Large-Scale Expansion of Human Liver Stem Cells Using Two Different Bioreactor Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of HLSCs in T-Flasks
2.2. Cultivation of HLSCs in Hyperflasks
2.3. Investigation of HLSC Expansion in the Xpansion Bioreactor Systems
2.3.1. Setup of the XPN Devices and HLSC Expansion
2.3.2. Determination of the Oxygen Uptake Rate (OUR)
2.3.3. kLa Measurement
2.4. Investigation of HLSC Expansion in the Stirred-Tank Bioreactor Systems
2.4.1. Screening in Spinner Flasks
2.4.2. Setup and HLSC Expansion Using a STR
2.5. HLSC Analytics
2.5.1. Cell Count, Doubling Time and Viability based on Trypan Blue Staining
2.5.2. Cell Count-Based Crystal Violet Staining
2.5.3. Cell Distribution on the Microcarriers
2.5.4. Metabolic Analysis
2.5.5. HLSC Identity (CD Marker Determination)
2.5.6. HLSC Functionality (Islet Formation Assay)
3. Results
3.1. Baseline Experiments for Scale-Up Using Static T-Flasks
3.1.1. HLSCs Attached Firmly within 3 h
3.1.2. A Seeding Density of 4 × 103 cell cm−2 without Antibiotics Was Optimal for HLSC Growth
3.1.3. HLSCs Can Grow over an Extended Number of Cumulative Population Doublings
3.1.4. Lactate and Ammonia Significantly Inhibit HLSC Growth
3.2. Scale-Up of HLSC Expansion Using the Xpansion Bioreactor System
3.2.1. XPN10 Has a Low kLa and Supplementary Oxygen Is Required for HLSC Expansion
3.2.2. Scale-Up from T-Flask to the XPN10 Was Successful
3.2.3. Process Transfer to the Larger XPN50 Bioreactor Needs Further Optimization
3.3. Scale Up of HLSC Expansion Using a STR
3.3.1. Cytodex 1 Microcarriers Were Suitable for HLSC Attachment and Growth
3.3.2. HLSC Expansion Can Be Achieved Using a 1-L STR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera, M.B.; Bruno, S.; Buttiglieri, S.; Tetta, C.; Gatti, S.; Deregibus, M.C.; Bussolati, B.; Camussi, G. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006, 24, 2840–2850. [Google Scholar] [CrossRef]
- Herrera, M.B.; Fonsato, V.; Bruno, S.; Grange, C.; Gilbo, N.; Romagnoli, R.; Tetta, C.; Camussi, G. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 2013, 57, 311–319. [Google Scholar] [CrossRef]
- Navarro-Tableros, V.; Gai, C.; Gomez, Y.; Giunti, S.; Pasquino, C.; Deregibus, M.C.; Tapparo, M.; Pitino, A.; Tetta, C.; Brizzi, M.F.; et al. Islet-Like Structures Generated In Vitro from Adult Human Liver Stem Cells Revert Hyperglycemia in Diabetic SCID Mice. Stem Cell Rev. Rep. 2019, 15, 93–111. [Google Scholar] [CrossRef]
- Bruno, S.; Herrera Sanchez, M.B.; Pasquino, C.; Tapparo, M.; Cedrino, M.; Tetta, C.; Camussi, G. Human Liver-Derived Stem Cells Improve Fibrosis and Inflammation Associated with Nonalcoholic Steatohepatitis. Stem Cells Int. 2019, 2019, 6351091. [Google Scholar] [CrossRef]
- Herrera Sanchez, M.B.; Bruno, S.; Grange, C.; Tapparo, M.; Cantaluppi, V.; Tetta, C.; Camussi, G. Human liver stem cells and derived extracellular vesicles improve recovery in a murine model of acute kidney injury. Stem Cell Res. Ther. 2014, 5, 124. [Google Scholar] [CrossRef]
- Famulari, E.S.; Navarro-Tableros, V.; Herrera Sanchez, M.B.; Bortolussi, G.; Gai, M.; Conti, L.; Silengo, L.; Tolosano, E.; Tetta, C.; Muro, A.F.; et al. Human liver stem cells express UGT1A1 and improve phenotype of immunocompromised Crigler Najjar syndrome type I mice. Sci. Rep. 2020, 10, 887. [Google Scholar] [CrossRef]
- Cavallari, C.; Fonsato, V.; Herrera, M.B.; Bruno, S.; Tetta, C.; Camussi, G. Role of Lefty in the anti tumor activity of human adult liver stem cells. Oncogene 2013, 32, 819–826. [Google Scholar] [CrossRef]
- Spada, M.; Porta, F.; Righi, D.; Gazzera, C.; Tandoi, F.; Ferrero, I.; Fagioli, F.; Sanchez, M.B.H.; Calvo, P.L.; Biamino, E.; et al. Intrahepatic Administration of Human Liver Stem Cells in Infants with Inherited Neonatal-Onset Hyperammonemia: A Phase I Study. Stem Cell Rev. Rep. 2020, 16, 186–197. [Google Scholar] [CrossRef]
- Bruno, S.; Grange, C.; Tapparo, M.; Pasquino, C.; Romagnoli, R.; Dametto, E.; Amoroso, A.; Tetta, C.; Camussi, G. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation. Stem Cells Int. 2016, 2016, 8468549. [Google Scholar] [CrossRef]
- Bruno, S.; Chiabotto, G.; Camussi, G. Extracellular Vesicles: A Therapeutic Option for Liver Fibrosis. Int. J. Mol. Sci. 2020, 21, 4255. [Google Scholar] [CrossRef]
- Fonsato, V.; Herrera, M.B.; Buttiglieri, S.; Gatti, S.; Camussi, G.; Tetta, C. Use of a rotary bioartificial liver in the differentiation of human liver stem cells. Tissue Eng. Part C Methods 2010, 16, 123–132. [Google Scholar] [CrossRef]
- Vymetalova, L.; Kucirkova, T.; Knopfova, L.; Pospisilova, V.; Kasko, T.; Lejdarova, H.; Makaturova, E.; Kuglik, P.; Oralova, V.; Matalova, E.; et al. Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders. Neurochem. Res. 2020, 45, 204–214. [Google Scholar] [CrossRef]
- Lambrechts, T.; Papantoniou, I.; Rice, B.; Schrooten, J.; Luyten, F.P.; Aerts, J.-M. Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy 2016, 18, 1219–1233. [Google Scholar] [CrossRef]
- Carmelo, J.G.; Fernandes-Platzgummer, A.; Diogo, M.M.; Da Silva, C.L.; Cabral, J.M.S. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol. J. 2015, 10, 1235–1247. [Google Scholar] [CrossRef]
- Mizukami, A.; Fernandes-Platzgummer, A.; Carmelo, J.G.; Swiech, K.; Covas, D.T.; Cabral, J.M.S.; Da Silva, C.L. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol. J. 2016, 11, 1048–1059. [Google Scholar] [CrossRef]
- Egger, D.; Schwedhelm, I.; Hansmann, J.; Kasper, C. Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor. Bioengineering 2017, 4, 47. [Google Scholar] [CrossRef]
- Lawson, T.; Kehoe, D.E.; Schnitzler, A.C.; Rapiejko, P.J.; Der, K.A.; Philbrick, K.; Punreddy, S.; Rigby, S.; Smith, R.; Feng, Q.; et al. Process development for expansion of human mesenchymal stromal cells in a 50 L single-use stirred tank bioreactor. Biochem. Eng. J. 2017, 120, 49–62. [Google Scholar] [CrossRef]
- Petry, F.; Salzig, D. Impact of Bioreactor Geometry on Mesenchymal Stem Cell Production in Stirred-Tank Bioreactors. Chem. Ing. Tech. 2021, 93, 1537–1554. [Google Scholar] [CrossRef]
- Sousa, M.F.Q.; Silva, M.M.; Giroux, D.; Hashimura, Y.; Wesselschmidt, R.; Lee, B.; Roldão, A.; Carrondo, M.J.T.; Alves, P.M.; Serra, M. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes. Biotechnol. Prog. 2015, 31, 1600–1612. [Google Scholar] [CrossRef]
- Lambrechts, T.; Papantoniou, I.; Viazzi, S.; Bovy, T.; Schrooten, J.; Luyten, F.P.; Aerts, J.-M. Evaluation of a monitored multiplate bioreactor for large-scale expansion of human periosteum derived stem cells for bone tissue engineering applications. Biochem. Eng. J. 2016, 108, 58–68. [Google Scholar] [CrossRef]
- Egloff, M.; Collignon, F.; Michiels, J.-F.; Goffinet, J.; Snykers, S.; Willemsen, P.; Gumy, C.; Dedry, C.; Castillo, J.; Drugmand, J.-C. Scale-up of hepatic progenitor cells from multitray stack to 2-D bioreactors. BMC Proc. 2013, 7, P61. [Google Scholar] [CrossRef]
- Rouard, H.; Kadoch, J.; Lecuyer, M.; Mary, T.; Meyer, A.; Segier, J.; Cameau, E.; Birebent, B. Assessment of Pall’s Xpansion® bioreactor for the production of mesenchymal stromal cells for therapeutic use. Cytotherapy 2020, 22, S99–S100. [Google Scholar] [CrossRef]
- Tasto, L.; Salzig, D. Towards a Continuous Production of Human Mesenchymal Stromal Cells in a Chemically Defined Medium: Opportunities and Challenges for a Robust and Scalable Expansion Process. In Biopharmaceutical Manufacturing: Progress, Trends and Challenges, 1st ed.; Pörtner, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 379–427. ISBN 978-3-031-45668-8. [Google Scholar]
- Leber, J.; Barekzai, J.; Blumenstock, M.; Pospisil, B.; Salzig, D.; Czermak, P. Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem. 2017, 59, 255–265. [Google Scholar] [CrossRef]
- Singh, V. On-line measurement of oxygen uptake in cell culture using the dynamic method. Biotechnol. Bioeng. 1996, 52, 443–448. [Google Scholar] [CrossRef]
- Barekzai, J.; Friedrich, J.; Okpara, M.; Refflinghaus, L.; Eckhardt, D.; Czermak, P.; Salzig, D. Dynamic expansion of mesenchymal stem/stromal cells in a stirred tank bioreactor promotes the release of potent extracellular vesicles. AIMSBOA 2023, 10, 240–264. [Google Scholar] [CrossRef]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef]
- Berry, J.M.; Huebner, E.; Butler, M. The crystal violet nuclei staining technique leads to anomalous results in monitoring mammalian cell cultures. Cytotechnology 1996, 21, 73–80. [Google Scholar] [CrossRef]
- Cohen, S.; Samadikuchaksaraei, A.; Polak, J.M.; Bishop, A.E. Antibiotics reduce the growth rate and differentiation of embryonic stem cell cultures. Tissue Eng. 2006, 12, 2025–2030. [Google Scholar] [CrossRef]
- Schop, D.; Janssen, F.W.; van Rijn, L.D.S.; Fernandes, H.; Bloem, R.M.; de Bruijn, J.D.; van Dijkhuizen-Radersma, R. Growth, metabolism, and growth inhibitors of mesenchymal stem cells. Tissue Eng. Part A 2009, 15, 1877–1886. [Google Scholar] [CrossRef]
- Kirk, T.V.; Szita, N. Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol. Bioeng. 2013, 110, 1005–1019. [Google Scholar] [CrossRef]
- Zitzmann, J.; Weidner, T.; Eichner, G.; Salzig, D.; Czermak, P. Dielectric Spectroscopy and Optical Density Measurement for the Online Monitoring and Control of Recombinant Protein Production in Stably Transformed Drosophila melanogaster S2 Cells. Sensors 2018, 18, 900. [Google Scholar] [CrossRef]
- Maes, M.; Vanhaecke, T.; Cogliati, B.; Yanguas, S.C.; Willebrords, J.; Rogiers, V.; Vinken, M. Measurement of Apoptotic and Necrotic Cell Death in Primary Hepatocyte Cultures. Methods Mol. Biol. 2015, 1250, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Nienow, A.W.; Hewitt, C.J.; Heathman, T.R.; Glyn, V.A.; Fonte, G.N.; Hanga, M.P.; Coopman, K.; Rafiq, Q.A. Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochem. Eng. J. 2016, 108, 24–29. [Google Scholar] [CrossRef]
- Castilla-Casadiego, D.A.; Reyes-Ramos, A.M.; Domenech, M.; Almodovar, J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann. Biomed. Eng. 2020, 48, 519–535. [Google Scholar] [CrossRef]
- Barekzai, J.; Refflinghaus, L.; Okpara, M.; Tasto, L.; Tertel, T.; Giebel, B.; Czermak, P.; Salzig, D. Process development for the production of mesenchymal stromal cell-derived extracellular vesicles in conventional 2D systems. Cytotherapy 2024. [Google Scholar] [CrossRef]
- Yang, Y.; Rossi, F.M.V.; Putnins, E.E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials 2007, 28, 3110–3120. [Google Scholar] [CrossRef]
Added Lactate Concentration [mM] | Cell Density [×103 Cells cm−2] | Population Doublings [−] | Growth Inhibition [%] |
---|---|---|---|
0 (control) | 51.6 ± 3.7 | 3.7 ± 0.3 | - |
5 | 44.8 ± 4.8 | 3.5 ± 0.4 | 13 |
10 | 37.8 ± 4.6 | 3.2 ± 0.40 | 27 |
20 | 11.0 ± 0.9 | 1.5 ± 0.1 | 79 |
30 | 0.8 ± 0.8 | - | 98 |
50 | 0.0 | - | 100 |
Added Ammonia Concentration [mM] | Cell Density [×103 Cells cm−2] | Population Doublings [−] | Growth Inhibition [%] |
---|---|---|---|
0 (control) | 51.3 ± 3.4 | 3.7 ± 0.2 | - |
1 | 41.7 ± 7.4 | 3.4 ± 0.6 | 19 |
2 | 15.8 ± 2.3 | 2.0 ± 0.3 | 70 |
4 | 14.4 ± 2.0 | 1.9 ± 0.3 | 72 |
10 | 11.1 ± 8.5 | 1.5 ± 1.1 | 79 |
20 | 3.6 ± 8.5 | - | 93 |
Run | Cell Density [×103 Cells cm−2] | Cell Yield [×108 Cells] | Population Doublings [−] | Doubling Time [h] |
---|---|---|---|---|
1 | 101 | 6.2 | 4.0 | 30 |
2 | 84 | 5.1 | 3.8 | 32 |
3 | 99 | 6.1 | 4.4 | 27 |
Mean ± SD | 94 ± 8 | 5.8 ± 0.5 | 4.1 ± 0.3 | 30 ± 2 |
Run | Cell Density [×103 Cells cm−2] | Cell Yield [×108 Cells] | Population Doublings [−] | Doubling Time [h] |
---|---|---|---|---|
1 | 12.7 | 1.7 | 1.9 | 39 |
2 | 31.8 | 4.2 | 3.9 | 25 |
3 | 25.4 | 3.3 | 3.6 | 30 |
Mean ± SD | 23.3 ± 7.9 | 3.1 ± 1.0 | 3.1 ± 0.9 | 31 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorbow, J.; Strauch, A.; Pfening, V.; Klee, J.-P.; Brücher, P.; Boshof, B.; Petry, F.; Czermak, P.; Herrera Sanchez, M.B.; Salzig, D. Large-Scale Expansion of Human Liver Stem Cells Using Two Different Bioreactor Systems. Bioengineering 2024, 11, 692. https://doi.org/10.3390/bioengineering11070692
Thorbow J, Strauch A, Pfening V, Klee J-P, Brücher P, Boshof B, Petry F, Czermak P, Herrera Sanchez MB, Salzig D. Large-Scale Expansion of Human Liver Stem Cells Using Two Different Bioreactor Systems. Bioengineering. 2024; 11(7):692. https://doi.org/10.3390/bioengineering11070692
Chicago/Turabian StyleThorbow, Jan, Andrea Strauch, Viktoria Pfening, Jan-Philip Klee, Patricia Brücher, Björn Boshof, Florian Petry, Peter Czermak, Maria Beatriz Herrera Sanchez, and Denise Salzig. 2024. "Large-Scale Expansion of Human Liver Stem Cells Using Two Different Bioreactor Systems" Bioengineering 11, no. 7: 692. https://doi.org/10.3390/bioengineering11070692
APA StyleThorbow, J., Strauch, A., Pfening, V., Klee, J. -P., Brücher, P., Boshof, B., Petry, F., Czermak, P., Herrera Sanchez, M. B., & Salzig, D. (2024). Large-Scale Expansion of Human Liver Stem Cells Using Two Different Bioreactor Systems. Bioengineering, 11(7), 692. https://doi.org/10.3390/bioengineering11070692