The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- Description: This systematic review includes studies that utilize AI engines to evaluate 2D and 3D radiological imaging for the diagnostic assessment required for dental implant placement.
- Criteria: Studies must focus on the evaluation of bone quality, bone dimensions, the identification of critical anatomical structures (e.g., nerves and maxillary sinus, adjacent teeth), drilling protocols, and implant position.
- Description: The index tests under review are AI-based technologies and tools that assist clinicians in the planning and placement of dental implants. We used AI algorithms that analyze radiological images, provide 3D reconstructions, and suggest optimal implant sites while ensuring the preservation of vital anatomical structures.
- Description: The target condition involves patients with missing teeth (edentulism) who require detailed diagnostic evaluations for the planning of dental implant placement.
- Assessment Focus: The primary focus is on evaluating the AI tools to evaluate the quality and dimensions of the bone and ensuring the safe placement of implants by identifying and preserving critical structures such as nerves and the maxillary sinus.
3. Results
- Not a study in the field of AI application in implant planning (n = 3);
- Full text not available (n = 1);
- Missing information on AI technology (n = 2).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, P.R.; Lu, L.; Zhang, J.Y.; Huo, T.T.; Liu, S.X.; Ye, Z.W. Application of Artificial Intelligence in Medicine: An Overview. Curr. Med. Sci. 2021, 41, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, S.; Aulakh, B.K.; Shil, M.; Nepale, M.; Puthenkandathil, R.; Syed, W. Role of Artificial Intelligence (AI) in Dentistry: A Literature Review. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. 1), S14–S16. [Google Scholar] [CrossRef] [PubMed]
- Chackartchi, T.; Romanos, G.E.; Parkanyi, L.; Schwarz, F.; Sculean, A. Reducing errors in guided implant surgery to optimize treatment outcomes. Periodontology 2000 2022, 88, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Altalhi, A.M.; Alharbi, F.S.; Alhodaithy, M.A.; Almarshedy, B.S.; Al-Saaib, M.Y.; Al Jfshar, R.M.; Aljohani, A.S.; Alshareef, A.H.; Muhayya, M.; Al-Harbi, N.H. The Impact of Artificial Intelligence on Dental Implantology: A Narrative Review. Cureus 2023, 15, e47941. [Google Scholar] [CrossRef] [PubMed]
- Bonny, T.; Al Nassan, W.; Obaideen, K.; Al Mallahi, M.N.; Mohammad, Y.; El-Damanhoury, H.M. Contemporary Role and Applications of Artificial Intelligence in Dentistry. F1000Research 2023, 12, 1179. [Google Scholar] [CrossRef] [PubMed]
- Dhopte, A.; Bagde, H. Smart Smile: Revolutionizing Dentistry With Artificial Intelligence. Cureus 2023, 15, e41227. [Google Scholar] [CrossRef] [PubMed]
- Pethani, F. Promises and perils of artificial intelligence in dentistry. Aust. Dent. J. 2021, 66, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Li, H.; Shimada, T.; Kita, S.; Iida, M.; Lee, C.; Nakano, T.; Yamaguchi, S.; Imazato, S. Development of artificial intelligence model for supporting implant drilling protocol decision making. J. Prosthodont. Res. 2023, 67, 360–365. [Google Scholar] [CrossRef]
- Morgan, N.; Van Gerven, A.; Smolders, A.; Vasconcelos, K.d.F.; Willems, H.; Jacobs, R. Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Sci. Rep. 2022, 12, 7523. [Google Scholar] [CrossRef]
- Oliveira-Santos, N.; Jacobs, R.; Picoli, F.F.; Lahoud, P.; Niclaes, L.; Groppo, F.C. Automated segmentation of the mandibular canal and its anterior loop by deep learning. Sci. Rep. 2023, 13, 10819. [Google Scholar] [CrossRef]
- Kwak, G.H.; Kwak, E.J.; Song, J.M.; Park, H.R.; Jung, Y.-H.; Cho, B.-H.; Hui, P.; Hwang, J.J. Automatic mandibular canal detection using a deep convolutional neural network. Sci. Rep. 2020, 10, 5711. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, A.; Li, P.; Yun, Z.; Lin, G.; Cheng, J.; Xu, S.; Qiu, B. Automatic segmentation of inferior alveolar canal with ambiguity classification in panoramic images using deep learning. Heliyon 2023, 9, e13694. [Google Scholar] [CrossRef] [PubMed]
- Jindanil, T.; Marinho-Vieira, L.E.; Lins de-Azevedo-Vaz, S.; Jacobs, R. A unique artificial intelligence-based tool for automated CBCT segmentation of mandibular incisive canal. Dentomaxillofacial Radiol. 2023, 52, 20230321. [Google Scholar] [CrossRef] [PubMed]
- Moufti, M.A.; Trabulsi, N.; Ghousheh, M.; Fattal, T.; Ashira, A.; Danishvar, S. Developing an Artificial Intelligence Solution to Autosegment the Edentulous Mandibular Bone for Implant Planning. Eur. J. Dent. 2023, 17, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Fontenele, R.C.; Gerhardt, M.D.N.; Picoli, F.F.; Van Gerven, A.; Nomidis, S.; Willems, H.; Freitas, D.Q.; Jacobs, R. Convolutional neural network-based automated maxillary alveolar bone segmentation on cone-beam computed tomography images. Clin. Oral Implant. Res. 2023, 34, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Vinayahalingam, S.; Kempers, S.; Schoep, J.; Hsu, T.-M.H.; Moin, D.A.; van Ginneken, B.; Flügge, T.; Hanisch, M.; Xi, T. Intra-oral scan segmentation using deep learning. BMC Oral Health 2023, 23, 643. [Google Scholar] [CrossRef] [PubMed]
- Roongruangsilp, P.; Khongkhunthian, P. The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study. Appl. Sci. 2021, 11, 10159. [Google Scholar] [CrossRef]
- Kurt Bayrakdar, S.; Orhan, K.; Bayrakdar, I.S.; Bilgir, E.; Ezhov, M.; Gusarev, M.; Shumilov, E. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med. Imaging 2021, 21, 86. [Google Scholar] [CrossRef] [PubMed]
- Alsomali, M.; Alghamdi, S.; Alotaibi, S.; Alfadda, S.; Altwaijry, N.; Alturaiki, I.; Al-Ekrish, A. Development of a deep learning model for automatic localization of radiographic markers of proposed dental implant site locations. Saudi Dent. J. 2022, 34, 220–225. [Google Scholar] [CrossRef]
- Lyakhov, P.A.; Dolgalev, A.A.; Lyakhova, U.A.; Muraev, A.A.; Zolotayev, K.E.; Semerikov, D.Y. Neural network system for analyzing statistical factors of patients for predicting the survival of dental implants. Front. Neuroinform. 2022, 16, 1067040. [Google Scholar] [CrossRef] [PubMed]
- Mangano, F.G.; Admakin, O.; Lerner, H.; Mangano, C. Artificial intelligence and augmented reality for guided implant surgery planning: A proof of concept. J. Dent. 2023, 133, 104485. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.; Xie, X.; Deng, F. Influence of bone density on the accuracy of artificial intelligence-guided implant surgery: An in vitro study. J. Prosthet. Dent. 2024, 131, 254–261. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Benavides, E.; Rios, H.F.; Ganz, S.D.; An, C.H.; Resnik, R.; Reardon, G.T.; Feldman, S.J.; Mah, J.K.; Hatcher, D.; Kim, M.J.; et al. Use of cone beam computed tomography in implant dentistry: The International Congress of Oral Implantologists consensus report. Implant. Dent. 2012, 21, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Macrì, M.; D’Albis, G.; D’Albis, V.; Timeo, S.; Festa, F. Augmented Reality-Assisted Surgical Exposure of an Impacted Tooth: A Pilot Study. Appl. Sci. 2023, 13, 11097. [Google Scholar] [CrossRef]
- Goller Bulut, D.; Köse, E. Available bone morphology and status of neural structures in the mandibular interforaminal region: Three-dimensional analysis of anatomical structures. Surg. Radiol. Anat. 2018, 40, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Di Murro, B.; Papi, P.; Passarelli, P.C.; D’Addona, A.; Pompa, G. Attitude in Radiographic Post-Operative Assessment of Dental Implants among Italian Dentists: A Cross-Sectional Survey. Antibiotics 2020, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Juodzbalys, G.; Wang, H.L.; Sabalys, G. Anatomy of mandibular vital structures. Part I: Mandibular canal and inferior alveolar neurovascular bundle in relation with dental implantology. J. Oral Maxillofac. Res. 2010, 1, e2. [Google Scholar] [CrossRef]
- Fortes, J.H.; de Oliveira-Santos, C.; Matsumoto, W.; da Motta, R.J.G.; Tirapelli, C. Influence of 2D vs 3D imaging and professional experience on dental implant treatment planning. Clin. Oral Investig. 2019, 23, 929–936. [Google Scholar] [CrossRef]
- Heimes, D.; Becker, P.; Pabst, A.; Smeets, R.; Kraus, A.; Hartmann, A.; Sagheb, K.; Kämmerer, P.W. How does dental implant macrogeometry affect primary implant stability? A narrative review. Int. J. Implant. Dent. 2023, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Palaskar, J.N.; Joshi, N.; Shah, P.M.; Gullapalli, P.; Vinay, V. Influence of different implant placement techniques to improve primary implant stability in low-density bone: A systematic review. J. Indian. Prosthodont. Soc. 2020, 20, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.M.; Lin, Y.C.; Lan, Y.H.; Lin, L.D. Evaluation of sawbones training protocol in bone quality classification using tactile sensation. J. Dent. Sci. 2022, 17, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Pomares-Puig, C.; Sánchez-Garcés, M.A.; Jorba-García, A. Dynamic and static computer-guided surgery using the double-factor technique for completely edentulous patients: A dental technique. J. Prosthet. Dent. 2022, 128, 852–857. [Google Scholar] [CrossRef] [PubMed]
- De Kok, I.J.; Thalji, G.; Bryington, M.; Cooper, L.F. Radiographic stents: Integrating treatment planning and implant placement. Dent. Clin. N. Am. 2014, 58, 181–192. [Google Scholar] [CrossRef]
- Senthil, S.; Vijayalakshmi, R.; Mahendra, J.; Ambalavanan, N. Current opinion on guided implant surgery. Bioinformation 2023, 19, 786–789. [Google Scholar] [CrossRef]
- Du Toit, J.; Gluckman, H.; Gamil, R.; Renton, T. Implant Injury Case Series and Review of the Literature Part 1, Inferior Alveolar Nerve Injury. J. Oral Implantol. 2015, 41, e144–e151. [Google Scholar] [CrossRef]
- Deshpande, A.M.; Brandt, C.; Nadkarni, P.M. Metadata-driven ad hoc query of patient data: Meeting the needs of clinical studies. J. Am. Med. Inform. Assoc. 2002, 9, 369–382. [Google Scholar] [CrossRef]
- Yao, Y.; Cen, X.; Liu, Y.; Yuan, J.; Ye, Y. Blockchain-based Electronic Medical Record Security Sharing Scheme. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2023, 2023, 1–4. [Google Scholar]
Focused Question | What Are the Current Uses of AI in Implant Planning Described in the Literature? |
---|---|
Search Population Strategy | Scientific articles on the use of AI in implant planning |
Intervention or Exposure | Electronic literature searches: #1 ((Implant Planning [Mesh] OR (implantology) OR (implant treatment plan)) Diagnostic model based on applied AI algorithms #2: ((Artificial Intelligence [Mesh] OR (AI) OR (machine learning) OR (deep learning)) |
Comparison | Traditional methods of implant planning |
Outcome | Applications or diagnostic performance of the proposed AI model. |
Search combination | #1 AND #2 |
Database search | PubMed, Scopus, Web of Science database |
Electronic journals | Journal of Prosthodontic Research, Journal of Prosthetic Dentistry, Clinical Oral Implants Research, International Journal of Oral Maxillofacial Implants, Clinical Implant Dentistry and Related Research, Implant Dentistry, Journal of Implantology |
Selection criteria | Studies at all levels of evidence, except expert opinion; |
Inclusion criteria | Articles published in English; Articles published in the last 5 years. |
Exclusion criteria | Review articles, letter to editors Animal studies; Multiple publications on the same patient population; Full text not available/accessible. |
Selection | Comparability | Outcome | Overall Star Rating | |
---|---|---|---|---|
(Max. 4 Stars) | (Max. 2 Stars) | (Max. 4 Stars) | ||
Takahiko S. et al. (2023) [9] | *** | * | *** | 7 |
Nermin M. et al. (2022) [10] | *** | ** | *** | 8 |
Oliveira-S N. et al. (2023) [11] | *** | ** | ** | 7 |
Hyunjung K.G. et al. (2023) [12] | *** | ** | *** | 8 |
Shuo Yang. et al. (2023) [13] | ** | ** | ** | 6 |
Jindanil T. et al. (2023) [14] | ** | ** | ** | 6 |
Adel Moufti M et al. (2023) [15] | ** | ** | *** | 7 |
Cavalcante F. R. et al. (2023) [16] | *** | ** | * | 6 |
VinayahalingamS. et al. (2023) [17] | ** | * | *** | 6 |
Roongruangsilp P. et al. (2021) [18] | ** | * | ** | 5 |
Kurt Bayrakdar S. et al. (2021) [19] | ** | * | *** | 6 |
Alsomali D. et al. (2022) [20] | ** | ** | * | 5 |
Lyakhov P.A. et al. (2022) [21] | ** | * | * | 4 |
Mangano F. et al. (2023) [22] | - | - | - | - |
Chen Z. et al. (2024) [23] | - | - | - | - |
First Author (Year) Country | Study Design | n Datasets | Training/Validation Datasets | Test Datasets | Aim of the Study | AI Application | Outcome or Conclusions |
---|---|---|---|---|---|---|---|
Takahiko S. et al. (2023). Japan [9] | Retrospective study | 1200 images (20 slices of 60 CBCT) | 960 images, 80% | 240 images, 20% | determination of an appropriate implant drilling protocol from CBCT scan | Keras library in Python. Adam optimizer was used to train the LeNet-5-based model. | Effective method of predicting drilling protocols from CBCT images before surgery |
Cavalcante F. R. et al. (2023). Brazil [16] | Retrospective study | 141 CBCT | 99/12 | 22 | Develop and assess the performance of a novel tool for automated three-dimensional (3D) maxillary alveolar bone segmentation on CBCT images. | The CNN models were developed in PyTorch | Although the manual segmentation showed slightly better performance, the novel CNN-based tool also provided a highly accurate segmentation of the maxillary alveolar bone |
Adel Moufti M et al. (2023). United Arab Emirates [15] | Retrospective study | 43 CBCT | 33 | 10 | Develop a solution to identify and delineate edentulous alveolar bone on CBCT | U-Net architecture CNN model | Segmentation of the edentulous spans on CBCT images was successfully conducted by machine learning with good accuracy compared to manual segmentation. |
Nermin M. et al. (2022). Belgium [10] | Retrospective study | 132 CBCT | 83/19 | 30 | Develop a novel automated CNN-based methodology for the segmentation of maxillary sinus on CBCT images | 3D U-Net architecture CNN model | Promising performance in relation to time, accuracy and consistency |
Kurt Bayrakdar S. et al. (2021). Turkey [19] | Retrospective study | 75 CBCT, 508 regions | - | - | Evaluate an AI system in implant planning using CBCT. Evaluate canal/sinus/fossa, missing tooth detection, bone height measurements and bone thickness measurements | 3D U-Net, CNN model | The success of the present study in the detection of sinus/mandibular canal and missing teeth and the measurements it offers in implant planning reinforces this possibility. |
Oliveira-S N. et al. (2023). Brazil [11] | Retrospective study | 220 CBCT | 166/27 | 27 | Train and validate a dedicated cloud-based AI-driven tool to allow accurate and timely segmentation of the mandibular canal and its anterior loop on CBCT scans | 3D U-Net architecture CNN model | Contribute to presurgical planning for dental implant placement, especially in the interforaminal region |
Hyunjung K.G. et al. (2023). Korea [12] | Retrospective study | 102 CBCT | 49,094 images/9818 images | 9818 images | Valuate the automatic mandibular canal detection using a deep convolutional neural network | 2D and 3D U-Net and 2D SegNet (CNN model) | Though 3D U-Net showed significantly better results than 2D Net in automated canal nerve detection. deep learning will contribute significantly to efficient treatment planning |
Shuo Yang. et al. (2023). China [13] | Retrospective study | 1366 2D panoramic images | 1000 panoramic | 336 panoramic | Evaluate the performance of automatic segmentation of inferior alveolar canal in panoramic images | EfficientUnet, CNN model | This method achieved high performance for IAC segmentation in panoramic images under different visibilities |
Jindanil T. et al. (2023). Belgium, Brazil [14] | Retrospective study | 200 CBCT | 160/20 | 20 | Develop and validate a novel tool for automated segmentation of mandibular incisive canal on CBCT scans | CNN model used on 3D U-net architecture | Automated segmentation of mandibular incisive canal on CBCT scans was proofed to be accurate, time efficient, and highly consistent, serving pre-surgical planning. |
Vinayahalingam S. et al. (2023). Netherlands [17] | Retrospective study | 1750 casts scans | 1400 | 350 | Develop an automated teeth segmentation and labeling system using deep learning | U-Net architecture CNN model | Promising foundation for time-effective and observer-independent teeth segmentation and labeling |
Roongruangsilp P. et al. (2021). Thailand [18] | Retrospective study | 316 images obtained from184 CBCT | 300 images | 16 | Investigate the learning curve of the developed AI for dental implant planning in the posterior maxillary region | R-CNN algorithm | The number of each image category used in AI development is positively related to the AI interpretation. Fifty images are the minimum image requirement for over 70% positive prediction. |
Alsomali D. et al. (2022). Saudi Arabia [20] | Retrospective study | 34 CBCT, 16,272 axial images | 90.2%/9.8% | 4 cases | Develop a model that automatically localizes the position of radiographic stent markers in CBCT | R-CNN | Use of only axial images for training an AI program for localization of GP markers is not enough to give an accurate AI model performance. |
Lyakhov P.A. et al. (2022). Russia [21] | Case Studies | 1626 cases. | 91.64% successful cases, 8.36% rejection cases | - | Propose a system for analyzing various patient statistics to predict the success of single implant survival | CNN architecture | A promising direction for further research is the development of a medical decision support system based on the technology for generating recommendations to reduce the risk of complications |
Mangano F. et al. (2023) Italy [22] | Case report | 1 case | - | - | Present a novel protocol for planning of dental implant | CNN architecture | Effective automatic alignment of digital intraoral scan and CBCT models, with CBCT segmentation |
Chen Z. et al. (2024). China [23] | In vitro study | 10 cases | - | - | Determine the clinical reliability of an AI-assisted implant planning software program with an in vitro model | CNN architecture | AI implant planning software program could design the ideal implant position through self-learning. Higher bone density led to increased implant deviations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macrì, M.; D’Albis, V.; D’Albis, G.; Forte, M.; Capodiferro, S.; Favia, G.; Alrashadah, A.O.; García, V.D.-F.; Festa, F. The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review. Bioengineering 2024, 11, 778. https://doi.org/10.3390/bioengineering11080778
Macrì M, D’Albis V, D’Albis G, Forte M, Capodiferro S, Favia G, Alrashadah AO, García VD-F, Festa F. The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review. Bioengineering. 2024; 11(8):778. https://doi.org/10.3390/bioengineering11080778
Chicago/Turabian StyleMacrì, Monica, Vincenzo D’Albis, Giuseppe D’Albis, Marta Forte, Saverio Capodiferro, Gianfranco Favia, Abdulrahman Omar Alrashadah, Victor Diaz-Flores García, and Felice Festa. 2024. "The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review" Bioengineering 11, no. 8: 778. https://doi.org/10.3390/bioengineering11080778
APA StyleMacrì, M., D’Albis, V., D’Albis, G., Forte, M., Capodiferro, S., Favia, G., Alrashadah, A. O., García, V. D. -F., & Festa, F. (2024). The Role and Applications of Artificial Intelligence in Dental Implant Planning: A Systematic Review. Bioengineering, 11(8), 778. https://doi.org/10.3390/bioengineering11080778