How the Soluble Human Leukocyte Antigen-G levels in Amniotic Fluid and Maternal Serum Correlate with the Feto-Placental Growth in Uncomplicated Pregnancies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Conventional Two-Dimensional (2-D) Sonographic Examinations
2.3. Volume Acquisition
2.4. Determination of Power Doppler Indices
2.5. Procedure of Amniocentesis
2.6. Samples
2.7. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Data and Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Zhou, Y.; Wei, H. Roles of HLA-G in the Maternal-Fetal Immune Microenvironment. Front. Immunol. 2020, 11, 592010. [Google Scholar] [CrossRef] [PubMed]
- Tantengco, O.A.G.; Richardson, L.; Lee, A.; Kammala, A.; Silva, M.d.C.; Shahin, H.; Sheller-Miller, S.; Menon, R. Histocompatibility antigen, class I, G (HLA-G)’s role during pregnancy and parturition: A systematic review of the literature. Life 2021, 11, 1061. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Feng, Y.; Zhu, X.; Ma, F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023, 13, 1213. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Houser, B.L.; Nicotra, M.L.; Strominger, J.L. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc. Natl. Acad. Sci. USA 2009, 106, 5767–5772. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.X.; Xie, Y.M.; Zhao, S.J.; Liu, C.Y.; Mor, G.; Liao, A.H. Human leukocyte antigens: The unique expression in trophoblasts and their crosstalk with local immune cells. Int. J. Biol. Sci. 2022, 18, 4043–4052. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, W.; Weng, J.; Li, H.; Ma, Y.; Liu, L.; Ma, W. Advances in the study of HLA class Ib in maternal-fetal immune tolerance. Front. Immunol. 2022, 13, 976289. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Tayade, C.; Ashkar, A.A.; Hatta, K.; Zhang, J.; Croy, B.A. Interferon gamma in successful pregnancies. Biol. Reprod. 2009, 80, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Shiroishi, M.; Tsumoto, K.; Amano, K.; Shirakihara, Y.; Colonna, M.; Braud, V.M.; Allan, D.S.J.; Makadzange, A.; Rowland-Jones, S.; Willcox, B.; et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl. Acad. Sci. USA 2003, 100, 8856–8861. [Google Scholar] [CrossRef]
- Yie, S.M.; Li, L.H.; Li, Y.M.; Librach, C. HLA-G protein concentrations in maternal serum and placental tissue are decreased in preeclampsia. Am. J. Obstet. Gynecol. 2004, 191, 525–529. [Google Scholar] [CrossRef]
- Barbaro, G.; Inversetti, A.; Cristodoro, M.; Ticconi, C.; Scambia, G.; Di Simone, N. HLA-G and Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2023, 24, 2557. [Google Scholar] [CrossRef]
- Steinborn, A.; Rebmann, V.; Scharf, A.; Sohn, C.; Grosse-Wilde, H. Placental abruption is associated with decreased maternal plasma levels of soluble HLA-G. J. Clin. Immunol. 2003, 23, 307–314. [Google Scholar] [CrossRef]
- Steinborn, A.; Varkonyi, T.; Scharf, A.; Bahlmann, F.; Klee, A.; Sohn, C. Early detection of decreased soluble HLA-G levels in the maternal circulation predicts the occurrence of preeclampsia and intrauterine growth retardation during further course of pregnancy. Am. J. Reprod. Immunol. 2007, 57, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Beneventi, F.; Locatelli, E.; De Amici, M.; Martinetti, M.; Spinillo, A. Soluble HLA-G concentrations in obese women during pregnancy and in cord blood. J. Reprod. Immunol. 2017, 119, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Beneventi, F.; Locatelli, E.; De Amici, M.; Simonetta, M.; Cavagnoli, C.; Bellingeri, C.; Scancarello, C.; Ierullo, A.; Martinetti, M.; Spinillo, A. Soluble HLA-G concentrations in maternal blood and cervical vaginal fluid of pregnant women with preterm premature rupture of membranes. J. Reprod. Immunol. 2016, 116, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Kusanovic, J.P.; Romero, R.; Jodicke, C.; Mazaki-Tovi, S.; Vaisbuch, E.; Erez, O.; Mittal, P.; Gotsch, F.; Chaiworapongsa, T.; Edwin, S.S.; et al. Amniotic fluid soluble human leukocyte antigen-G in term and preterm parturition, and intra-amniotic infection/inflammation. J. Matern. Fetal Neonatal Med. 2009, 22, 1151–1166. [Google Scholar] [CrossRef] [PubMed]
- Hackmon, R.; Hallak, M.; Krup, M.; Weitzman, D.; Sheiner, E.; Kaplan, B.; Weinstein, Y. HLA-G antigen and parturition: Maternal serum, fetal serum and amniotic fluid levels during pregnancy. Fetal Diagn. Ther. 2004, 19, 404–409. [Google Scholar] [CrossRef]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurements—A prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Joubert, K. Magyar születéskori testtömeg- és testhossz-standardok az 1990-96. évi országos élveszületési adatok alapján. Magy Noorv Lapja. 2000, 63, 155–163. [Google Scholar]
- Surányi, A.; Kozinszky, Z.; Molnár, A.; Nyári, T.; Bitó, T.; Pál, A. Placental three-dimensional power Doppler indices in mid-pregnancy and late pregnancy complicated by gestational diabetes mellitus. Prenat. Diagn. 2013, 33, 952–958. [Google Scholar] [CrossRef]
- Molnár, A.; Surányi, A.; Nyári, T.; Németh, G.; Pál, A. Examination of placental three-dimensional power Doppler indices and perinatal outcome in pregnancies complicated by intrauterine growth restriction. Int. J. Gynecol. Obstet. 2015, 129, 5–8. [Google Scholar] [CrossRef]
- Központi Statisztikai Hivatal Central Statistical Office H. KSH Database 22.1.1.7. Live Births by Mother’s and Born Infant’s Characteristics 1980–2023. 2024. Available online: https://www.ksh.hu/stadat_files/nep/en/nep0007.html (accessed on 17 February 2024).
- Vincze, M.; Sikovanyecz, J.; Molnár, A.; Földesi, I.; Surányi, A.; Várbíró, S.; Németh, G.; Sikovanyecz, J.; Kozinszky, Z. Predictive Capabilities of Human Leukocyte Antigen-G and Galectin-13 Levels in the Amniotic Fluid and Maternal Blood for the Pregnancy Outcome. Medicina 2024, 60, 85. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, A.; Chamley, L.W.; James, J.L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis 2020, 23, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Andersen, A.S.; Lassen, M.R.; Sørensen, H.C.; Bergholt, T.; Larsen, M.H.; Melchiorri, L.; Stignani, M.; Baricordi, O.R.; Hviid, T.V.F. Soluble Human Leukocyte Antigen-G isoforms in maternal plasma in early and late pregnancy. Am. J. Reprod. Immunol. 2009, 62, 320–338. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhou, Y.; Ni, X.; Tong, X.; Xu, X.; Dong, Z.; Sun, R.; Tian, Z.; Wei, H. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors. Immunity 2017, 47, 1100–1113.e6. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, M.A.; Zhao, X.; Fernando, R.C.; Gardner, L.; Perez-Garcia, V.; Li, Q.; Marsh, S.G.E.; Hamilton, R.; Moffett, A.; Turco, M.Y. Characterization of primary models of human trophoblast. Development 2021, 148, dev199749. [Google Scholar] [CrossRef]
- Eikmans, M.; van der Keur, C.; Anholts, J.D.H.; Drabbels, J.J.M.; van Beelen, E.; de Sousa Lopes, S.M.C.; van der Hoorn, M.-L. Primary Trophoblast Cultures: Characterization of HLA Profiles and Immune Cell Interactions. Front. Immunol. 2022, 13, 814019. [Google Scholar] [CrossRef]
- Nardi, F.d.S.; König, L.; Wagner, B.; Giebel, B.; Manvailer, L.F.S.; Rebmann, V. Soluble monomers, dimers and HLA-G-expressing extracellular vesicles: The three dimensions of structural complexity to use HLA-G as a clinical biomarker. HLA 2016, 88, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Mercé, L.; Barco, M.; Bau, S. Reproducibility of the study of placental vascularization by three-dimensional power Doppler. J. Perinat. Med. 2004, 32, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Merce, L.T.; Barco, M.J.; Bau, S.; Kupesic, S.; Kurjak, A. Assessment of placental vascularization by three-dimensional power Doppler “vascular biopsy” in normal pregnancies. Croat. Med. J. 2005, 46, 765–771. [Google Scholar]
- Rizzo, G.; Capponi, A.; Pietrolucci, M.E.; Aiello, E.; Arduini, D. First trimester placental volume and three dimensional power doppler ultrasonography in type I diabetic pregnancies. Prenat. Diagn. 2012, 32, 480–484. [Google Scholar] [CrossRef]
- de Paula, C.F.S.; Ruano, R.; Campos, J.A.D.B.; Zugaib, M. Quantitative analysis of placental vasculature by three-dimensional power doppler ultrasonography in normal pregnancies from 12 to 40 weeks of gestation. Placenta 2009, 30, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Metzenbauer, M.; Hafner, E.; Schuchter, K.; Philipp, K. First-trimester placental volume as a marker for chromosomal anomalies: Preliminary results from an unselected population. Ultrasound Obstet. Gynecol. 2002, 19, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Arnaiz-Villena, A.; Juarez, I.; Suarez-Trujillo, F.; López-Nares, A.; Vaquero, C.; Palacio-Gruber, J.; Martin-Villa, J.M. HLA-G: Function, polymorphisms and pathology. Int. J. Immunogenet. 2020, 48, 172–192. [Google Scholar] [CrossRef] [PubMed]
- Spataro, E.; Cordisco, A.; Luchi, C.; Filardi, G.R.; Masini, G.; Pasquini, L. Increased nuchal translucency with normal karyotype and genomic microarray analysis: A multicenter observational study. Int. J. Gynecol. Obstet. 2023, 161, 1040–1045. [Google Scholar] [CrossRef]
Maternal Age (Years) * | 33.63 ± 6.51 |
Number of nulliparous women in the study ** | 12 (29.3) |
BMI at the time of genetic consultation (kg/m2) * | 26.35 ± 6.19 |
Birth weight (grams) * | 3351.22 ± 370.10 |
Birth weight (percentile) * | 54.34 ± 24.39 |
Gestational age at the time of delivery (weeks) * | 39.01 ± 1.32 |
Data on ‘Genetic’ Ultrasound Examination in the First Trimester | |
---|---|
NT (mm) | 1.88 ± 0.66 |
CRL at NT (mm) | 63.90 ± 6.54 |
Gestational age at nuchal translucency (weeks) | 12.62 ± 0.55 |
Fetal biometry at the time of amniocentesis | |
Gestational age at the time of amniocentesis (weeks) | 18.37 ± 1.49 |
Head circumference (mm) | 153.62 ± 15.89 |
Head circumference (percentile) | 56.70 ± 29.21 |
Abdominal circumference (mm) | 134.10 ± 17.06 |
Abdominal circumference (percentile) | 55.25 ± 27.57 |
Femur length (mm) | 27.71 ± 4.99 |
Femur length (percentile) | 57.54 ± 27.46 |
Estimated fetal weight (grams) | 260.71 ± 81.26 |
Estimated fetal weight (percentile) | 53.50 ± 26.11 |
Placental sonography | |
Placental volume (mm3) | 214.80 ± 94.67 |
VI | 14.38 ± 5.67 |
FI | 43.27 ± 8.76 |
VFI | 8.46 ± 4.20 |
sHLA-G concentration in amniotic fluid (ng/mL) | 53.39 ± 19.00 ng/mL |
sHLA-G concentration in serum (ng/mL) | 51.05 ± 26.99 ng/mL |
sHLA-G Level in Serum | sHLA-G in Amniotic Fluid | |||||||
---|---|---|---|---|---|---|---|---|
Univariate Linear Regression | Multivariate Linear Regression | Univariate Linear Regression | Multivariate Linear Regression | |||||
β | CI | β | CI | β | CI | β | CI | |
Clinical and obstetric characteristics | ||||||||
Maternal age | 0.01 | −1.31–1.38 | 0.01 | −1.71–1.74 | −0.20 | −1.51–0.39 | −0.17 | −1.75–0.79 |
Previous parity | −0.12 | −13.18–6.00 | −0.15 | −16.17–7.50 | −0.08 | −8.54–5.33 | 0.08 | −7.21–10.43 |
BMI at the time of genetic counseling (kg/m2) | 0.19 | −0.57–2.21 | 0.15 | −0.82–2.16 | −0.04 | −1.22–0.93 | 0.00 | −1.10–1.11 |
Birth weight (grams) | −0.02 | −0.03–0.02 | −0.01 | −0.03–0.02 | 0.01 | −0.02–0.02 | −0.01 | −0.02–0.02 |
Birth weight (percentile) | 0.05 | −0.30–0.40 | 0.18 | −0.31–0.42 | −0.02 | −0.27–0.24 | −0.00 | −0.27–0.27 |
NT | −0.11 | −17.87–8.79 | −0.17 | −22.29–8.50 | −0.30 | −17.78–0.86 | −0.38 * | −21.73–0.04 * |
CRL at NT | 0.30 | −0.08−2.52 | 0.76 | −0.38−2.69 | 0.10 | −0.71−1.32 | 0.14 | −0.75−1.60 |
GA at the time of delivery | −0.11 | −8.85−4.34 | −0.06 | −1.14−0.81 | 0.02 | −4.45−5.08 | 0.03 | −0.63−0.77 |
GA at the time of amniocentesis (weeks) | −0.13 | −8.22−3.45 | 0.46 | −1.30−0.55 | 0.24 | −1.12−7.10 | 0.20 | −0.31−1.02 |
Fetal sonography at the time of amniocentesis | ||||||||
Head circumference (mm) | −0.12 | −0.75−0.35 | −0.09 | −1.12−0.83 | 0.26 | −0.08−0.69 | 0.19 | −0.49−0.95 |
Head circumference (percentile) | −0.03 | −0.32–0.28 | −0.16 | −0.51–0.21 | −0.08 | −0.27–0.17 | 0.08 | −0.24–0.34 |
Abdominal circumference (mm) | 0.01 | −0.71–0.71 | 0.70 | −0.30–2.77 | 0.33 | −0.08–0.86 | 0.93 | −0.14–2.32 |
Abdominal circumference (percentile) | 0.41 * | −0.08–0.75 * | 0.35 | −0.07–0.84 | 0.26 | −0.12–0.51 | 0.35 | −0.08–0.61 |
Femur length (mm) | 0.07 | −2.54–1.74 | −0.18 | −7.88–5.78 | 0.23 | −0.61–2.53 | −0.28 | −6.89–4.61 |
Femur length (percentile) | 0.20 | −0.18–0.59 | −0.02 | −0.49–0.45 | −0.00 | −0.30–0.29 | −0.12 | −0.49–0.31 |
Estimated fetal weight (grams) | −0.04 | −0.16–0.14 | 0.64 | −0.22–0.69 | 0.26 | −0.04–0.17 | 0.73 | −0.17–0.53 |
Estimated fetal weight (percentile) | 0.41 * | −0.02–0.84 * | 0.31 | −0.15–0.85 | 0.24 | −0.14–0.52 | −0.31 | −0.12–0.63 |
Placental sonography at the time of amniocentesis | ||||||||
Placental volume (mm3) | 0.02 | −0.09–0.10 | −0.03 | −0.11–0.10 | −0.09 | −0.09–0.05 | 0.01 | −0.07–0.08 |
VI | −0.10 | −2.00–1.08 | −0.16 | −2.56–1.03 | −0.34 * | −2.13–0.06 * | −0.38 * | −2.47–0.03 * |
FI | 0.05 | −0.86–1.14 | 0.04 | −0.92–1.17 | −0.18 | −1.12–0.34 | −0.13 | −1.06–0.50 |
VFI | −0.34 * | −3.58–0.46 * | −0.32 | −4.32–0.20 | −0.44 * | −3.28–0.63 * | −0.52 * | −3.79–0.72 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincze, M.; Sikovanyecz, J., Jr.; Földesi, I.; Surányi, A.; Várbíró, S.; Németh, G.; Kozinszky, Z.; Sikovanyecz, J. How the Soluble Human Leukocyte Antigen-G levels in Amniotic Fluid and Maternal Serum Correlate with the Feto-Placental Growth in Uncomplicated Pregnancies. Bioengineering 2024, 11, 509. https://doi.org/10.3390/bioengineering11050509
Vincze M, Sikovanyecz J Jr., Földesi I, Surányi A, Várbíró S, Németh G, Kozinszky Z, Sikovanyecz J. How the Soluble Human Leukocyte Antigen-G levels in Amniotic Fluid and Maternal Serum Correlate with the Feto-Placental Growth in Uncomplicated Pregnancies. Bioengineering. 2024; 11(5):509. https://doi.org/10.3390/bioengineering11050509
Chicago/Turabian StyleVincze, Márió, János Sikovanyecz, Jr., Imre Földesi, Andrea Surányi, Szabolcs Várbíró, Gábor Németh, Zoltan Kozinszky, and János Sikovanyecz. 2024. "How the Soluble Human Leukocyte Antigen-G levels in Amniotic Fluid and Maternal Serum Correlate with the Feto-Placental Growth in Uncomplicated Pregnancies" Bioengineering 11, no. 5: 509. https://doi.org/10.3390/bioengineering11050509
APA StyleVincze, M., Sikovanyecz, J., Jr., Földesi, I., Surányi, A., Várbíró, S., Németh, G., Kozinszky, Z., & Sikovanyecz, J. (2024). How the Soluble Human Leukocyte Antigen-G levels in Amniotic Fluid and Maternal Serum Correlate with the Feto-Placental Growth in Uncomplicated Pregnancies. Bioengineering, 11(5), 509. https://doi.org/10.3390/bioengineering11050509