Rodríguez-Molinero, A. A New Paradigm in Parkinson’s Disease Evaluation with Wearable Medical Devices: A Review of STAT-ONTM. Front. Neurol. 2022, 13, 912343. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic Review of Levodopa Dose Equivalency Reporting in Parkinson’s Disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef] [PubMed]
- Ajani, T.S.; Imoize, A.L.; Atayero, A.A. An Overview of Machine Learning within Embedded and Mobile Devices-Optimizations and Applications. Sensors 2021, 21, 4412. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.K.; Pathak, R.K.; Jain, V.; Rashidi, P.; Suri, J.S. Human Activity Recognition in Artificial Intelligence Framework: A Narrative Review. Artif. Intell. Rev. 2022, 55, 4755–4808. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Desrosiers, C.; Frasnelli, J. Machine Learning for the Diagnosis of Parkinson’s Disease: A Review of Literature. Front. Aging Neurosci. 2021, 13, 633752. [Google Scholar] [CrossRef] [PubMed]
- Pardoel, S.; Kofman, J.; Nantel, J.; Lemaire, E.D. Wearable-Sensor-Based Detection and Prediction of Freezing of Gait in Parkinson’s Disease: A Review. Sensors 2019, 19, 5141. [Google Scholar] [CrossRef] [PubMed]
- Samà, A.; Pérez-López, C.; Rodríguez-Martín, D.; Català, A.; Moreno-Aróstegui, J.M.; Cabestany, J.; de Mingo, E.; Rodríguez-Molinero, A. Estimating Bradykinesia Severity in Parkinson’s Disease by Analysing Gait through a Waist-Worn Sensor. Comput. Biol. Med. 2017, 84, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, W.; Hof, A.L. Assessment of Spatio-Temporal Gait Parameters from Trunk Accelerations during Human Walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef]
- Sayeed, T.; Samà, A.; Català, A.; Rodríguez-Molinero, A.; Cabestany, J. Adapted Step Length Estimators for Patients with Parkinson’s Disease Using a Lateral Belt Worn Accelerometer. Technol. Health Care 2015, 23, 179–194. [Google Scholar] [CrossRef]
- Samà, A.; Pérez-Lopez, C.; Romagosa, J.; Rodríguez-Martín, D.; Català, A.; Cabestany, J.; Pérez-Martínez, D.A.; Rodríguez-Molinero, A. Dyskinesia and Motor State Detection in Parkinson’s Disease Patients with a Single Movement Sensor. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.P.; de-Almeida, S.B.; Bonfadini, J.d.C.; Carneiro, A.H.S.; de Luna, J.R.G.; de Alencar, M.S.; Viana-Júnior, A.B.; Rodrigues, P.G.B.; Pereira, I.d.S.; Roriz-Filho, J.d.S.; et al. Falls in Parkinson’s Disease: The Impact of Disease Progression, Treatment, and Motor Complications. Dement. Neuropsychol. 2022, 16, 153–161. [Google Scholar] [CrossRef]
- Okuma, Y.; Silva de Lima, A.L.; Fukae, J.; Bloem, B.R.; Snijders, A.H. A Prospective Study of Falls in Relation to Freezing of Gait and Response Fluctuations in Parkinson’s Disease. Park. Relat. Disord. 2018, 46, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Vidya, B.; Sasikumar, P. Parkinson’s Disease Diagnosis and Stage Prediction Based on Gait Signal Analysis Using EMD and CNN–LSTM Network. Eng. Appl. Artif. Intell. 2022, 114, 105099. [Google Scholar] [CrossRef]
- Curtze, C.; Nutt, J.G.; Carlson-Kuhta, P.; Mancini, M.; Horak, F.B. Levodopa Is a Double-Edged Sword for Balance and Gait in People with Parkinson’s Disease. Mov. Disord. 2015, 30, 1361–1370. [Google Scholar] [CrossRef]
- Keijsers, N.L.W.; Horstink, M.W.I.M.; Gielen, S.C.A.M. Movement Parameters That Distinguish between Voluntary Movements and Levodopa-Induced Dyskinesia in Parkinson’s Disease. Hum. Mov. Sci. 2003, 22, 67–89. [Google Scholar] [CrossRef]
- Mazzoni, P.; Shabbott, B.; Cortés, J.C. Motor Control Abnormalities in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009282. [Google Scholar] [CrossRef] [PubMed]
- Hoff, J.I.; van den Plas, A.A.; Wagemans, E.A.; van Hilten, J.J. Accelerometric Assessment of Levodopa-Induced Dyskinesias in Parkinson’s Disease. Mov. Disord. 2001, 16, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Manson, A.J.; Brown, P.; O’Sullivan, J.D.; Asselman, P.; Buckwell, D.; Lees, A.J. An Ambulatory Dyskinesia Monitor. J. Neurol. Neurosurg. Psychiatry 2000, 68, 196–201. [Google Scholar] [CrossRef]
- Griffiths, R.I.; Kotschet, K.; Arfon, S.; Xu, Z.M.; Johnson, W.; Drago, J.; Evans, A.; Kempster, P.; Raghav, S.; Horne, M.K. Automated Assessment of Bradykinesia and Dyskinesia in Parkinson’s Disease. J. Parkinsons Dis. 2012, 2, 47–55. [Google Scholar] [CrossRef]
- Mera, T.O.; Burack, M.A.; Giuffrida, J.P. Quantitative Assessment of Levodopa-Induced Dyskinesia Using Automated Motion Sensing Technology. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Dijk, J.M.; Espay, A.J.; Katzenschlager, R.; de Bie, R.M.A. The Choice Between Advanced Therapies for Parkinson’s Disease Patients: Why, What, and When? J. Park. Dis. 2020, 10, S65–S73. [Google Scholar] [CrossRef] [PubMed]
- Rovini, E.; Maremmani, C.; Cavallo, F. How Wearable Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A Systematic Review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Atallah, L.; Lo, B.; King, R.; Yang, G.-Z. Sensor Placement for Activity Detection Using Wearable Accelerometers. In Proceedings of the 2010 International Conference on Body Sensor Networks, Singapore, 7–9 June 2010; pp. 24–29. [Google Scholar]
- Ramsperger, R.; Meckler, S.; Heger, T.; van Uem, J.; Hucker, S.; Braatz, U.; Graessner, H.; Berg, D.; Manoli, Y.; Serrano, J.A.; et al. Continuous Leg Dyskinesia Assessment in Parkinson’s Disease –Clinical Validity and Ecological Effect. Park. Relat. Disord. 2016, 26, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Pelicioni, P.H.S.; Brodie, M.A.; Latt, M.D.; Menant, J.C.; Menz, H.B.; Fung, V.S.C.; Lord, S.R. Head and Trunk Stability during Gait before and after Levodopa Intake in Parkinson’s Disease Subtypes. Exp. Gerontol. 2018, 111, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Marano, M.; Naranian, T.; di Biase, L.; Di Santo, A.; Poon, Y.-Y.; Arca, R.; Cossu, G.; Marano, P.; Di Lazzaro, V.; Fasano, A. Complex Dyskinesias in Parkinson Patients on Levodopa/Carbidopa Intestinal Gel. Park. Relat. Disord. 2019, 69, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Růžička, E.; Zárubová, K.; Nutt, J.G.; Bloem, B.R. “Silly Walks” in Parkinson’s Disease: Unusual Presentation of Dopaminergic-Induced Dyskinesias. Mov. Disord. 2011, 26, 1783–1784. [Google Scholar] [CrossRef] [PubMed]
- di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-Living Gait Characteristics in Ageing and Parkinson’s Disease: Impact of Environment and Ambulatory Bout Length. J. NeuroEngineering Rehabil. 2016, 13, 46. [Google Scholar] [CrossRef]
- Lichter, D.G.; Benedict, R.H.B.; Hershey, L.A. Freezing of Gait in Parkinson’s Disease: Risk Factors, Their Interactions, and Associated Nonmotor Symptoms. Parkinsons Dis. 2021, 2021, 8857204. [Google Scholar] [CrossRef]
- Kanellos, F.S.; Tsamis, K.I.; Rigas, G.; Simos, Y.V.; Katsenos, A.P.; Kartsakalis, G.; Fotiadis, D.I.; Vezyraki, P.; Peschos, D.; Konitsiotis, S. Clinical Evaluation in Parkinson’s Disease: Is the Golden Standard Shiny Enough? Sensors 2023, 23, 3807. [Google Scholar] [CrossRef] [PubMed]
- Czech, M.; Demanuele, C.; Erb, M.K.; Ramos, V.; Zhang, H.; Ho, B.; Patel, S. The Impact of Reducing the Number of Wearable Devices on Measuring Gait in Parkinson Disease: Noninterventional Exploratory Study. JMIR Rehabil. Assist. Technol. 2020, 7, e17986. [Google Scholar] [CrossRef]
- Keogh, A.; Alcock, L.; Brown, P.; Buckley, E.; Brozgol, M.; Gazit, E.; Hansen, C.; Scott, K.; Schwickert, L.; Becker, C.; et al. Acceptability of Wearable Devices for Measuring Mobility Remotely: Observations from the Mobilise-D Technical Validation Study. Digit. Health 2023, 9, 20552076221150745. [Google Scholar] [CrossRef]
- Suppa, A.; Kita, A.; Leodori, G.; Zampogna, A.; Nicolini, E.; Lorenzi, P.; Rao, R.; Irrera, F. L-DOPA and Freezing of Gait in Parkinson’s Disease: Objective Assessment through a Wearable Wireless System. Front. Neurol. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, H.; Huang, D.; Zhang, Z.; Li, J.; Wu, C.; Sun, Y.; Gong, M.; Wang, Z.; Sun, C.; et al. Detection and Prediction of Freezing of Gait with Wearable Sensors in Parkinson’s Disease. Neurol. Sci. 2024, 45, 431–453. [Google Scholar] [CrossRef]
- Silva de Lima, A.L.; Evers, L.J.W.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of Gait and Fall Detection in Parkinson’s Disease Using Wearable Sensors: A Systematic Review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef] [PubMed]
- Samà, A.; Rodríguez-Martín, D.; Pérez-López, C.; Català, A.; Alcaine, S.; Mestre, B.; Prats, A.; Crespo, M.C.; Bayés, À. Determining the Optimal Features in Freezing of Gait Detection through a Single Waist Accelerometer in Home Environments. Pattern Recognit. Lett. 2018, 105, 135–143. [Google Scholar] [CrossRef]
- Chee, R.; Murphy, A.; Danoudis, M.; Georgiou-Karistianis, N.; Iansek, R. Gait Freezing in Parkinson’s Disease and the Stride Length Sequence Effect Interaction. Brain 2009, 132, 2151–2160. [Google Scholar] [CrossRef]
- Iansek, R.; Huxham, F.; McGinley, J. The Sequence Effect and Gait Festination in Parkinson Disease: Contributors to Freezing of Gait? Mov. Disord. 2006, 21, 1419–1424. [Google Scholar] [CrossRef]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller, A.; et al. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef]
- Fasano, A.; Mancini, M. Wearable-Based Mobility Monitoring: The Long Road Ahead. Lancet Neurol. 2020, 19, 378–379. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, A.S.; Gordon, E.; Graham, L.; Hughes, E.; Peterson, D.S.; Morris, R. Cognition and Freezing of Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2023, 147, 105068. [Google Scholar] [CrossRef] [PubMed]
PD-ALL | PD-Dys | PD-nDys | PD-Dys vs. PD-nDys | PD-FOG | PD-nFOG | PD-FOG vs. PD-nFOG | |
---|---|---|---|---|---|---|---|
Sex | 56 M 15 F | 27 M 13 F | 27 M 1 F | U = 398.0 p = 0.002 | 27 M 6 F | 23 M 6 F | U = 466.5 p = 0.406 |
Age (years) | 69 (62.5–76) | 67.5 (61–74) | 73 (66–77.5) | U = 407.5 p = 0.029 | 67 (61.5–74) | 71 (63–76) | U = 378.0 p = 0.079 |
Disease duration (years) | 8.5 (5–12) | 10.5 (7–13) | 5.5 (4–8) | U = 240.5 p < 0.001 | 10 (7–13.2) | 7 (4–10) | U = 225.5 p < 0.001 |
Hoehn and Yahr | 2 (2–3) | 2 (2–2.5) | 2 (1.8–2) | U = 411.5 p = 0.015 | 2 (2–2.5) | 2 (2--2) | U = 362.5 p = 0.023 |
MDS-UPDRS III ON | 20.5 (16–30) | 20.5 (15.5–29.5) | 20.5 (17–31) | U = 505.5 p = 0.427 | 22.5 (15.5–31) | 19.5 (15–25.5) | U = 369.0 p = 0.122 |
MDS-UPDRS IV | 5 (1–9) | 7.5 (5–12) | 0.5 (0–3) | U = 148.5 p < 0.001 | 9 (5–12) | 1 (0–5.2) | U = 121.5 p < 0.001 |
Unified dyskinesia rating scale-III | 1 (0–5) | 4 (2–9) | / | / | 4 (1–9.2) | 0 (0–1.5) | U = 168.0 p < 0.001 |
Unified dyskinesia rating scale-IV | 1 (0–4) | 3 (2–6) | / | / | 3 (1–6) | 0 (0–0.2) | U = 161.5 p < 0.001 |
Wearing-off questionnaire-19 | 4 (1–6.8) | 5 (2.2–8) | 0.5 (0–4.5) | U = 262.0 p < 0.001 | 6 (3.8–8.2) | 1.5 (0–4.5) | U = 179.5 p < 0.001 |
Montreal cognitive assessment | 25 (23–27) | 25 (23–27) | 25 (23–27) | U = 513.5 p = 0.468 | 25 (22.8–26) | 25.5 (23–27) | U = 386.5 p = 0.137 |
Frontal assessment battery | 15 (12–17) | 15.5 (12–17) | 15 (14–16) | U = 510.5 p = 0.354 | 14 (12–17) | 16 (14–17) | U = 369.0 p = 0.088 |
Beck depression inventory | 6.5 (4–10.5) | 6 (4–10) | 7 (4–11) | U = 414.0 p = 0.340 | 7 (4–10.2) | 7 (4–12) | U = 368.5 p = 0.446 |
Beck anxiety inventory | 8 (2–10.5) | 9 (2.8–29) | 7 (2–8) | U = 88.0 p = 0.140 | 16.5 (8–34) | 7.5 (2.5–9.5) | U = 42.5 p = 0.065 |
Parkinson’s disease questionnaire-39 | 24.5 (15.5–38) | 27 (17–38.8) | 20 (13–37.2) | U = 365.5 p = 0.142 | 30.5 (23–40) | 19.5 (13.5–37.5) | U = 258.5 p = 0.039 |
Freezing of gait questionnaire | 4 (0–11) | 9 (4–13) | / | U = 158.0 p < 0.001 | 10 (6.8–14) | / | / |
Levodopa equivalent daily doses (mg) | 850 (600–1220) | 1125 (805–1350) | 602 (500–752) | U = 251.5 p < 0.001 | 1170 (910–1587) | 700 (503–865) | U = 195.5 p < 0.001 |
PD-Dys | PD-nDys | PD-Dys vs. PD-nDys | PD-FOG | PD-nFOG | PD-FOG vs. PD-nFOG | |
---|---|---|---|---|---|---|
Sex | 16 M 8 F | 23 M 1 F | U = 204 p = 0.005 | 20 M 4 F | 18 M 6 F | U = 264 p = 0.245 |
Age (years) | 68 (64–74) | 73 (66–77) | U = 220 p = 0.083 | 64 (56.5–70) | 71 (62–75) | U = 202.5 p = 0.051 |
Disease duration (years) | 8.5 (6–11) | 6 (4–9) | U = 189 p = 0.053 | 9.5 (6–11) | 7 (5–10) | U = 220 p = 0.081 |
Hoehn and Yahr | 2 (2–2) | 2 (2–2) | U = 250 p = 0.167 | 2 (2–2) | 2 (2–2) | U = 255 p = 0.199 |
MDS-UPDRS III ON | 19.5 (12.5–23.5) | 20.5 (17–32) | U = 219 p = 0.166 | 19 (12.2–30.5) | 19 (14.5–23.2) | U = 251 p = 0.387 |
MDS-UPDRS IV | 6 (5–12.5) | 0.5 (0–3) | U = 91 p < 0.001 | 10 (6–12.5) | 2 (0–6) | U = 80 p < 0.001 |
Unified dyskinesia rating scale-III | 3 (1–9) | / | / | 3 (1–9) | 0 (0–3) | U = 130 p < 0.001 |
Unified dyskinesia rating scale-IV | 2 (1.5–6) | / | / | 2.5 (1–5.5) | 0 (0–1.5) | U = 118 p < 0.001 |
Wearing-off questionnaire-19 | 4 (2–5) | 0.5 (0–4.5) | U = 150 p = 0.003 | 6 (4–9) | 3 (0–5) | U = 107 p < 0.001 |
Montreal cognitive assessment | 25 (22.5–26) | 25 (23–27) | U = 237 p = 0.279 | 25 (21.5–26.5) | 26 (24.2–27.8) | U = 207 p = 0.071 |
Frontal assessment battery | 15 (12–17) | 15 (14–16.8) | U = 256 p = 0.341 | 14 (12–17) | 16 (14.2–17) | U = 194 p = 0.054 |
Beck depression inventory | 6.5 (4–10.5) | 7.5 (4–12) | U = 196 p = 0.281 | 8 (5.5–10.5) | 8 (4–13.2) | U = 200 p = 0.397 |
Beck anxiety inventory | 10 (8–29) | 7.5 (3–9) | U = 38 p = 0.071 | 29 (16–34.5) | 8 (4.2–10.8) | U = 13 p = 0.020 |
Parkinson’s disease questionnaire-39 | 22 (13.8–38.2) | 21 (15.5–37.2) | U = 218 p = 0.485 | 33 (22.2–40.5) | 20.5 (16–39) | U = 165 p = 0.123 |
Freezing of gait questionnaire | 6 (3–11) | / | U = 82 p < 0.001 | 10 (6.5–13) | / | / |
Levodopa equivalent daily doses (mg) | 1050 (785–1240) | 612 (500–752) | U = 138 p = 0.002 | 1125 (866–1607) | 700 (55–955) | U = 142 p = 0.002 |
PD-Dys | PD-nDys | PD-Dys vs. PD-nDys | PD-FOG | PD-nFOG | PD-FOG vs. PD-nFOG | |
---|---|---|---|---|---|---|
Step length (m) | 0.8 (0.7–0.8) | 0.8 (0.7–0.8) | U = 274, p = 0.39 d = 0.10 | 0.8 (0.7–0.9) | 0.8 (0.7–0.9) | U = 287, p = 0.496 d = 0.04 |
Stride speed (m/s) | 0.5 (0.5–0.5) | 0.5 (0.5–0.5) | U = 281, p = 0.447 d = 0.1 | 0.5 (0.5–0.6) | 0.5 (0.5–0.5) | U = 257, p = 0.265 d = 0.02 |
Stride fluidity | 8.1 (7–9.1) | 7.3 (6.9–8.2) | U = 217, p = 0.073 d = 0.4 | 8 (7.3–9.3) | 7.8 (7–8.5) | U = 261, p = 0.292 d = 0.2 |
Cadence | 38.9 (37.9–40) | 39.1 (37.6–40) | U = 271, p = 0.367 d = 0.05 | 38.9 (37.7–40.5) | 39.1 (37.6–40) | U = 285, p = 0.479 d = 0 |
Std step length (m) | 0.2 (0.2–0.2) | 0.2 (0.2–0.2) | U = 234, p = 0.140 d = 0.4 | 0.2 (0.2–0.2) | 0.2 (0.2–0.2) | U = 246, p = 0.196 d = 0.4 |
Std stride speed (m/s) | 0.1 (0.1–0.1) | 0.1 (0.1–0.1) | U = 284, p = 0.471 d = 0.1 | 0.1 (0.1–0.1) | 0.1 (0.1–0.1) | U = 275, p = 0.398 d = 0.2 |
Std stride fluidity | 1.5 (1.2–2) | 1.4 (1.1–1.8) | U = 242, p = 0.174 d = 0.3 | 1.5 (1.3–2) | 1.7 (1.3–1.9) | U = 272, p = 0.375 d = 0.1 |
Std cadence | 5.3 (4.6–5.6) | 5.4 (4.8–5.8) | U = 256, p = 0.258 d = 0.2 | 5.5 (4.8–6) | 5.4 (4.9–5.7) | U = 249, p = 0.214 d = 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zampogna, A.; Borzì, L.; Rinaldi, D.; Artusi, C.A.; Imbalzano, G.; Patera, M.; Lopiano, L.; Pontieri, F.; Olmo, G.; Suppa, A. Unveiling the Unpredictable in Parkinson’s Disease: Sensor-Based Monitoring of Dyskinesias and Freezing of Gait in Daily Life. Bioengineering 2024, 11, 440. https://doi.org/10.3390/bioengineering11050440
Zampogna A, Borzì L, Rinaldi D, Artusi CA, Imbalzano G, Patera M, Lopiano L, Pontieri F, Olmo G, Suppa A. Unveiling the Unpredictable in Parkinson’s Disease: Sensor-Based Monitoring of Dyskinesias and Freezing of Gait in Daily Life. Bioengineering. 2024; 11(5):440. https://doi.org/10.3390/bioengineering11050440
Chicago/Turabian StyleZampogna, Alessandro, Luigi Borzì, Domiziana Rinaldi, Carlo Alberto Artusi, Gabriele Imbalzano, Martina Patera, Leonardo Lopiano, Francesco Pontieri, Gabriella Olmo, and Antonio Suppa. 2024. "Unveiling the Unpredictable in Parkinson’s Disease: Sensor-Based Monitoring of Dyskinesias and Freezing of Gait in Daily Life" Bioengineering 11, no. 5: 440. https://doi.org/10.3390/bioengineering11050440
APA StyleZampogna, A., Borzì, L., Rinaldi, D., Artusi, C. A., Imbalzano, G., Patera, M., Lopiano, L., Pontieri, F., Olmo, G., & Suppa, A. (2024). Unveiling the Unpredictable in Parkinson’s Disease: Sensor-Based Monitoring of Dyskinesias and Freezing of Gait in Daily Life. Bioengineering, 11(5), 440. https://doi.org/10.3390/bioengineering11050440