Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Continuously Annotated Signals of Emotion (CASE) Dataset
2.2. The Affect, Personality and Mood Research on Individuals and Groups (AMIGOS) Dataset
2.3. EDA Signal Pre-Processing
2.4. The Multiscale ComEDA Approach (MComEDA)
2.5. Statistical Analysis
2.6. Comparison with Standard Analysis: The EDASymp Index
3. Results
3.1. CASE Dataset
3.2. AMIGOS Dataset
3.3. Comparison with EDASymp and Summary of Results
- 1.
- CASE dataset: The standard analysis with EDASymp allowed discriminating the EDA signals acquired during scary stimuli from the EDA signals related to boring videos. When we analysed the nonlinear dynamics of EDA, the complexity analysis using at a single scale showed that amusing and scary stimuli were significantly different from boring and relaxing ones, whereas no significant differences were found comparing boring vs. relaxing or scary vs. amusing. Analysing the complexity of EDA signals at a multiscale level, we found other significant results in addition to the single-scale findings. In fact, the comparison between amusing vs. relaxing stimuli was also significant.
- 2.
- AMIGOS dataset:EDASymp values were statistically different when comparing LALV stimuli with LAHV and HALV. Considering the single-scale complexity analysis, HALV stimuli were significantly different from LAHV and LALV videos. Using , the comparison between LALV and HAHV elicitation was also significant.
4. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EDA | Electrodermal Activity |
HRV | Heart Rate Variability |
ANS | Autonomic Nervous System |
MComEDA | Multiscale ComEDA |
CASE | Continuously Annotated Signals of Emotion |
AMIGOS | Affect, Personality and Mood Research on Individuals and Groups |
HVHA | High Valence–High Arousal |
HVLA | High Valence–Low Arousal |
LVHA | Low Valence–High Arousal |
LVLA | Low Valence–Low Arousal |
References
- West, B.J.; Goldberger, A.L. Physiology in Fractal Dimensions. Am. Sci. 1987, 75, 354–365. [Google Scholar]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Havlin, S.; Buldyrev, S.; Goldberger, A.; Mantegna, R.; Ossadnik, S.; Peng, C.K.; Simons, M.; Stanley, H. Fractals in biology and medicine. Chaos Solitons Fractals 1995, 6, 171–201. [Google Scholar] [CrossRef] [PubMed]
- West, B.J.; Deering, B.; Deering, W.D. The Lure of Modern Science: Fractal Thinking; Studies of nonlinear phenomena in life sciences; World Scientific: Singapore, 1995. [Google Scholar]
- Aziz, W.; Arif, M. Multiscale Permutation Entropy of Physiological Time Series. In Proceedings of the 2005 Pakistan Section Multitopic Conference, Karachi, Pakistan, 24–25 December 2005; pp. 1–6. [Google Scholar] [CrossRef]
- Costa, M.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Its Appl. 2003, 330, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Eke, A.; Herman, P.; Kocsis, L.; Kozak, L.R. Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 2002, 23, R1. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.K.; Stanley, H.E. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [Google Scholar] [CrossRef] [PubMed]
- Scafetta, N.; Moon, R.E.; West, B.J. Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases. Complexity 2007, 12, 12–17. [Google Scholar] [CrossRef]
- Yeragani, V.K.; Srinivasan, K.; Vempati, S.; Pohl, R.; Balon, R. Fractal dimension of heart rate time series: An effective measure of autonomic function. J. Appl. Physiol. 1993, 75, 2429–2438. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yamamoto, Y.; Muraoka, I. Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J. Appl. Physiol. 1993, 74, 875–881. [Google Scholar] [CrossRef]
- Nardelli, M.; Valenza, G.; Cristea, I.A.; Gentili, C.; Cotet, C.; David, D.; Lanata, A.; Scilingo, E.P. Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics. Front. Comput. Neurosci. 2015, 9, 37. [Google Scholar] [CrossRef]
- Nardelli, M.; Scilingo, E.P.; Valenza, G. Multichannel Complexity Index (MCI) for a multi-organ physiological complexity assessment. Phys. A Stat. Mech. Its Appl. 2019, 530, 121543. [Google Scholar] [CrossRef]
- Miskovic, V.; MacDonald, K.J.; Rhodes, L.J.; Cote, K.A. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Hum. Brain Mapp. 2019, 40, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Zhang, C.; Cong, F.; Zhao, J.; Hämäläinen, T. Driver distraction detection using bidirectional long short-term network based on multiscale entropy of EEG. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19309–19322. [Google Scholar] [CrossRef]
- Gitter, J.; Czerniecki, M. Fractal analysis of the electromyographic interference pattern. J. Neurosci. Methods 1995, 58, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Edelberg, R. Electrical activity of the skin: Its measurement and uses in psychophysiology. In Handbook of Psychophysiology; Holt, Rinehart and Winston: New York, NY, USA, 1972; pp. 367–418. [Google Scholar]
- Leiner, D.; Fahr, A.; Früh, H. EDA positive change: A simple algorithm for electrodermal activity to measure general audience arousal during media exposure. Commun. Methods Meas. 2012, 6, 237–250. [Google Scholar] [CrossRef]
- Wang, C.A.; Baird, T.; Huang, J.; Coutinho, J.D.; Brien, D.C.; Munoz, D.P. Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in an Emotional Face Task. Front. Neurol. 2018, 9, 1029. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Lanata, A.; Scilingo, E.P. The Role of Nonlinear Dynamics in Affective Valence and Arousal Recognition. IEEE Trans. Affect. Comput. 2012, 3, 237–249. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Nardelli, M.; Bianchi, M.; Citi, L.; Scilingo, E.P. Force–velocity assessment of caress-like stimuli through the electrodermal activity processing: Advantages of a convex optimization approach. IEEE Trans. Hum.-Mach. Syst. 2016, 47, 91–100. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, G.I.; Uy, M.A.; Yap, W.J. The Body and the Brain: Measuring Skin Conductance Responses to Understand the Emotional Experience. Organ. Res. Methods 2019, 22, 394–420. [Google Scholar] [CrossRef]
- D’Mello, S.; Kappas, A.; Gratch, J. The Affective Computing Approach to Affect Measurement. Emot. Rev. 2018, 10, 174–183. [Google Scholar] [CrossRef]
- Aranha, R.V.; Correa, C.G.; Nunes, F.L.S. Adapting Software with Affective Computing: A Systematic Review. IEEE Trans. Affect. Comput. 2021, 12, 883–899. [Google Scholar] [CrossRef]
- Agako, A.; Ballester, P.; Stead, V.; McCabe, R.E.; Green, S.M. Measures of emotion dysregulation: A narrative review. Can. Psychol. / Psychol. Can. 2022, 63, 376–391. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.M.; Penichet, V.M.R.; Lozano, M.D.; Garrido, J.E.; Law, E.L.C. Multimodal Affective Computing to Enhance the User Experience of Educational Software Applications. Mob. Inf. Syst. 2018, 2018, 8751426. [Google Scholar] [CrossRef]
- Yang, H.C.; Lee, C.C. Annotation Matters: A Comprehensive Study on Recognizing Intended, Self-reported, and Observed Emotion Labels using Physiology. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), Cambridge, UK, 3–6 September 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Poria, S.; Cambria, E.; Bajpai, R.; Hussain, A. A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 2017, 37, 98–125. [Google Scholar] [CrossRef]
- Girardi, D.; Lanubile, F.; Novielli, N. Emotion detection using noninvasive low cost sensors. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017; pp. 125–130. [Google Scholar] [CrossRef]
- Nardelli, M.; Greco, A.; Bianchi, M.; Scilingo, E.P.; Valenza, G. Classifying affective haptic stimuli through gender-specific heart rate variability nonlinear analysis. IEEE Trans. Affect. Comput. 2018, 11, 459–469. [Google Scholar] [CrossRef]
- Nardelli, M.; Valenza, G.; Greco, A.; Lanatá, A.; Scilingo, E.P.; Bailón, R. Quantifying the lagged Poincaré plot geometry of ultrashort heart rate variability series: Automatic recognition of odor hedonic tone. Med. Biol. Eng. Comput. 2020, 58, 1099–1112. [Google Scholar] [CrossRef] [PubMed]
- Leistedt, S.J.; Linkowski, P.; Lanquart, J.P.; Mietus, J.; Davis, R.B.; Goldberger, A.L.; Costa, M.D. Decreased neuroautonomic complexity in men during an acute major depressive episode: Analysis of heart rate dynamics. Transl. Psychiatry 2011, 1, e27. [Google Scholar] [CrossRef] [PubMed]
- Visnovcova, Z.; Mestanik, M.; Gala, M.; Mestanikova, A.; Tonhajzerova, I. The complexity of electrodermal activity is altered in mental cognitive stressors. Comput. Biol. Med. 2016, 79, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, M.; Greco, A.; Sebastiani, L.; Scilingo, E.P. ComEDA: A new tool for stress assessment based on electrodermal activity. Comput. Biol. Med. 2022, 150, 106144. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Castellini, C.; van den Broek, E.L.; Albu-Schaeffer, A.; Schwenker, F. A dataset of continuous affect annotations and physiological signals for emotion analysis. Sci. Data 2019, 6, 196. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Castellini, C.; Stulp, F.; van den Broek, E.L. Continuous, Real-Time Emotion Annotation: A Novel Joystick-Based Analysis Framework. IEEE Trans. Affect. Comput. 2020, 11, 78–84. [Google Scholar] [CrossRef]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Abadi, M.K.; Subramanian, R.; Kia, S.M.; Avesani, P.; Patras, I.; Sebe, N. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses. IEEE Trans. Affect. Comput. 2015, 6, 209–222. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Rand, D., Young, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Kim, H.S.; Eykholt, R.; Salas, J.D. Nonlinear dynamics, delay times, and embedding windows. Phys. D Nonlinear Phenom. 1999, 127, 48–60. [Google Scholar] [CrossRef]
- Wallot, S.; Mønster, D. Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab. Front. Psychol. 2018, 9, 365315. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef]
- Botev, Z.I.; Grotowski, J.F.; Kroese, D.P. Kernel density estimation via diffusion. Ann. Stat. 2010, 38, 2916–2957. [Google Scholar] [CrossRef]
- Sturges, H.A. The Choice of a Class Interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [Google Scholar] [CrossRef]
- Rényi, A. On Measures of Entropy and Information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; Volume 4, pp. 547–562. [Google Scholar]
- Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Cañón, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135. [Google Scholar] [CrossRef]
- Liu, G. An Entropy Measure of Emotional Arousal via Skin Conductance Response. J. Fiber Bioeng. Inform. 2014, 7, 67–80. [Google Scholar] [CrossRef]
- Baldini, A.; Frumento, S.; Menicucci, D.; Gemignani, A.; Scilingo, E.P.; Greco, A. Subjective Fear in Virtual Reality: A Linear Mixed-Effects Analysis of Skin Conductance. IEEE Trans. Affect. Comput. 2022, 13, 2047–2057. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Ibrahim, M.; Chakrabarty, K. Keynote Paper: From EDA to IoT eHealth: Promises, Challenges, and Solutions. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2965–2978. [Google Scholar] [CrossRef]
- Masi, G.; Amprimo, G.; Rechichi, I.; Ferraris, C.; Priano, L. Electrodermal Activity in the Evaluation of Engagement for Telemedicine Applications. In Proceedings of the 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Atlanta, GA, USA, 13–17 March 2023; pp. 130–135. [Google Scholar] [CrossRef]
- Perez, A.J.; Zeadally, S. Recent Advances in Wearable Sensing Technologies. Sensors 2021, 21, 6828. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Shen, G. Recent Advances in Smart Wearable Sensing Systems. Adv. Mater. Technol. 2018, 3, 1800444. [Google Scholar] [CrossRef]
- Luo, H.; Gao, B. Development of smart wearable sensors for life healthcare. Eng. Regen. 2021, 2, 163–170. [Google Scholar] [CrossRef]
- Vavrinsky, E.; Stopjakova, V.; Kopani, M.; Kosnacova, H. The Concept of Advanced Multi-Sensor Monitoring of Human Stress. Sensors 2021, 21, 3499. [Google Scholar] [CrossRef]
- Yao, N.; Wang, X.; Ma, S.; Song, X.; Wang, S.; Shi, Z.; Pan, J.; Wang, S.; Xiao, J.; Liu, H.; et al. Single optical microfiber enabled tactile sensor for simultaneous temperature and pressure measurement. Photonics Res. 2022, 10, 2040. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Z.; Li, Z.; Ou, L.; Zhang, W.; Lai, Z.; Zhang, Y.; Xie, M.; Tang, J.; Zhu, W.; et al. High-sensitivity and fast-response fiber optic temperature sensor using an anti-resonant reflecting optical waveguide mechanism. Photonics Res. 2023, 11, 1397. [Google Scholar] [CrossRef]
MComEDA | ComEDA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
amu | bor | rel | sca | amu | bor | rel | sca | |||
amu | 0.001 | 7.310 × 10−5 | 0.024 | amu | 0.002 | 2.072 × 10−4 | 1.000 | |||
bor | 1.000 | 4.797 × 10−5 | bor | 1.000 | 4.797 × 10−5 | |||||
rel | 5.990 × 10−6 | rel | 1.944 × 10−5 | |||||||
sca | sca |
MComEDA | ComEDA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
HAHV | LAHV | LALV | HALV | HAHV | LAHV | LALV | HALV | |||
HAHV | 1.000 | 0.007 | 0.857 | HAHV | 0.2712 | 0.154 | 0.879 | |||
LAHV | 0.606 | 0.024 | LAHV | 1.000 | 0.004 | |||||
LALV | 3.930 × 10−4 | LALV | 0.004 | |||||||
HALV | HALV |
CASE Dataset | AMIGOS Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
amu | bor | rel | sca | HAHV | LAHV | LALV | HALV | |||
amu | 1.000 | 1.000 | 1.000 | HAHV | 0.144 | 0.129 | 0.254 | |||
bor | 1.000 | 0.124 | LAHV | 0.003 | 1.000 | |||||
rel | 0.004 | LALV | 1.647 × 10−4 | |||||||
sca | HALV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavezzo, L.; Gargano, A.; Scilingo, E.P.; Nardelli, M. Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach. Bioengineering 2024, 11, 520. https://doi.org/10.3390/bioengineering11060520
Lavezzo L, Gargano A, Scilingo EP, Nardelli M. Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach. Bioengineering. 2024; 11(6):520. https://doi.org/10.3390/bioengineering11060520
Chicago/Turabian StyleLavezzo, Laura, Andrea Gargano, Enzo Pasquale Scilingo, and Mimma Nardelli. 2024. "Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach" Bioengineering 11, no. 6: 520. https://doi.org/10.3390/bioengineering11060520
APA StyleLavezzo, L., Gargano, A., Scilingo, E. P., & Nardelli, M. (2024). Zooming into the Complex Dynamics of Electrodermal Activity Recorded during Emotional Stimuli: A Multiscale Approach. Bioengineering, 11(6), 520. https://doi.org/10.3390/bioengineering11060520