Thermodynamic Work of High-Grade Uterine Prolapse Patients Undergoing Transvaginal Mesh Repair with Total Hysterectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Procedures
2.3. Pressure–Flow/–Volume Analyses
2.4. Statistical Analysis
3. Results
3.1. Baseline Database of Patients
3.2. TVM-HTX Diminishes Voiding Resistance
3.3. TVM-HTX Modifies Voiding Pressure and Flow
3.4. TVM-HTX Shortens Voiding Time
3.5. TVM-HTX Lessens Voiding Workload
4. Discussion
4.1. TVM-HTX for UP Patients
4.2. TVM-HTX Diminishes Voiding Resistance
4.3. Lessened Voiding Workload
4.4. TVM-HTX Increases Voiding Efficacy
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nygaard, I.; Barber, M.D.; Burgio, K.L.; Kenton, K.; Meikle, S.; Schaffer, J.; Spino, C.; Whitehead, W.E.; Wu, J.; Brody, D.J. Prevalence of symptomatic pelvic floor disorders in US women. Pelvic Floor Disorders Network. JAMA 2008, 300, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Iglesia, C.B.; Smithling, K.R. Pelvic organ prolapse. Am. Fam. Physician 2017, 96, 179–185. [Google Scholar] [PubMed]
- Aichner, S.; Fähnle, I.; Frey, J.; Krebs, J.; Christmann-Schmid, C. Impact of sacrocolpopexy for the management of pelvic organ prolapse on voiding dysfunction and uroflowmetry parameters: A prospective cohort study. Arch. Gynecol. Obstet. 2022, 306, 1373–1380. [Google Scholar] [CrossRef]
- Shi, J.F.; Xu, W.Z.; Wang, H.F.; Tao, W.K.; Ren, Y.X.; Zhang, T.; Yu, X. An evaluation of pelvic organ prolapses in perimenopausal and menopausal Chinese females. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3914–3921. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Mohammadzadeh, F.; Niazi, A.; Afiat, M. The relationship between women’s sexual function and type of delivery and pelvic organ prolapse: A cross-sectional study. In Health Care for Women International; Taylor & Francis: Abingdon, UK, 2023; pp. 1–13. [Google Scholar] [CrossRef]
- De Lancey, J.O. Anatomic aspects of vaginal eversion after hysterectomy. Am. J. Obstet. Gynecol. 1992, 166, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Ridgeway, B.M. Does prolapse equal hysterectomy? The role of uterine conservation in women with uterovaginal prolapse. Am. J. Obstet. Gynecol. 2015, 213, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.; Gutman, R.E.; Richter, L.A. Hysteropexy: An Option for the Repair of Pelvic Organ Prolapse. Curr. Urol. Rep. 2018, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Herzog, T.J.; Tsui, J.; Ananth, C.V.; Lewin, S.N.; Lu, Y.S.; Neugut, A.I.; Hershman, D.L. Nationwide trends in the performance of inpatient hysterectomy in the United States. Obstet. Gynecol. 2013, 122, 233–241. [Google Scholar] [CrossRef]
- Graefe, F.; Marschke, J.; Dimpfl, T.; Tunn, R. Vaginal Vault Suspension at Hysterectomy for Prolapse—Myths and Facts, Anatomical Requirements, Fixation Techniques, Documentation and Cost Accounting. Geburtshilfe Frauenheilkd. 2012, 72, 1099–1106. [Google Scholar] [CrossRef]
- Kanasaki, H.; Oride, A.; Hara, T.; Kyo, S. Comparative Retrospective Study of Tension-Free Vaginal Mesh Surgery, Native Tissue Repair, and Laparoscopic Sacrocolpopexy for Pelvic Organ Prolapse Repair. Obstet. Gynecol. Int. 2020, 2020, 7367403. [Google Scholar] [CrossRef]
- Glazener, C.M.; Breeman, S.; Elders, A.; Hemming, C.; Cooper, K.G.; Freeman, R.M.; Smith, A.R.; Reid, F.; Hagen, S.; Montgomery, I.; et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: Two parallel-group, multicentre, randomised, controlled trials (PROSPECT). Lancet 2017, 389, 381–392. [Google Scholar] [CrossRef]
- Milani, R.; Salvatore, S.; Soligo, M.; Pifarotti, P.; Meschia, M.; Cortese, M. Functional and anatomical outcome of anterior and posterior vaginal prolapse repair with prolene mesh. BJOG 2005, 112, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Feiner, B.; Baessler, K.; Christmann-Schmid, C.; Haya, N.; Marjoribanks, J. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse. Cochrane Database Syst. Rev. 2016, 2, CD012079. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Public Health Notification: Serious Complications Associated with Transvaginal Placement of surgical Mesh in Repair of Pelvic Organ Prolapse and Stress Urinary Incontinence. 2008. Available online: https://wayback.archive-it.org/7993/20170111190506/http:/www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm061976.htm (accessed on 1 January 2023).
- FDA. FDA’s Activities: Urogynecologic Surgical Mesh. 2019. Available online: https://www.fda.gov/medical-devices/urogynecologic-surgical-mesh-implants/fdas-activities-urogynecologic-surgical-mesh (accessed on 1 January 2023).
- Romanzi, L.J.; Chaikin, D.C.; Blaivas, J.G. The effect of genital prolapse on voiding. J. Urol. 1999, 161, 581.e6. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.; Hüsch, T.; Mörgeli, C.; Kolterer, A.; Tunn, R. Mesh-augmented transvaginal repair of recurrent or complex anterior pelvic organ prolapse in accordance with the SCENIHR opinion. Int. Urogynecol. J. 2021, 32, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Mateu-Arrom, L.; Gutiérrez-Ruiz, C.; Palou-Redorta, J.; Errando-Smet, C. Pelvic organ prolapse repair with mesh: Description of surgical technique using the Surelift®Anterior Repair System. Urol. Int. 2021, 105, 137–142. [Google Scholar] [CrossRef]
- Long, C.Y.; Hsu, C.S.; Wu, C.H.; Liu, C.M.; Wang, C.L.; Tsai, E.M. Three-year outcome of transvaginal mesh repair for the treatment of pelvic organ prolapse. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 105–108. [Google Scholar] [CrossRef]
- Sori, D.A.; Bretones, S.; Mellier, G.; de Rochambeau, B. Prevalence and surgical outcomes of stage 3 and 4 pelvic organs prolapse in Jimma university medical center, south west Ethiopia. BMC Womens Health 2022, 22, 410. [Google Scholar] [CrossRef]
- Bradley, C.S.; Nygaard, I.E. Vaginal wall descensus and pelvic floor symptoms in older women. Obstet. Gynecol. 2005, 106, 759.e66. [Google Scholar] [CrossRef]
- Patil, A.; Duckett, J. Effect of prolapse repair on voiding and bladder overactivity. Curr. Opin. Obstet. Gynecol. 2010, 22, 399.e403. [Google Scholar] [CrossRef]
- Wen, L.; Shek, K.L.; Dietz, H.P. Changes in urethral mobility and configuration after prolapse repair. Ultrasound Obstet. Gynecol. 2019, 53, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Leippold, T.; Reitz, A.; Schurch, B. Botulinum toxin as a new therapy option for voiding disorders: Current state of the art. Eur. Urol. 2003, 44, 165–174. [Google Scholar] [CrossRef]
- Peng, H.Y.; Lai, C.Y.; Hsieh, M.C.; Ho, Y.C.; Lin, T.B. Pressure-volume analysis of rat’s micturition cycles in vivo. Neurourol. Urodyn. 2020, 39, 1304–1312. [Google Scholar] [CrossRef]
- Peng, H.Y.; Lai, C.Y.; Hsieh, M.C.; Lin, T.B. Solifenacin/mirabegron induces an acute compliance increase in the filling phase of the capacity-reduced urinary bladder: A pressure-volume analysis in rats. Front. Pharmacol. 2021, 12, 657959. [Google Scholar] [CrossRef]
- Lau, H.H.; Lai, C.Y.; Hsieh, M.C.; Peng, H.Y.; Chou, D.; Su, T.H.; Lee, J.J.; Lin, T.B. Pressure-Volume Loop Analysis of Voiding Workload: An Application in Trans-Vaginal Mesh-Repaired Pelvic Organ Prolapse Patients. Bioengineering 2023, 10, 853. [Google Scholar] [CrossRef]
- Lau, H.H.; Lai, C.Y.; Peng, H.Y.; Hsieh, M.C.; Su, T.H.; Lee, J.J.; Lin, T.B. Modification of bladder thermodynamics in stress urinary incontinence patients submitted to trans-obturator tape: A retrospective study based on urodynamic assessment. Front. Bioeng. Biotechnol. 2022, 10, 912602. [Google Scholar] [CrossRef]
- Ryu, S.M.; Cho, J.S.; Kong, M.K.; Bai, S.W. The incidence and risk factors of occult malignancy in patients receiving vaginal hysterectomy for pelvic organ prolapse. Int. Urogynecol. J. 2023, 34, 2719–2724. [Google Scholar] [CrossRef]
- Rudnicki, P.M. Regarding “Anterior-Apical Transvaginal Mesh (Surelift) for Advanced Urogenital Prolapse: Surgical and Functional Outcome at 1 Year”. J. Minim. Invasive Gynecol. 2021, 28, 146. [Google Scholar] [CrossRef]
- Korbly, N.B.; Kassis, N.C.; Good, M.M.; Richardson, M.L.; Book, N.M.; Yip, S.; Saguan, D.; Gross, C.; Evans, J.; Lopes, V.V.; et al. Patient preferences for uterine preservation and hysterectomy in women with pelvic organ prolapse. Am. J. Obstet. Gynecol. 2013, 209, 470.e1–470.e6. [Google Scholar] [CrossRef]
- Frick, A.C.; Barber, M.D.; Paraiso, M.F.; Ridgeway, B.; Jelovsek, J.E.; Walters, M.D. Attitudes toward hysterectomy in women undergoing evaluation for uterovaginal prolapse. Urogynecology 2013, 19, 103–109. [Google Scholar] [CrossRef]
- Caquant, F.; Collinet, P.; Debodinance, P.; Berrocal, J.; Garbin, O.; Rosenthal, C.; Clave, H.; Villet, R.; Jacquetin, B.; Cosson, M. Safety of Trans Vaginal Mesh procedure: Retrospective study of 684 patients. J. Obstet. Gynaecol. Res. 2008, 34, 449–456. [Google Scholar] [CrossRef]
- Long, C.Y.; Hsu, S.C.; Sun, D.J.; Chen, C.C.; Tsai, E.M.; Su, J.H. Abnormal clinical and urodynamic findings in women with severe genitourinary prolapse. Kaohsiung J. Med. Sci. 2002, 18, 593–597. [Google Scholar] [PubMed]
- McFadden, E.; Lay-Flurrie, S.; Koshiaris, C.; Richards, G.C.; Heneghan, C. The Long-Term Impact of Vaginal Surgical Mesh Devices in UK Primary Care: A Cohort Study in the Clinical Practice Research Datalink. Clin. Epidemiol. 2021, 13, 1167–1180. [Google Scholar] [CrossRef] [PubMed]
- Atis, G.; Arisan, S.; Ozagari, A.; Caskurlu, T.; Dalkilinc, A.; Ergenekon, E. Tissue reaction of the rat urinary bladder to synthetic mesh materials. Sci. World J. 2009, 9, 1046–1051. [Google Scholar] [CrossRef]
- Eslami, M.J.; Zargham, M.; Gholipour, F.; Hajian, M.; Bakhtiari, K.; Hajebrahimi, S.; Eghbal, M.; Farajzadegan, Z. Transvaginal repair of anterior vaginal wall prolapse with polyvinylidene fluoride (PVDF) mesh: An alternative for previously restricted materials? Int. Urogynecol. J. 2022, 33, 1989–1997. [Google Scholar] [CrossRef]
- Achtari, C.; Hiscock, R.; O’Reilly, B.A.; Schierlitz, L.; Dwyer, P.L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. Pelvic Floor Dysfunct. 2005, 16, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, B.; Mao, J.; Matheny, M.E.; Mauer, E.; Banerjee, S.; Sedrakyan, A. Long-Term Safety with Sling Mesh Implants for Stress Incontinence. J. Urol. 2021, 205, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.H.; Lai, C.Y.; Hsieh, M.C.; Peng, H.Y.; Chou, D.; Su, T.H.; Lee, J.J.; Lin, T.B. Effect of intra-vaginal electric stimulation on bladder compliance of stress urinary incontinence patients: The involvement of autonomic tone. Front. Neurosci. 2024, in press. [Google Scholar]
PRE | POST | |
---|---|---|
UD, days | 32.86 ± 9.64 (before) | 135.20 ± 19.06 (after, NA) |
Rvod, cmH2O-s/mL | 4.47 ± 1.02 (1.00 ± 0.00) | 2.68 ± 0.56 (0.68 ± 0.07 **) |
Pvod, cmH2O) | 25.79 ± 3.32 (1.00 ± 0.00) | 22.68 ± 2.99 (0.91 ± 0.06 *) |
Fvod, mL/s | 7.52 ± 0.86 (1.00 ± 0.00) | 10.58 ± 1.38 (1.55 ± 0.19 **) |
Vvod, mL | 418.61 ± 36.97 (1.00 ± 0.00) | 433.04 ± 34.14 (1.08 ± 0.08) |
Tvod, s | 63.14 ± 7.20 (1.00 ± 0.00) | 45.30 ± 3.85 (0.81 ± 0.10 **) |
Apv, cmH2O-mL | 9436.38 ± 1432.22 (1.00 ± 0.00) | 8315.24 ± 1092.44 (0.92 ± 0.07 **) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, H.-H.; Lai, C.-Y.; Hsieh, M.-C.; Peng, H.-Y.; Chou, D.; Su, T.-H.; Lee, J.-J.; Lin, T.-B. Thermodynamic Work of High-Grade Uterine Prolapse Patients Undergoing Transvaginal Mesh Repair with Total Hysterectomy. Bioengineering 2024, 11, 875. https://doi.org/10.3390/bioengineering11090875
Lau H-H, Lai C-Y, Hsieh M-C, Peng H-Y, Chou D, Su T-H, Lee J-J, Lin T-B. Thermodynamic Work of High-Grade Uterine Prolapse Patients Undergoing Transvaginal Mesh Repair with Total Hysterectomy. Bioengineering. 2024; 11(9):875. https://doi.org/10.3390/bioengineering11090875
Chicago/Turabian StyleLau, Hui-Hsuan, Cheng-Yuan Lai, Ming-Chun Hsieh, Hsien-Yu Peng, Dylan Chou, Tsung-Hsien Su, Jie-Jen Lee, and Tzer-Bin Lin. 2024. "Thermodynamic Work of High-Grade Uterine Prolapse Patients Undergoing Transvaginal Mesh Repair with Total Hysterectomy" Bioengineering 11, no. 9: 875. https://doi.org/10.3390/bioengineering11090875
APA StyleLau, H. -H., Lai, C. -Y., Hsieh, M. -C., Peng, H. -Y., Chou, D., Su, T. -H., Lee, J. -J., & Lin, T. -B. (2024). Thermodynamic Work of High-Grade Uterine Prolapse Patients Undergoing Transvaginal Mesh Repair with Total Hysterectomy. Bioengineering, 11(9), 875. https://doi.org/10.3390/bioengineering11090875