Functional Electrical Stimulation of the Lateral Knee Muscles Can Reduce Peak Knee Adduction Moment during Stepping: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stepping System
2.3. Experimental Procedure
2.4. Data Processing
- |Q| = the absolute amount of electrical charge, measured in coulomb (C).
- PD = pulse duration (s).
- 2 = having 2 opposing pulses in a single par of stimulation pulses.
- I = intensity or peak current amplitude, measured in ampere (A).
- F = frequency, measured in Hertz (Hz).
- SD = stimulation duration during the whole 10 stepping cycles, measured in seconds (s) (the total time that muscle received FES during stepping).
2.5. Statistical Analysis
3. Results
3.1. Electrical Charge and Intensity
3.2. FES Impact on Stepping Characteristics in the Healthy Group
3.3. FES Impact on Stepping Characteristics in the KOA Group
4. Discussion
4.1. Healthy Participants’ Response to FES
4.2. KOA Group Response to FES
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Busija, L.; Bridgett, L.; Williams, S.; Osborne, R.; Buchbinder, R.; March, L. Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2010, 24, 757–768. [Google Scholar] [CrossRef]
- Felson, D.T.; Lawrence, R.C.; Dieppe, P.A.; Hirsch, R.; Helmick, C.G.; Jordan, J.M.; Kington, R.S.; Lane, N.E.; Nevitt, M.C.; Zhang, Y. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann. Intern. Med. 2000, 133, 635–646. [Google Scholar] [CrossRef]
- Vincent, K.R.; Conrad, B.P.; Fregly, B.J.; Vincent, H.K. The pathophysiology of osteoarthritis: A mechanical perspective on the knee joint. PM&R 2012, 4, S3–S9. [Google Scholar]
- Favre, J.; Erhart-Hledik, J.C.; Chehab, E.F.; Andriacchi, T.P. Baseline ambulatory knee kinematics are associated with changes in cartilage thickness in osteoarthritic patients over 5 years. J. Biomech. 2016, 49, 1859–1864. [Google Scholar] [CrossRef]
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef]
- Sharma, L.; Hurwitz, D.E.; Thonar, E.J.M.; Sum, J.A.; Lenz, M.E.; Dunlop, D.D.; Schnitzer, T.J.; Kirwan-Mellis, G.; Andriacchi, T.P. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 1998, 41, 1233–1240. [Google Scholar] [CrossRef]
- Thorp, L.E.; Sumner, D.R.; Wimmer, M.A.; Block, J.A. Relationship between pain and medial knee joint loading in mild radiographic knee osteoarthritis. Arthritis Care Res. 2007, 57, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Schipplein, O.; Andriacchi, T. Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 1991, 9, 113–119. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Comput. Methods Programs Biomed. 2023, 241, 107761. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, H.; Quan, W.; Ma, X.; Chon, T.-E.; Fernandez, J.; Gusztav, F.; Kovács, A.; Baker, J.S.; Gu, Y. New insights optimize landing strategies to reduce lower limb injury risk. Cyborg Bionic Syst. 2024, 5, 0126. [Google Scholar] [CrossRef] [PubMed]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 2006, 24, 1983–1990. [Google Scholar] [CrossRef]
- Winby, C.R.; Lloyd, D.G.; Besier, T.F.; Kirk, T.B. Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 2009, 42, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Q.; Wang, G.; Nuber, G.W.; Press, J.M.; Koh, J.L. In vivo load sharing among the quadriceps components. J. Orthop. Res. 2003, 21, 565–571. [Google Scholar] [CrossRef]
- Xu, R.; Ming, D.; Ding, Z.; Bull, A.M. Extra excitation of biceps femoris during neuromuscular electrical stimulation reduces knee medial loading. R. Soc. Open Sci. 2019, 6, 181545. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.L.; Ding, Z.; Xu, R.; Bull, A.M. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects. PLoS ONE 2018, 13, e0190672. [Google Scholar] [CrossRef]
- Lu, T.W.; Chien, H.L.; Chen, H.L. Joint loading in the lower extremities during elliptical exercise. Med. Sci. Sports Exerc. 2007, 39, 1651–1658. [Google Scholar] [CrossRef]
- Paquette, M.R.; Zucker-Levin, A.; DeVita, P.; Hoekstra, J.; Pearsall, D. Lower limb joint angular position and muscle activity during elliptical exercise in healthy young men. J. Appl. Biomech. 2015, 31, 19–27. [Google Scholar] [CrossRef]
- Orekhov, G.; Robinson, A.M.; Hazelwood, S.J.; Klisch, S.M. Knee joint biomechanics in transtibial amputees in gait, cycling, and elliptical training. PLoS ONE 2019, 14, e0226060. [Google Scholar] [CrossRef] [PubMed]
- Kahn, L.; Zhang, L.; Portland, G. Mechanical actions of individual muscles at the knee joint with varus/valgus malalignment. In Proceedings of the Joint Conference of the 1999 IEEE Engineering in Medicine and Biology 21st Annual Meeting and the 1999 Annual Fall Meeting of the Biomedical Engineering Society, Atlanta, GA, USA, 13–16 October 1999; Volume 551, p. 555. [Google Scholar]
- Zhang, L.; Butler, J.; Nishida, T.; Nuber, G.; Huang, H.; Rymer, W. In vivo determination of the direction of rotation and moment-angle relationship of individual elbow muscles. J. Biomech. Eng. 1998, 120, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Shultz, R.; Silder, A.; Dragoo, J.L.; Besier, T.F.; Cutkosky, M.R.; Delp, S.L. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J. Biomech. 2013, 46, 122–128. [Google Scholar] [CrossRef]
- Ren, Y.; Lee, S.J.; Park, H.S.; Zhang, L.Q. A pivoting elliptical training system for improving pivoting neuromuscular control and rehabilitating musculoskeletal injuries. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 860–868. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, S.J.; Zhang, L.Q. Real-time tracking of knee adduction moment in patients with knee osteoarthritis. J. Neurosci. Methods 2014, 231, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Lee, S.J.; Press, J.M.; Zhang, L.Q. Real-Time Three-Dimensional Knee Moment Estimation in Knee Osteoarthritis: Toward Biodynamic Knee Osteoarthritis Evaluation and Training. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Alon, G.; Conroy, V.M.; Donner, T.W. Intensive training of subjects with chronic hemiparesis on a motorized cycle combined with functional electrical stimulation (FES): A feasibility and safety study. Physiother. Res. Int. 2011, 16, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Levene, H. Robust Tests for Equality of Variances. In Contributions to Probability and Statistics; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Maniar, N.; Schache, A.G.; Pizzolato, C.; Opar, D.A. Muscle contributions to tibiofemoral shear forces and valgus and rotational joint moments during single leg drop landing. Scand. J. Med. Sci. Sports 2020, 30, 1664–1674. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Buchanan, T.S. Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomech. 2001, 34, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Burnfield, J.M.; Shu, Y.; Buster, T.; Taylor, A. Similarity of joint kinematics and muscle demands between elliptical training and walking: Implications for practice. Phys. Ther. 2010, 90, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Sozen, H. Comparison of muscle activation during elliptical trainer, treadmill and bike exercise. Biol. Sport 2010, 27, 203. [Google Scholar] [CrossRef]
- Hinman, R.S.; Hunt, M.A.; Creaby, M.W.; Wrigley, T.V.; McManus, F.J.; Bennell, K.L. Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res. 2010, 62, 1190–1193. [Google Scholar] [CrossRef]
- Roos, E.M.; Herzog, W.; Block, J.A.; Bennell, K.L. Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat. Rev. Rheumatol. 2011, 7, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Alon, G.; Smith, G.V. Tolerance and conditioning to neuro-muscular electrical stimulation within and between sessions and gender. J. Sports Sci. Med. 2005, 4, 395. [Google Scholar]
- SchmitT, L.C.; Rudolph, K.S. Influences on knee movement strategies during walking in persons with medial knee osteoarthritis. Arthritis Care Res. 2007, 57, 1018–1026. [Google Scholar] [CrossRef]
- Lewek, M.D.; Ramsey, D.K.; Snyder-Mackler, L.; Rudolph, K.S. Knee stabilization in patients with medial compartment knee osteoarthritis. Arthritis Rheum. 2005, 52, 2845–2853. [Google Scholar] [CrossRef] [PubMed]
Characteristics | KOA (n = 5) | Healthy Control (n = 16) |
---|---|---|
Age (years) | 63.19 (9.57) | 43.82 (14.39) |
Height (m) | 1.70 (0.08) | 1.73 (0.07) |
Mass (kg) | 69.96 (26.46) | 75.66 (18.92) |
BMI (kg·m−1) | 28.28 (4.10) | 25.07 (5.69) |
Gender | Female: 3, Male: 2 | Female: 7, Male: 9 |
BASELINE | FESLG | FESBF | FESLGBF | |
---|---|---|---|---|
Speed (rpm) | 32.17 (4.67) | 30.08 (5.78) | 30.30 (5.48) | 30.56 (6.97) |
pKFM (%(BW×HT)) | 4.77 (1.86) | 4.69 (1.83) | 4.87 (1.71) | 5.01 (1.64) |
pKAM (%(BW×HT)) | 2.19 (1.02) | 1.74 (0.92) * | 1.91 (0.97) * | 1.82 (0.85) * |
pKIRM (%(BW×HT)) | 0.52 (0.30) | 0.46 (0.25) | 0.46 (0.24) | 0.49 (0.26) |
ImpKAM (%(BW×HT×s)) | 1.20 (0.89) | 0.81 (0.80) | 0.93 (0.88) * | 0.84 (0.74) |
Anterior tibia inclination (deg) | 7.28 (5.61) | 8.61 (7.70) | 9.20 (6.85) | 9.53 (8.47) |
Medial tibia inclination (deg) | −7.44 (3.61) | −5.32 (4.17) | −6.69 (3.72) | −8.24 (2.18) |
Internal tibia rotation inclination (deg) | −4.48 (6.32) | −4.18 (5.96) | −3.96 (6.39) | −3.92 (6.11) |
Lateral footplate reaction force (% BW) | −0.69 (2.77) | −0.46 (2.03) | −0.60 (2.74) | −0.67 (2.80) |
Anterior footplate reaction force (% BW) | −8.34 (6.87) | −7.98 (6.52) | −7.51 (6.46) | −7.70 (7.04) |
Vertical footplate reaction force (% BW) | 77.26 (13.22) | 79.06 (13.05) | 79.09 (12.36) | 77.56 (13.17) |
BASELINE | FESLG | FESBF | FESLGBF | |
---|---|---|---|---|
Speed (rpm) | 33.51 (4.62) | 34.75 (5.96) | 35.07 (6.62) | 35.38 (6.77) |
pKFM (%(BW×HT)) | 3.60 (2.24) | 2.17 (0.58) | 2.26 (0.90) | 2.05 (0.89) |
pKAM (%(BW×HT)) | 2.65 (0.89) | 1.77 (0.72) | 1.92 (0.98) | 1.85 (0.72) |
pKIRM (%(BW×HT)) | 0.68 (0.15) | 0.65 (0.11) | 0.71 (0.09) | 0.66 (0.13) |
ImpKAM (%(BW×HT×s)) | 2.43 (2.16) | 1.46 (1.28) | 1.90 (1.52) | 1.53 (1.42) |
Anterior tibia inclination (deg) | 9.23 (7.38) | 5.34 (11.24) | 7.25 (9.89) | 8.52 (7.23) |
Medial tibia inclination (deg) | −5.29 (4.41) | −4.62 (4.13) | −4.95 (4.10) | −4.85 (4.07) |
Internal tibia rotation inclination (deg) | −3.78 (2.55) | −2.19 (4.27) | −1.74 (3.95) | −2.65 (2.87) |
Lateral footplate reaction force (% BW) | −1.13 (1.10) | −0.45 (2.15) | −0.63 (2.59) | 1.22 (1.08) |
Anterior footplate reaction force (% BW) | −4.82 (4.34) | −4.59 (5.35) | −3.29 (2.89) | −2.87 (1.70) |
Vertical footplate reaction force (% BW) | 79.50 (6.33) | 78.99 (11.24) | 77.29 (12.40) | 80.85 (13.13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghi, R.; Alon, G.; Oppizzi, G.; Badhyal, S.; Bowman, P.; Zhang, L.-Q. Functional Electrical Stimulation of the Lateral Knee Muscles Can Reduce Peak Knee Adduction Moment during Stepping: A Pilot Study. Bioengineering 2024, 11, 881. https://doi.org/10.3390/bioengineering11090881
Baghi R, Alon G, Oppizzi G, Badhyal S, Bowman P, Zhang L-Q. Functional Electrical Stimulation of the Lateral Knee Muscles Can Reduce Peak Knee Adduction Moment during Stepping: A Pilot Study. Bioengineering. 2024; 11(9):881. https://doi.org/10.3390/bioengineering11090881
Chicago/Turabian StyleBaghi, Raziyeh, Gad Alon, Giovanni Oppizzi, Subham Badhyal, Peter Bowman, and Li-Qun Zhang. 2024. "Functional Electrical Stimulation of the Lateral Knee Muscles Can Reduce Peak Knee Adduction Moment during Stepping: A Pilot Study" Bioengineering 11, no. 9: 881. https://doi.org/10.3390/bioengineering11090881
APA StyleBaghi, R., Alon, G., Oppizzi, G., Badhyal, S., Bowman, P., & Zhang, L. -Q. (2024). Functional Electrical Stimulation of the Lateral Knee Muscles Can Reduce Peak Knee Adduction Moment during Stepping: A Pilot Study. Bioengineering, 11(9), 881. https://doi.org/10.3390/bioengineering11090881